Remote sensing investigations combined with Geographical investigation systems (GIS) provide a rapid and cost-effective method for prospecting hydrothermal and geothermal systems. Most geothermal systems in Kenya are ...Remote sensing investigations combined with Geographical investigation systems (GIS) provide a rapid and cost-effective method for prospecting hydrothermal and geothermal systems. Most geothermal systems in Kenya are found in remote areas where accessibility is difficult. This study was carried out on Paka volcano which is located in the Kenyan rift valley. The aim of the study was to use remote sensing and GIS to investigate hydrothermal minerals and structures associated with geothermal activities. The study involves use of Landsat TM image classification using ENVI 5.1 and ArcGIS. Lineament extraction was done using PCI geomatics 2015 while Rose diagrams were generated using Rockworks 16. The research has shown that lithological, hydrothermal mineralization and structural maps can be generated form Landsat TM images using remote sensing and GIS. It has been shown that faults trend in the Northeast, North and Northwest direction. Hydrothermal minerals that are rich in iron and clays occur on Paka volcano mountain and its neighbouring areas.展开更多
A reasonable classification of deposits holds great significance for identifying prospecting targets and deploying exploration. The world ’s keen demand for lithium resources has expedited the discovery of numerous n...A reasonable classification of deposits holds great significance for identifying prospecting targets and deploying exploration. The world ’s keen demand for lithium resources has expedited the discovery of numerous novel lithium resources. Given the presence of varied classification criteria for lithium resources presently, this study further ascertained and classified the lithium resources according to their occurrence modes, obtaining 10 types and 5 subtypes of lithium deposits(resources) based on endogenetic and exogenetic factors. As indicated by surveys of Cenozoic exogenetic lithium deposits in China and abroad,the formation and distribution of the deposits are primarily determined by plate collision zones, their primary material sources are linked to the anatectic magmas in the deep oceanic crust, and they were formed primarily during the Miocene and Late Paleogene. The researchers ascertained that these deposits,especially those of the salt lake, geothermal, and volcanic deposit types, are formed by unique slightly acidic magmas, tend to migrate and accumulate toward low-lying areas, and display supernormal enrichment. However, the material sources of lithium deposits(resources) of the Neopaleozoic clay subtype and the deep brine type are yet to be further identified. Given the various types and complex origins of lithium deposits(resources), which were formed due to the interactions of multiple spheres, it is recommended that the mineralization of exogenetic lithium deposits(resources) be investigated by integrating tectono-geochemistry, paleoatmospheric circulation, and salinology. So far, industrialized lithium extraction is primarily achieved in lithium deposits of the salt lake, clay, and hard rock types. The lithium extraction employs different processes, with lithium extraction from salt lake-type lithium deposits proving the most energy-saving and cost-effective.展开更多
为了解决深部矿产资源开采所面临的高温问题,降低深部地热开采成本,以基于开挖的增强型地热系统(Enhanced Geothermal Systems Based on Excavation Technology,EGS-E)为基础,提出了一种矿产与地热资源协同开采模式。该模式以围岩温度...为了解决深部矿产资源开采所面临的高温问题,降低深部地热开采成本,以基于开挖的增强型地热系统(Enhanced Geothermal Systems Based on Excavation Technology,EGS-E)为基础,提出了一种矿产与地热资源协同开采模式。该模式以围岩温度为标尺,将地质资源类型分为低温资源(50℃以下)、中温资源(50~100℃)和高温资源(100℃以上),对应的开采模式分别为低温矿产开采模式,中温“热矿共采”模式和高温地热开采模式。低温资源采用传统的矿产开采模式,以矿产资源开采为主。中温资源采用先采热后采矿的热矿共采模式,在对中温型地热资源进行利用的同时,可增加可采矿产资源储量。高温资源采用基于开挖的增强型地热系统(EGS-E),采用独特的热储致裂和热能交换技术实现地热资源大规模开采。研究表明:热矿协同开采模式将传统采矿技术与增强型地热系统相结合,既能消除中高温区域的热害影响,保证矿产资源安全开采,又能实现中温区域地热资源利用以及高温区域地热资源大规模开采;该模式以中高温地热资源的开采弥补矿产资源开采因温度升高引起的成本激增,同时以低温区域矿产资源开采缓解深部地热资源开发的巨额投资压力,为深部矿产和地热资源安全高效开发提供了一种新的方案。展开更多
文摘Remote sensing investigations combined with Geographical investigation systems (GIS) provide a rapid and cost-effective method for prospecting hydrothermal and geothermal systems. Most geothermal systems in Kenya are found in remote areas where accessibility is difficult. This study was carried out on Paka volcano which is located in the Kenyan rift valley. The aim of the study was to use remote sensing and GIS to investigate hydrothermal minerals and structures associated with geothermal activities. The study involves use of Landsat TM image classification using ENVI 5.1 and ArcGIS. Lineament extraction was done using PCI geomatics 2015 while Rose diagrams were generated using Rockworks 16. The research has shown that lithological, hydrothermal mineralization and structural maps can be generated form Landsat TM images using remote sensing and GIS. It has been shown that faults trend in the Northeast, North and Northwest direction. Hydrothermal minerals that are rich in iron and clays occur on Paka volcano mountain and its neighbouring areas.
基金funded by the major research program of the of National Natural Science Foundation of China entitled Metallogenic Mechanisms and Regularity of the Lithium Ore Concentration Area in the Zabuye Salt Lake, Tibet (91962219)Science and Technology Major Project of the Tibet Autonomous Region ’s Science and Techonlogy Plan (XZ202201ZD0004G01)a geological survey project of China Geological Survey (DD20230037)。
文摘A reasonable classification of deposits holds great significance for identifying prospecting targets and deploying exploration. The world ’s keen demand for lithium resources has expedited the discovery of numerous novel lithium resources. Given the presence of varied classification criteria for lithium resources presently, this study further ascertained and classified the lithium resources according to their occurrence modes, obtaining 10 types and 5 subtypes of lithium deposits(resources) based on endogenetic and exogenetic factors. As indicated by surveys of Cenozoic exogenetic lithium deposits in China and abroad,the formation and distribution of the deposits are primarily determined by plate collision zones, their primary material sources are linked to the anatectic magmas in the deep oceanic crust, and they were formed primarily during the Miocene and Late Paleogene. The researchers ascertained that these deposits,especially those of the salt lake, geothermal, and volcanic deposit types, are formed by unique slightly acidic magmas, tend to migrate and accumulate toward low-lying areas, and display supernormal enrichment. However, the material sources of lithium deposits(resources) of the Neopaleozoic clay subtype and the deep brine type are yet to be further identified. Given the various types and complex origins of lithium deposits(resources), which were formed due to the interactions of multiple spheres, it is recommended that the mineralization of exogenetic lithium deposits(resources) be investigated by integrating tectono-geochemistry, paleoatmospheric circulation, and salinology. So far, industrialized lithium extraction is primarily achieved in lithium deposits of the salt lake, clay, and hard rock types. The lithium extraction employs different processes, with lithium extraction from salt lake-type lithium deposits proving the most energy-saving and cost-effective.
文摘为了解决深部矿产资源开采所面临的高温问题,降低深部地热开采成本,以基于开挖的增强型地热系统(Enhanced Geothermal Systems Based on Excavation Technology,EGS-E)为基础,提出了一种矿产与地热资源协同开采模式。该模式以围岩温度为标尺,将地质资源类型分为低温资源(50℃以下)、中温资源(50~100℃)和高温资源(100℃以上),对应的开采模式分别为低温矿产开采模式,中温“热矿共采”模式和高温地热开采模式。低温资源采用传统的矿产开采模式,以矿产资源开采为主。中温资源采用先采热后采矿的热矿共采模式,在对中温型地热资源进行利用的同时,可增加可采矿产资源储量。高温资源采用基于开挖的增强型地热系统(EGS-E),采用独特的热储致裂和热能交换技术实现地热资源大规模开采。研究表明:热矿协同开采模式将传统采矿技术与增强型地热系统相结合,既能消除中高温区域的热害影响,保证矿产资源安全开采,又能实现中温区域地热资源利用以及高温区域地热资源大规模开采;该模式以中高温地热资源的开采弥补矿产资源开采因温度升高引起的成本激增,同时以低温区域矿产资源开采缓解深部地热资源开发的巨额投资压力,为深部矿产和地热资源安全高效开发提供了一种新的方案。