期刊文献+
共找到515,134篇文章
< 1 2 250 >
每页显示 20 50 100
Real-Time Intelligent Diagnosis of Co-frequency Vibration Faults in Rotating Machinery Based on Lightweight-Convolutional Neural Networks
1
作者 Xin Pan Xiancheng Zhang +1 位作者 Zhinong Jiang Guangfu Bin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期264-282,共19页
The co-frequency vibration fault is one of the common faults in the operation of rotating equipment,and realizing the real-time diagnosis of the co-frequency vibration fault is of great significance for monitoring the... The co-frequency vibration fault is one of the common faults in the operation of rotating equipment,and realizing the real-time diagnosis of the co-frequency vibration fault is of great significance for monitoring the health state and carrying out vibration suppression of the equipment.In engineering scenarios,co-frequency vibration faults are highlighted by rotational frequency and are difficult to identify,and existing intelligent methods require more hardware conditions and are exclusively time-consuming.Therefore,Lightweight-convolutional neural networks(LW-CNN)algorithm is proposed in this paper to achieve real-time fault diagnosis.The critical parameters are discussed and verified by simulated and experimental signals for the sliding window data augmentation method.Based on LW-CNN and data augmentation,the real-time intelligent diagnosis of co-frequency is realized.Moreover,a real-time detection method of fault diagnosis algorithm is proposed for data acquisition to fault diagnosis.It is verified by experiments that the LW-CNN and sliding window methods are used with high accuracy and real-time performance. 展开更多
关键词 co-frequency vibration Real-time diagnosis LW-CNN Data augmentation
下载PDF
Insights into microbiota community dynamics and flavor development mechanism during golden pomfret(Trachinotus ovatus)fermentation based on single-molecule real-time sequencing and molecular networking analysis 被引量:2
2
作者 Yueqi Wang Qian Chen +5 位作者 Huan Xiang Dongxiao Sun-Waterhouse Shengjun Chen Yongqiang Zhao Laihao Li Yanyan Wu 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期101-114,共14页
Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the ... Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the complex microbiota and the dynamic changes in microbial community and flavor compounds during fish fermentation.Single-molecule real-time sequencing and molecular networking analysis revealed the correlations among different microbial genera and the relationships between microbial taxa and volatile compounds.Mechanisms underlying flavor development were also elucidated via KEGG based functional annotations.Clostridium,Shewanella,and Staphylococcus were the dominant microbial genera.Forty-nine volatile compounds were detected in the fermented fish samples,with thirteen identified as characteristic volatile compounds(ROAV>1).Volatile profiles resulted from the interactions among the microorganisms and derived enzymes,with the main metabolic pathways being amino acid biosynthesis/metabolism,carbon metabolism,and glycolysis/gluconeogenesis.This study demonstrated the approaches for distinguishing key microbiota associated with volatile compounds and monitoring the industrial production of high-quality fermented fish products. 展开更多
关键词 Fermented golden pomfret Microbiota community Volatile compound Co-occurrence network Metabolic pathway
下载PDF
Intelligent Diagnosis Method for Typical Co-frequency Vibration Faults of Rotating Machinery Based on SAE and Ensembled ResNet-SVM
3
作者 Xiancheng Zhang Xin Pan +1 位作者 Hao Zeng Haofu Zhou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期215-230,共16页
Intelligent fault diagnosis is an important method in rotating machinery fault diagnosis and equipment health management.To deal with co-frequency vibration faults,a type of typical fault in rotating machinery,this pa... Intelligent fault diagnosis is an important method in rotating machinery fault diagnosis and equipment health management.To deal with co-frequency vibration faults,a type of typical fault in rotating machinery,this paper proposes a fault diagnosis method based on the stacked autoencoder(SAE)and ensembled ResNet-SVM.Furthermore,the time-and frequency-domain features of several co-frequency vibration faults are summarized based on the mechanism analysis and calculated using actual vibration data.To realize and validate the high-precision diagnosis method of rotating equipment with co-frequency faults proposed in this study,the following three criteria are required:First,to improve the effectiveness and robustness of the ensembled model and the sliding window using data augmentation,adding noise,autoencoder(AE)and SAE methods are analyzed in terms of principle and practical effects.Second,ResNet is used as the feature extractor for the ensembled ResNet-SVM model.Feature extraction is carried out twice,and the extracted co-frequency fault features are more comprehensive.Finally,the data augmentation method and ensemble ResNet-SVM are combined for fault diagnosis and compared with other methods.The experimental results show that the accuracy of the proposed method can exceed 99.9%. 展开更多
关键词 co-frequency vribation Data argumentation Ensembeled ResNet-SVM High precision fault diagnosis
下载PDF
Threshold-Based Software-Defined Networking(SDN)Solution for Healthcare Systems against Intrusion Attacks
4
作者 Laila M.Halman Mohammed J.F.Alenazi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1469-1483,共15页
The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are ... The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are widely used in healthcare systems,as they ensure effective resource utilization,safety,great network management,and monitoring.In this sector,due to the value of thedata,SDNs faceamajor challengeposed byawide range of attacks,such as distributed denial of service(DDoS)and probe attacks.These attacks reduce network performance,causing the degradation of different key performance indicators(KPIs)or,in the worst cases,a network failure which can threaten human lives.This can be significant,especially with the current expansion of portable healthcare that supports mobile and wireless devices for what is called mobile health,or m-health.In this study,we examine the effectiveness of using SDNs for defense against DDoS,as well as their effects on different network KPIs under various scenarios.We propose a threshold-based DDoS classifier(TBDC)technique to classify DDoS attacks in healthcare SDNs,aiming to block traffic considered a hazard in the form of a DDoS attack.We then evaluate the accuracy and performance of the proposed TBDC approach.Our technique shows outstanding performance,increasing the mean throughput by 190.3%,reducing the mean delay by 95%,and reducing packet loss by 99.7%relative to normal,with DDoS attack traffic. 展开更多
关键词 network resilience network management attack prediction software defined networking(SDN) distributed denial of service(DDoS) healthcare
下载PDF
The Caching and Pricing Strategy for Information-Centric Networking with Advertisers’Participation
5
作者 Zheng Quan Yan Wenliang +4 位作者 Wu Rong Tan Xiaobin Yang Jian Yuan Liu Xu Zhenghuan 《China Communications》 SCIE CSCD 2024年第3期283-295,共13页
As users’access to the network has evolved into the acquisition of mass contents instead of IP addresses,the IP network architecture based on end-to-end communication cannot meet users’needs.Therefore,the Informatio... As users’access to the network has evolved into the acquisition of mass contents instead of IP addresses,the IP network architecture based on end-to-end communication cannot meet users’needs.Therefore,the Information-Centric Networking(ICN)came into being.From a technical point of view,ICN is a promising future network architecture.Researching and customizing a reasonable pricing mechanism plays a positive role in promoting the deployment of ICN.The current research on ICN pricing mechanism is focused on paid content.Therefore,we study an ICN pricing model for free content,which uses game theory based on Nash equilibrium to analysis.In this work,advertisers are considered,and an advertiser model is established to describe the economic interaction between advertisers and ICN entities.This solution can formulate the best pricing strategy for all ICN entities and maximize the benefits of each entity.Our extensive analysis and numerical results show that the proposed pricing framework is significantly better than existing solutions when it comes to free content. 展开更多
关键词 ADVERTISERS CACHE free content Information-Centric networking pricing strategy
下载PDF
Open-Source Software Defined Networking Controllers:State-of-the-Art,Challenges and Solutions for Future Network Providers
6
作者 Johari Abdul Rahim Rosdiadee Nordin Oluwatosin Ahmed Amodu 《Computers, Materials & Continua》 SCIE EI 2024年第7期747-800,共54页
Software Defined Networking(SDN)is programmable by separation of forwarding control through the centralization of the controller.The controller plays the role of the‘brain’that dictates the intelligent part of SDN t... Software Defined Networking(SDN)is programmable by separation of forwarding control through the centralization of the controller.The controller plays the role of the‘brain’that dictates the intelligent part of SDN technology.Various versions of SDN controllers exist as a response to the diverse demands and functions expected of them.There are several SDN controllers available in the open market besides a large number of commercial controllers;some are developed tomeet carrier-grade service levels and one of the recent trends in open-source SDN controllers is the Open Network Operating System(ONOS).This paper presents a comparative study between open source SDN controllers,which are known as Network Controller Platform(NOX),Python-based Network Controller(POX),component-based SDN framework(Ryu),Java-based OpenFlow controller(Floodlight),OpenDayLight(ODL)and ONOS.The discussion is further extended into ONOS architecture,as well as,the evolution of ONOS controllers.This article will review use cases based on ONOS controllers in several application deployments.Moreover,the opportunities and challenges of open source SDN controllers will be discussed,exploring carriergrade ONOS for future real-world deployments,ONOS unique features and identifying the suitable choice of SDN controller for service providers.In addition,we attempt to provide answers to several critical questions relating to the implications of the open-source nature of SDN controllers regarding vendor lock-in,interoperability,and standards compliance,Similarly,real-world use cases of organizations using open-source SDN are highlighted and how the open-source community contributes to the development of SDN controllers.Furthermore,challenges faced by open-source projects,and considerations when choosing an open-source SDN controller are underscored.Then the role of Artificial Intelligence(AI)and Machine Learning(ML)in the evolution of open-source SDN controllers in light of recent research is indicated.In addition,the challenges and limitations associated with deploying open-source SDN controllers in production networks,how can they be mitigated,and finally how opensource SDN controllers handle network security and ensure that network configurations and policies are robust and resilient are presented.Potential opportunities and challenges for future Open SDN deployment are outlined to conclude the article. 展开更多
关键词 ONOS open source software SDN software defined networking
下载PDF
Information Centric Networking Based Cooperative Caching Framework for 5G Communication Systems
7
作者 R.Mahaveerakannan Thanarajan Tamilvizhi +2 位作者 Sonia Jenifer Rayen Osamah Ibrahim Khalaf Habib Hamam 《Computers, Materials & Continua》 SCIE EI 2024年第9期3945-3966,共22页
The demands on conventional communication networks are increasing rapidly because of the exponential expansion of connected multimedia content.In light of the data-centric aspect of contemporary communication,the info... The demands on conventional communication networks are increasing rapidly because of the exponential expansion of connected multimedia content.In light of the data-centric aspect of contemporary communication,the information-centric network(ICN)paradigm offers hope for a solution by emphasizing content retrieval by name instead of location.If 5G networks are to meet the expected data demand surge from expanded connectivity and Internet of Things(IoT)devices,then effective caching solutions will be required tomaximize network throughput andminimize the use of resources.Hence,an ICN-based Cooperative Caching(ICN-CoC)technique has been used to select a cache by considering cache position,content attractiveness,and rate prediction.The findings show that utilizing our suggested approach improves caching regarding the Cache Hit Ratio(CHR)of 84.3%,Average Hop Minimization Ratio(AHMR)of 89.5%,and Mean Access Latency(MAL)of 0.4 s.Within a framework,it suggests improved caching strategies to handle the difficulty of effectively controlling data consumption in 5G networks.These improvements aim to make the network run more smoothly by enhancing content delivery,decreasing latency,and relieving congestion.By improving 5G communication systems’capacity tomanage the demands faced by modern data-centric applications,the research ultimately aids in advancement. 展开更多
关键词 Information-centric networking caching schemes 5G communication non-negative matrix factorization(NMF) weighted clustering algorithm
下载PDF
Examining the Quality Metrics of a Communication Network with Distributed Software-Defined Networking Architecture
8
作者 Khawaja Tahir Mehmood Shahid Atiq +2 位作者 Intisar Ali Sajjad Muhammad Majid Hussain Malik M.Abdul Basit 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1673-1708,共36页
Software-Defined Networking(SDN),with segregated data and control planes,provides faster data routing,stability,and enhanced quality metrics,such as throughput(Th),maximum available bandwidth(Bd(max)),data transfer(DT... Software-Defined Networking(SDN),with segregated data and control planes,provides faster data routing,stability,and enhanced quality metrics,such as throughput(Th),maximum available bandwidth(Bd(max)),data transfer(DTransfer),and reduction in end-to-end delay(D(E-E)).This paper explores the critical work of deploying SDN in large-scale Data Center Networks(DCNs)to enhance its Quality of Service(QoS)parameters,using logically distributed control configurations.There is a noticeable increase in Delay(E-E)when adopting SDN with a unified(single)control structure in big DCNs to handle Hypertext Transfer Protocol(HTTP)requests causing a reduction in network quality parameters(Bd(max),Th,DTransfer,D(E-E),etc.).This article examines the network performance in terms of quality matrices(bandwidth,throughput,data transfer,etc.),by establishing a large-scale SDN-based virtual network in the Mininet environment.The SDN network is simulated in three stages:(1)An SDN network with unitary controller-POX to manage the data traffic flow of the network without the server load management algorithm.(2)An SDN network with only one controller to manage the data traffic flow of the network with a server load management algorithm.(3)Deployment of SDN in proposed control arrangement(logically distributed controlled framework)with multiple controllers managing data traffic flow under the proposed Intelligent Sensing Server Load Management(ISSLM)algorithm.As a result of this approach,the network quality parameters in large-scale networks are enhanced. 展开更多
关键词 Software defined networking quality of service hypertext transfer protocol data transfer rate LATENCY maximum available bandwidth server load management
下载PDF
Networking Observation and Applications of Chinese Ocean Satellites
9
作者 ZOU Bin LIU Yuxin 《空间科学学报》 CAS CSCD 北大核心 2024年第4期722-730,共9页
This paper presents the networking observation capabilities of Chinese ocean satellites and their diverse applications in ocean disaster prevention,ecological monitoring,and resource development.Since the inaugural la... This paper presents the networking observation capabilities of Chinese ocean satellites and their diverse applications in ocean disaster prevention,ecological monitoring,and resource development.Since the inaugural launch in 2002,China has achieved substantial advancements in ocean satellite technology,forming an observation system composed of the HY-1,HY-2,and HY-3 series satellites.These satellites are integral to global ocean environmental monitoring due to their high resolution,extensive coverage,and frequent observations.Looking forward,China aims to further enhance and expand its ocean satellite capabilities through ongoing projects to support global environmental protection and sustainable development. 展开更多
关键词 Chinese ocean satellites networking observation Ocean forecasting Ocean disaster prevention and mitigation Ocean ecological monitoring Ocean resource development Polar monitoring Terrestrial applications
下载PDF
Co-Frequency Interference Analysis and Avoidance Between NGSO Constellations: Challenges, Techniques, and Trends 被引量:2
10
作者 Yuanzhi He Yuan Li Hao Yin 《China Communications》 SCIE CSCD 2023年第7期1-14,共14页
In recent years,as giant satellite constellations grow rapidly worldwide,the co-existence between constellations has been widely concerned.In this paper,we overview the co-frequency interference(CFI)among the giant no... In recent years,as giant satellite constellations grow rapidly worldwide,the co-existence between constellations has been widely concerned.In this paper,we overview the co-frequency interference(CFI)among the giant non-geostationary orbit(NGSO)constellations.Specifically,we first summarize the CFI scenario and evaluation index among different NGSO constellations.Based on statistics about NGSO constellation plans,we analyse the challenges in mitigation and analysis of CFI.Next,the CFI calculation methods and research progress are systematically sorted out from the aspects of interference risk analysis framework,numerical calculation and link construction.Then,the feasibility of interference mitigation technologies based on space,frequency domain isolation,power control,and interference alignment mitigation in the NGSO mega-constellation CFI scenario are further sorted out.Finally,we present promising directions for future research in CFI analysis and CFI avoidance. 展开更多
关键词 co-frequency existence analysis method overview interference avoidance
下载PDF
A Machine Learning-Based Attack Detection and Prevention System in Vehicular Named Data Networking 被引量:1
11
作者 Arif Hussain Magsi Ali Ghulam +3 位作者 Saifullah Memon Khalid Javeed Musaed Alhussein Imad Rida 《Computers, Materials & Continua》 SCIE EI 2023年第11期1445-1465,共21页
Named Data Networking(NDN)is gaining a significant attention in Vehicular Ad-hoc Networks(VANET)due to its in-network content caching,name-based routing,and mobility-supporting characteristics.Nevertheless,existing ND... Named Data Networking(NDN)is gaining a significant attention in Vehicular Ad-hoc Networks(VANET)due to its in-network content caching,name-based routing,and mobility-supporting characteristics.Nevertheless,existing NDN faces three significant challenges,including security,privacy,and routing.In particular,security attacks,such as Content Poisoning Attacks(CPA),can jeopardize legitimate vehicles with malicious content.For instance,attacker host vehicles can serve consumers with invalid information,which has dire consequences,including road accidents.In such a situation,trust in the content-providing vehicles brings a new challenge.On the other hand,ensuring privacy and preventing unauthorized access in vehicular(VNDN)is another challenge.Moreover,NDN’s pull-based content retrieval mechanism is inefficient for delivering emergency messages in VNDN.In this connection,our contribution is threefold.Unlike existing rule-based reputation evaluation,we propose a Machine Learning(ML)-based reputation evaluation mechanism that identifies CPA attackers and legitimate nodes.Based on ML evaluation results,vehicles accept or discard served content.Secondly,we exploit a decentralized blockchain system to ensure vehicles’privacy by maintaining their information in a secure digital ledger.Finally,we improve the default routing mechanism of VNDN from pull to a push-based content dissemination using Publish-Subscribe(Pub-Sub)approach.We implemented and evaluated our ML-based classification model on a publicly accessible BurST-Asutralian dataset for Misbehavior Detection(BurST-ADMA).We used five(05)hybrid ML classifiers,including Logistic Regression,Decision Tree,K-Nearest Neighbors,Random Forest,and Gaussian Naive Bayes.The qualitative results indicate that Random Forest has achieved the highest average accuracy rate of 100%.Our proposed research offers the most accurate solution to detect CPA in VNDN for safe,secure,and reliable vehicle communication. 展开更多
关键词 Named data networking vehicular networks REPUTATION CACHING MACHINE-LEARNING
下载PDF
Recent Trends of In-Vehicle Time Sensitive Networking Technologies, Applications and Challenges 被引量:1
12
作者 Yanli Xu Jian Shang Hao Tang 《China Communications》 SCIE CSCD 2023年第11期30-55,共26页
With the vigorous development of automobile industry,in-vehicle network is also constantly upgraded to meet data transmission requirements of emerging applications.The main transmission requirements are low latency an... With the vigorous development of automobile industry,in-vehicle network is also constantly upgraded to meet data transmission requirements of emerging applications.The main transmission requirements are low latency and certainty especially for autonomous driving.Time sensitive networking(TSN)based on Ethernet gives a possible solution to these requirements.Previous surveys usually investigated TSN from a general perspective,which referred to TSN of various application fields.In this paper,we focus on the application of TSN to the in-vehicle networks.For in-vehicle networks,we discuss all related TSN standards specified by IEEE 802.1 work group up to now.We further overview and analyze recent literature on various aspects of TSN for automotive applications,including synchronization,resource reservation,scheduling,certainty,software and hardware.Application scenarios of TSN for in-vehicle networks are analyzed one by one.Since TSN of in-vehicle network is still at a very initial stage,this paper also gives insights on open issues,future research directions and possible solutions. 展开更多
关键词 automobile industry deterministic transmission in-vehicle network low latency time sensitive networking(TSN)
下载PDF
UltraStar:A Lightweight Simulator of Ultra-Dense LEO Satellite Constellation Networking for 6G 被引量:3
13
作者 Xiaoyu Liu Ting Ma +3 位作者 Zhixuan Tang Xiaohan Qin Haibo Zhou Xuemin(Sherman)Shen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第3期632-645,共14页
The mega-constellation network has gained significant attention recently due to its great potential in providing ubiquitous and high-capacity connectivity in sixth-generation(6G)wireless communication systems.However,... The mega-constellation network has gained significant attention recently due to its great potential in providing ubiquitous and high-capacity connectivity in sixth-generation(6G)wireless communication systems.However,the high dynamics of network topology and large scale of mega-constellation pose new challenges to the constellation simulation and performance evaluation.In this paper,we introduce UltraStar,a lightweight network simulator,which aims to facilitate the complicated simulation for the emerging mega-constellation of unprecedented scale.Particularly,a systematic and extensible architecture is proposed,where the joint requirement for network simulation,quantitative evaluation,data statistics and visualization is fully considered.For characterizing the network,we make lightweight abstractions of physical entities and models,which contain basic representatives of networking nodes,structures and protocol stacks.Then,to consider the high dynamics of Walker constellations,we give a two-stage topology maintenance method for constellation initialization and orbit prediction.Further,based on the discrete event simulation(DES)theory,a new set of discrete events is specifically designed for basic network processes,so as to maintain network state changes over time.Finally,taking the first-generation Starlink of 11927 low earth orbit(LEO)satellites as an example,we use UltraStar to fully evaluate its network performance for different deployment stages,such as characteristics of constellation topology,performance of end-to-end service and effects of network-wide traffic interaction.The simulation results not only demonstrate its superior performance,but also verify the effectiveness of UltraStar. 展开更多
关键词 Discrete event simulation(DES) mega-constellation network dynamics performance evaluation simulation architecture design
下载PDF
Long-lasting,reinforced electrical networking in a high-loading Li_(2)S cathode for high-performance lithium–sulfur batteries 被引量:3
14
作者 Hun Kim Kyeong-Jun Min +4 位作者 Sangin Bang Jang-Yeon Hwang Jung Ho Kim Chong SYoon Yang-Kook Sun 《Carbon Energy》 SCIE CSCD 2023年第8期1-14,共14页
Realizing a lithium sulfide(Li_(2)S)cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration.Herein... Realizing a lithium sulfide(Li_(2)S)cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration.Herein,a high-loading Li_(2)S-based cathode with micrometric Li_(2)S particles composed of two-dimensional graphene(Gr)and one-dimensional carbon nanotubes(CNTs)in a compact geometry is developed,and the role of CNTs in stable cycling of high-capacity Li–S batteries is emphasized.In a dimensionally combined carbon matrix,CNTs embedded within the Gr sheets create robust and sustainable electron diffusion pathways while suppressing the passivation of the active carbon surface.As a unique point,during the first charging process,the proposed cathode is fully activated through the direct conversion of Li_(2)S into S_(8) without inducing lithium polysulfide formation.The direct conversion of Li_(2)S into S_(8) in the composite cathode is ubiquitously investigated using the combined study of in situ Raman spectroscopy,in situ optical microscopy,and cryogenic transmission electron microscopy.The composite cathode demonstrates unprecedented electrochemical properties even with a high Li_(2)S loading of 10 mg cm^(–2);in particular,the practical and safe Li–S full cell coupled with a graphite anode shows ultra-long-term cycling stability over 800 cycles. 展开更多
关键词 carbon nanotubes electrical network high energy high loading Li_(2)S cathode lithium-sulfur batteries
下载PDF
Pluggable multitask diffractive neural networks based on cascaded metasurfaces 被引量:4
15
作者 Cong He Dan Zhao +8 位作者 Fei Fan Hongqiang Zhou Xin Li Yao Li Junjie Li Fei Dong Yin-Xiao Miao Yongtian Wang Lingling Huang 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第2期23-31,共9页
Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been c... Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems. 展开更多
关键词 optical neural networks diffractive deep neural networks cascaded metasurfaces
下载PDF
Social-ecological perspective on the suicidal behaviour factors of early adolescents in China:a network analysis 被引量:4
16
作者 Yuan Li Peiying Li +5 位作者 Mengyuan Yuan Yonghan Li Xueying Zhang Juan Chen Gengfu Wang Puyu Su 《General Psychiatry》 CSCD 2024年第1期143-150,共8页
Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To expl... Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To explore the risk and protective factors of suicidal behaviours(ie,suicidal ideation,plans and attempts)in early adolescence in China using a social-ecological perspective.Methods Using data from the cross-sectional project‘Healthy and Risky Behaviours Among Middle School Students in Anhui Province,China',stratified random cluster sampling was used to select 5724 middle school students who had completed self-report questionnaires in November 2020.Network analysis was employed to examine the correlates of suicidal ideation,plans and attempts at four levels,namely individual(sex,academic performance,serious physical llness/disability,history of self-harm,depression,impulsivity,sleep problems,resilience),family(family economic status,relationship with mother,relationship with father,family violence,childhood abuse,parental mental illness),school(relationship with teachers,relationship with classmates,school-bullying victimisation and perpetration)and social(social support,satisfaction with society).Results In total,37.9%,19.0%and 5.5%of the students reported suicidal ideation,plans and attempts in the past 6 months,respectively.The estimated network revealed that suicidal ideation,plans and attempts were collectively associated with a history of self-harm,sleep problems,childhood abuse,school bullying and victimisation.Centrality analysis indicated that the most influential nodes in the network were history of self-harm and childhood abuse.Notably,the network also showed unique correlates of suicidal ideation(sex,weight=0.60;impulsivity,weight=0.24;family violence,weight=0.17;relationship with teachers,weight=-0.03;school-bullying perpetration,weight=0.22),suicidal plans(social support,weight=-0.15)and suicidal attempts(relationship with mother,weight=-0.10;parental mental llness,weight=0.61).Conclusions This study identified the correlates of suicidal ideation,plans and attempts,and provided practical implications for suicide prevention for young adolescents in China.Firstly,this study highlighted the importance of joint interventions across multiple departments.Secondly,the common risk factors of suicidal ideation,plans and attempts were elucidated.Thirdly,this study proposed target interventions to address the unique influencing factors of suicidal ideation,plans and attempts. 展开更多
关键词 network ANALYSIS PREVENTION
下载PDF
Screening biomarkers for spinal cord injury using weighted gene co-expression network analysis and machine learning 被引量:5
17
作者 Xiaolu Li Ye Yang +3 位作者 Senming Xu Yuchang Gui Jianmin Chen Jianwen Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2723-2734,共12页
Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is s... Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022). 展开更多
关键词 bioinformatics analysis BIOMARKER CIBERSORT GEO dataset LASSO miRNA-mRNA network RNA sequencing spinal cord injury SVM-RFE weighted gene co-expression network analysis
下载PDF
Image super‐resolution via dynamic network 被引量:1
18
作者 Chunwei Tian Xuanyu Zhang +2 位作者 Qi Zhang Mingming Yang Zhaojie Ju 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期837-849,共13页
Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely exp... Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely express predicted high‐quality images for complex scenes.A dynamic network for image super‐resolution(DSRNet)is presented,which contains a residual enhancement block,wide enhancement block,feature refine-ment block and construction block.The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super‐resolution.To enhance robustness of obtained super‐resolution model for complex scenes,a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super‐resolution model for varying scenes.To prevent interference of components in a wide enhancement block,a refine-ment block utilises a stacked architecture to accurately learn obtained features.Also,a residual learning operation is embedded in the refinement block to prevent long‐term dependency problem.Finally,a construction block is responsible for reconstructing high‐quality images.Designed heterogeneous architecture can not only facilitate richer structural information,but also be lightweight,which is suitable for mobile digital devices.Experimental results show that our method is more competitive in terms of performance,recovering time of image super‐resolution and complexity.The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet. 展开更多
关键词 CNN dynamic network image super‐resolution lightweight network
下载PDF
Mapping Network-Coordinated Stacked Gated Recurrent Units for Turbulence Prediction 被引量:1
19
作者 Zhiming Zhang Shangce Gao +2 位作者 MengChu Zhou Mengtao Yan Shuyang Cao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1331-1341,共11页
Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes i... Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes in the flow field.In this study,we propose a novel deep learning method,named mapping net-work-coordinated stacked gated recurrent units(MSU),for pre-dicting pressure on a circular cylinder from velocity data.Specifi-cally,our coordinated learning strategy is designed to extract the most critical velocity point for prediction,a process that has not been explored before.In our experiments,MSU extracts one point from a velocity field containing 121 points and utilizes this point to accurately predict 100 pressure points on the cylinder.This method significantly reduces the workload of data measure-ment in practical engineering applications.Our experimental results demonstrate that MSU predictions are highly similar to the real turbulent data in both spatio-temporal and individual aspects.Furthermore,the comparison results show that MSU predicts more precise results,even outperforming models that use all velocity field points.Compared with state-of-the-art methods,MSU has an average improvement of more than 45%in various indicators such as root mean square error(RMSE).Through comprehensive and authoritative physical verification,we estab-lished that MSU’s prediction results closely align with pressure field data obtained in real turbulence fields.This confirmation underscores the considerable potential of MSU for practical applications in real engineering scenarios.The code is available at https://github.com/zhangzm0128/MSU. 展开更多
关键词 Convolutional neural network deep learning recurrent neural network turbulence prediction wind load predic-tion.
下载PDF
Applying an Improved Dung Beetle Optimizer Algorithm to Network Traffic Identification 被引量:1
20
作者 Qinyue Wu Hui Xu Mengran Liu 《Computers, Materials & Continua》 SCIE EI 2024年第3期4091-4107,共17页
Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexi... Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexity,leading to practical problems in traffic identification data analytics.Since the original Dung Beetle Optimizer(DBO)algorithm,Grey Wolf Optimization(GWO)algorithm,Whale Optimization Algorithm(WOA),and Particle Swarm Optimization(PSO)algorithm have the shortcomings of slow convergence and easily fall into the local optimal solution,an Improved Dung Beetle Optimizer(IDBO)algorithm is proposed for network traffic identification.Firstly,the Sobol sequence is utilized to initialize the dung beetle population,laying the foundation for finding the global optimal solution.Next,an integration of levy flight and golden sine strategy is suggested to give dung beetles a greater probability of exploring unvisited areas,escaping from the local optimal solution,and converging more effectively towards a global optimal solution.Finally,an adaptive weight factor is utilized to enhance the search capabilities of the original DBO algorithm and accelerate convergence.With the improvements above,the proposed IDBO algorithm is then applied to traffic identification data analytics and feature selection,as so to find the optimal subset for K-Nearest Neighbor(KNN)classification.The simulation experiments use the CICIDS2017 dataset to verify the effectiveness of the proposed IDBO algorithm and compare it with the original DBO,GWO,WOA,and PSO algorithms.The experimental results show that,compared with other algorithms,the accuracy and recall are improved by 1.53%and 0.88%in binary classification,and the Distributed Denial of Service(DDoS)class identification is the most effective in multi-classification,with an improvement of 5.80%and 0.33%for accuracy and recall,respectively.Therefore,the proposed IDBO algorithm is effective in increasing the efficiency of traffic identification and solving the problem of the original DBO algorithm that converges slowly and falls into the local optimal solution when dealing with high-dimensional data analytics and feature selection for network traffic identification. 展开更多
关键词 network security network traffic identification data analytics feature selection dung beetle optimizer
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部