By employing a radio frequency(RF) feedback chain, the self-interference can be canceled efficiently in co-time co-frequency full duplex(CCFD). However, the evitable signal crosstalk which is caused by the imperfect R...By employing a radio frequency(RF) feedback chain, the self-interference can be canceled efficiently in co-time co-frequency full duplex(CCFD). However, the evitable signal crosstalk which is caused by the imperfect RF feedback chain isolation usually damages the self-interference cancelation(SIC) performance. To deal with this problem, firstly, we analyze the impact of RF feedback chain isolation on SIC performance. Then a digital preprocessing scheme with RF feedback chain is proposed in the multiple-antenna CCFD architecture. Using both analytical and experimental methods, we find that the proposed scheme achieves a better performance on SIC.展开更多
Co-frequency and co-time full duplex(CCFD) is an attractive technology for the future wireless communication because of its high spectral efficiency.However,applications of CCFD to mobile network can suffer from stron...Co-frequency and co-time full duplex(CCFD) is an attractive technology for the future wireless communication because of its high spectral efficiency.However,applications of CCFD to mobile network can suffer from strong base station to base station(B2B)interference.In this paper,the authors proposed a design that uses centralized base station(BS)transmit antenna and distributed BS receive antennas,each of which consists of an antennary to perform beamforming that can nullify the B2 B interference.In addition,we proposed a combination algorithm that uses the zero forcing method to cascade the recursive least square(RLS) method for reducing the necessary number of the bits taken to the digital processor.This enables the faster convergence and,thus,allows the transmission of more information bits,compared to the conventional method,for mobile communication.The simulation results confirm this approach for practical application.展开更多
Co-frequency and co-time full duplex(CCFD) is a promising technique for improving spectral efficiency in next generation wireless communication systems. However, for the applications of CCFD in a cellular network, sev...Co-frequency and co-time full duplex(CCFD) is a promising technique for improving spectral efficiency in next generation wireless communication systems. However, for the applications of CCFD in a cellular network, severe co-channel interference is an essential problem. Specifically, there are two significant interferences, i.e., inter-terminal interference(ITI) and inter-cell interference(ICI), which lead to an obvious performance degradation. In this paper, two techniques are proposed for suppressing the ITI and ICI in a CCFD cellular system, respectively. The first technique is obtained by modeling the three-node CCFD system as the Z-channel. After deriving the sum-capacity of the Z-channel, a sum-capacity-achieving scheme based on successive interference cancellation(SIC) is proposed. The second technique is designed by combining the fractional frequency reuse scheme with CCFD. The performance gains of the proposed two techniques in terms of signalto-interference plus noise ratio(SINR) and sumcapacity are analyzed. Simulation results show that the proposed scheme can achieve significant interference suppression performance and higher system capacity, especially for cell edge users.展开更多
The 3-D beamforming scheme has elite as evolving interest because of its efficiency to empower assorted techniques such as vertical and horizontal domains and emanation beamforming according to subscriber's provis...The 3-D beamforming scheme has elite as evolving interest because of its efficiency to empower assorted techniques such as vertical and horizontal domains and emanation beamforming according to subscriber's provisions. Usually, 3-D beamforming communication is set up on FDD/TDD approach those effects on the performance of spectrum and energy efficiency. Co-frequency and CoTime Full Duplex(CCFD) is an effective solution to improve the spectrum and energy efficiency by transmitting and receiving simultaneously in frequency and time domain. While, CCFD communication often face the self-interference issue when communication occurs, simultaneously. Consequently, in this paper a self-interference elimination by physical feedback channel in CCFD for 3-D Beamforming communication scheme is proposed to improve the over-all system performance in terms of energy and spectrum efficiency. The simulation and analytical outcomes demonstrated that the proposed system is superior than the traditional one.展开更多
This paper presents a design scheme of wire-line telephone system using self-interference(SI)cancellation technology in co-frequency co-time full-duplex(CCFD)system to realize absolute secure communication at the phys...This paper presents a design scheme of wire-line telephone system using self-interference(SI)cancellation technology in co-frequency co-time full-duplex(CCFD)system to realize absolute secure communication at the physical layer.This scheme can hide the target signal by skillfully releasing the high-power artificial noise to the whole link at the receiving node,and then make use of the receiver’s knowledge of the SI signal to achieve high dB SI cancellation with the help of analog domain SI cancellation technology in CCFD domain,so that the signal-to-noise ratio(SNR)received by the eavesdropper at any position of the link is far lower than that of the legitimate receiver,so as to realize the absolutely secure communication in the sense of Wyner principle.This paper not only puts forward the specific design scheme of absolutely secure communication telephone,but also analyzes the calculation of security capacity under different eavesdropping positions,different SI cancellation capability and different system parameters according to Shannon theory.展开更多
基金supported by the National Natural Science Foundation of China under Grants No.61601064,No.61471108,No.61601065,and No.41404102supported by the Sichuan Youth Science and Technology Foundation under Grant No.2016JQ0012
文摘By employing a radio frequency(RF) feedback chain, the self-interference can be canceled efficiently in co-time co-frequency full duplex(CCFD). However, the evitable signal crosstalk which is caused by the imperfect RF feedback chain isolation usually damages the self-interference cancelation(SIC) performance. To deal with this problem, firstly, we analyze the impact of RF feedback chain isolation on SIC performance. Then a digital preprocessing scheme with RF feedback chain is proposed in the multiple-antenna CCFD architecture. Using both analytical and experimental methods, we find that the proposed scheme achieves a better performance on SIC.
基金supported by the National High Technology Research and Development Program of China(Grant No.2014AA01A704)National Natural Science Foundation of China(Grant No.61271203)
文摘Co-frequency and co-time full duplex(CCFD) is an attractive technology for the future wireless communication because of its high spectral efficiency.However,applications of CCFD to mobile network can suffer from strong base station to base station(B2B)interference.In this paper,the authors proposed a design that uses centralized base station(BS)transmit antenna and distributed BS receive antennas,each of which consists of an antennary to perform beamforming that can nullify the B2 B interference.In addition,we proposed a combination algorithm that uses the zero forcing method to cascade the recursive least square(RLS) method for reducing the necessary number of the bits taken to the digital processor.This enables the faster convergence and,thus,allows the transmission of more information bits,compared to the conventional method,for mobile communication.The simulation results confirm this approach for practical application.
基金jointly supported by the HongKong,Macao and Taiwan Science & Technology Cooperation Program of China(Grant no.2015DFT10170)the Beijing Higher Education Young Elite Teacher Project
文摘Co-frequency and co-time full duplex(CCFD) is a promising technique for improving spectral efficiency in next generation wireless communication systems. However, for the applications of CCFD in a cellular network, severe co-channel interference is an essential problem. Specifically, there are two significant interferences, i.e., inter-terminal interference(ITI) and inter-cell interference(ICI), which lead to an obvious performance degradation. In this paper, two techniques are proposed for suppressing the ITI and ICI in a CCFD cellular system, respectively. The first technique is obtained by modeling the three-node CCFD system as the Z-channel. After deriving the sum-capacity of the Z-channel, a sum-capacity-achieving scheme based on successive interference cancellation(SIC) is proposed. The second technique is designed by combining the fractional frequency reuse scheme with CCFD. The performance gains of the proposed two techniques in terms of signalto-interference plus noise ratio(SINR) and sumcapacity are analyzed. Simulation results show that the proposed scheme can achieve significant interference suppression performance and higher system capacity, especially for cell edge users.
基金supported by National Natural Science Foundation of China (Nos.61172107,61172110)National High Technical Research and Development Program (863 Program) of China (No.2015AA016306)+1 种基金Major Projects in Liaoning Province Science and Technology Innovation (No.201302001)Fundamental Research Funds for the Central Universities of China (No.DUT13LAB06)
文摘The 3-D beamforming scheme has elite as evolving interest because of its efficiency to empower assorted techniques such as vertical and horizontal domains and emanation beamforming according to subscriber's provisions. Usually, 3-D beamforming communication is set up on FDD/TDD approach those effects on the performance of spectrum and energy efficiency. Co-frequency and CoTime Full Duplex(CCFD) is an effective solution to improve the spectrum and energy efficiency by transmitting and receiving simultaneously in frequency and time domain. While, CCFD communication often face the self-interference issue when communication occurs, simultaneously. Consequently, in this paper a self-interference elimination by physical feedback channel in CCFD for 3-D Beamforming communication scheme is proposed to improve the over-all system performance in terms of energy and spectrum efficiency. The simulation and analytical outcomes demonstrated that the proposed system is superior than the traditional one.
基金Supported by the Natural Science Foundation of Hubei Province(2019CFB593)the National Natural Science Foundation of China(61961016)+1 种基金Ph.D.Research Start-up Foundation of Hubei Minzu University(MY2018B08)Graduate Education Innovation Plan of Hubei Minzu University(DC2000000119)。
文摘This paper presents a design scheme of wire-line telephone system using self-interference(SI)cancellation technology in co-frequency co-time full-duplex(CCFD)system to realize absolute secure communication at the physical layer.This scheme can hide the target signal by skillfully releasing the high-power artificial noise to the whole link at the receiving node,and then make use of the receiver’s knowledge of the SI signal to achieve high dB SI cancellation with the help of analog domain SI cancellation technology in CCFD domain,so that the signal-to-noise ratio(SNR)received by the eavesdropper at any position of the link is far lower than that of the legitimate receiver,so as to realize the absolutely secure communication in the sense of Wyner principle.This paper not only puts forward the specific design scheme of absolutely secure communication telephone,but also analyzes the calculation of security capacity under different eavesdropping positions,different SI cancellation capability and different system parameters according to Shannon theory.