期刊文献+
共找到5,381篇文章
< 1 2 250 >
每页显示 20 50 100
Research on the Dynamic Volatility Relationship between Chinese and U.S. Stock Markets Based on the DCC-GARCH Model under the Background of the COVID-19 Pandemic
1
作者 Simin Wu Yan Liang Weixun Li 《Journal of Applied Mathematics and Physics》 2024年第9期3066-3080,共15页
This study utilizes the Dynamic Conditional Correlation-Generalized Autoregressive Conditional Heteroskedasticity (DCC-GARCH) model to investigate the dynamic relationship between Chinese and U.S. stock markets amid t... This study utilizes the Dynamic Conditional Correlation-Generalized Autoregressive Conditional Heteroskedasticity (DCC-GARCH) model to investigate the dynamic relationship between Chinese and U.S. stock markets amid the COVID-19 pandemic. Initially, a univariate GARCH model is developed to derive residual sequences, which are then used to estimate the DCC model parameters. The research reveals a significant rise in the interconnection between the Chinese and U.S. stock markets during the pandemic. The S&P 500 index displayed higher sensitivity and greater volatility in response to the pandemic, whereas the CSI 300 index showed superior resilience and stability. Analysis and model estimation suggest that the market’s dependence on historical data has intensified and its sensitivity to recent shocks has heightened. Predictions from the model indicate increased market volatility during the pandemic. While the model is proficient in capturing market trends, there remains potential for enhancing the accuracy of specific volatility predictions. The study proposes recommendations for policymakers and investors, highlighting the importance of improved cooperation in international financial market regulation and investor education. 展开更多
关键词 DCC-GARCH Model stock market Linkage COVID-19 market Volatility Forecasting Analysis
下载PDF
China’s Monetary Policy Impacts on Money and Stock Markets
2
作者 Fang Fang 《Proceedings of Business and Economic Studies》 2024年第2期46-52,共7页
This study investigated the impact of China’s monetary policy on both the money market and stock markets,assuming that non-policy variables would not respond contemporaneously to changes in policy variables.Monetary ... This study investigated the impact of China’s monetary policy on both the money market and stock markets,assuming that non-policy variables would not respond contemporaneously to changes in policy variables.Monetary policy adjustments are swiftly observed in money markets and gradually extend to the stock market.The study examined the effects of monetary policy shocks using three primary instruments:interest rate policy,reserve requirement ratio,and open market operations.Monthly data from 2007 to 2013 were analyzed using vector error correction(VEC)models.The findings suggest a likely presence of long-lasting and stable relationships among monetary policy,the money market,and stock markets.This research holds practical implications for Chinese policymakers,particularly in managing the challenges associated with fluctuation risks linked to high foreign exchange reserves,aiming to achieve autonomy in monetary policy and formulate effective monetary strategies to stimulate economic growth. 展开更多
关键词 Chinese money market Chinese stocks market Monetary policy Shanghai Interbank Offered Rate(SHIBOR) Vector error correction models
下载PDF
The Impact of US Stock Market on the Co-Movements of BRIC Stock Markets—Evidence from Linear Conditional Granger Causality
3
作者 Lu Wang Yang Yang Yuanhui Ma 《Open Journal of Statistics》 2017年第5期849-858,共10页
This paper investigates the impact of the US stock market on the co-movements among the BRIC stock markets using conditional Granger causality which allows a comprehensive exploration on direct and indirect causality.... This paper investigates the impact of the US stock market on the co-movements among the BRIC stock markets using conditional Granger causality which allows a comprehensive exploration on direct and indirect causality. The results from linear conditional causality test show a strong influence of the US stock market on the co-movements of BRIC. Our findings identify the US stock market which is the main inner factor making major contributions to the co-movements among the BRIC stock markets. Further, this study provides robust evidence that the co-movements cannot be significantly influenced by the common information factor. These findings show a more complete picture of the relationships between the US and the BRIC stock markets, offering important implications for policymakers and investors. 展开更多
关键词 stock market BRIC co-movement CONDITIONAL GRANGER CAUSALITY
下载PDF
Survey of feature selection and extraction techniques for stock market prediction 被引量:2
4
作者 Htet Htet Htun Michael Biehl Nicolai Petkov 《Financial Innovation》 2023年第1期667-691,共25页
In stock market forecasting,the identification of critical features that affect the performance of machine learning(ML)models is crucial to achieve accurate stock price predictions.Several review papers in the literat... In stock market forecasting,the identification of critical features that affect the performance of machine learning(ML)models is crucial to achieve accurate stock price predictions.Several review papers in the literature have focused on various ML,statistical,and deep learning-based methods used in stock market forecasting.However,no survey study has explored feature selection and extraction techniques for stock market forecasting.This survey presents a detailed analysis of 32 research works that use a combination of feature study and ML approaches in various stock market applications.We conduct a systematic search for articles in the Scopus and Web of Science databases for the years 2011–2022.We review a variety of feature selection and feature extraction approaches that have been successfully applied in the stock market analyses presented in the articles.We also describe the combination of feature analysis techniques and ML methods and evaluate their performance.Moreover,we present other survey articles,stock market input and output data,and analyses based on various factors.We find that correlation criteria,random forest,principal component analysis,and autoencoder are the most widely used feature selection and extraction techniques with the best prediction accuracy for various stock market applications. 展开更多
关键词 Feature selection Feature extraction Dimensionality reduction stock market forecasting Machine learning
下载PDF
Stock market prediction using deep learning algorithms 被引量:1
5
作者 Somenath Mukherjee Bikash Sadhukhan +2 位作者 Nairita Sarkar Debajyoti Roy Soumil De 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第1期82-94,共13页
The Stock Market is one of the most active research areas,and predicting its nature is an epic necessity nowadays.Predicting the Stock Market is quite challenging,and it requires intensive study of the pattern of data... The Stock Market is one of the most active research areas,and predicting its nature is an epic necessity nowadays.Predicting the Stock Market is quite challenging,and it requires intensive study of the pattern of data.Specific statistical models and artificially intelligent algorithms are needed to meet this challenge and arrive at an appropriate solution.Various machine learning and deep learning algorithms can make a firm prediction with minimised error possibilities.The Artificial Neural Network(ANN)or Deep Feedforward Neural Network and the Convolutional Neural Network(CNN)are the two network models that have been used extensively to predict the stock market prices.The models have been used to predict upcoming days'data values from the last few days'data values.This process keeps on repeating recursively as long as the dataset is valid.An endeavour has been taken to optimise this prediction using deep learning,and it has given substantial results.The ANN model achieved an accuracy of 97.66%,whereas the CNN model achieved an accuracy of 98.92%.The CNN model used 2-D histograms generated out of the quantised dataset within a particular time frame,and prediction is made on that data.This approach has not been implemented earlier for the analysis of such datasets.As a case study,the model has been tested on the recent COVID-19 pandemic,which caused a sudden downfall of the stock market.The results obtained from this study was decent enough as it produced an accuracy of 91%. 展开更多
关键词 artificial neural network convolutional neural network nifty stock market
下载PDF
The effect of overseas investors on local market efficiency:evidence from the Shanghai/Shenzhen–Hong Kong Stock Connect
6
作者 Yan Meng Lingyun Xiong +1 位作者 Lijuan Xiao Min Bai 《Financial Innovation》 2023年第1期1103-1134,共32页
Using a recent stock market liberalization reform policy in China—the Stock Connect—as a quasi-natural experiment,this study examines the effect of stock market liberalization on market efficiency.Employing a datase... Using a recent stock market liberalization reform policy in China—the Stock Connect—as a quasi-natural experiment,this study examines the effect of stock market liberalization on market efficiency.Employing a dataset of 17,086 Chinese listed firms covering 2009 to 2018,we find that stock market liberalization improves the market efficiency of the Chinese mainland stock market.We further explore the potential channels through which the Stock Connect can enhance the efficiency of the A-share(A-shares refer to shares issued by Chinese companies incorporated in China's Mainland,traded in the Shanghai Stock Exchange and the Shenzhen Stock Exchange.They are denominated in Chinese RMB(the local currency).A-shares were restricted to local Chinese investors before 2003,are open to foreign investors via the Qualified Foreign Institutional Investor,RMB Qualified Foreign Institutional Investor,or the Stock Connect programs.)market.The findings show that liberalizing capital markets could benefit local market efficiency by increasing stock price informational efficiency and improving corporate governance quality.The additional analysis shows that stock market liberalization has a significant and positive impact on local market efficiency,enhancing firm value and reducing stock crash risk.We conduct various robustness checks to corroborate our findings.This study provides important policy implications for emerging countries liberalizing capital markets for foreign investors. 展开更多
关键词 market efficiency stock Connect market liberalization Overseas investors
下载PDF
Stock Market Prediction Using Generative Adversarial Networks(GANs):Hybrid Intelligent Model
7
作者 Fares Abdulhafidh Dael Omer CagrıYavuz Ugur Yavuz 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期19-35,共17页
The key indication of a nation’s economic development and strength is the stock market.Inflation and economic expansion affect the volatility of the stock market.Given the multitude of factors,predicting stock prices... The key indication of a nation’s economic development and strength is the stock market.Inflation and economic expansion affect the volatility of the stock market.Given the multitude of factors,predicting stock prices is intrinsically challenging.Predicting the movement of stock price indexes is a difficult component of predicting financial time series.Accurately predicting the price movement of stocks can result in financial advantages for investors.Due to the complexity of stock market data,it is extremely challenging to create accurate forecasting models.Using machine learning and other algorithms to anticipate stock prices is an interesting area.The purpose of this article is to forecast stock market values to assist investors to make better informed and precise investing decisions.Statistics,Machine Learning(ML),Natural language processing(NLP),and sentiment analysis will be used to accomplish the study’s objectives.Using both qualitative and quantitative information,the study developed a hybrid model.The hybrid model has been handled with GANs.Based on the model’s predictions,a buy-or-sell trading strategy is offered.The conclusions of this study will assist investors in selecting the ideal choice while selling,holding,or buying shares. 展开更多
关键词 stock markets STATISTICS machine learning sentiment analysis investment decisions
下载PDF
Stock Market Index Prediction Using Machine Learning and Deep Learning Techniques
8
作者 Abdus Saboor Arif Hussain +3 位作者 Bless Lord Y。Agbley Amin ul Haq Jian Ping Li Rajesh Kumar 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期1325-1344,共20页
Stock market forecasting has drawn interest from both economists and computer scientists as a classic yet difficult topic.With the objective of constructing an effective prediction model,both linear and machine learni... Stock market forecasting has drawn interest from both economists and computer scientists as a classic yet difficult topic.With the objective of constructing an effective prediction model,both linear and machine learning tools have been investigated for the past couple of decades.In recent years,recurrent neural networks(RNNs)have been observed to perform well on tasks involving sequence-based data in many research domains.With this motivation,we investigated the performance of long-short term memory(LSTM)and gated recurrent units(GRU)and their combination with the attention mechanism;LSTM+Attention,GRU+Attention,and LSTM+GRU+Attention.The methods were evaluated with stock data from three different stock indices:the KSE 100 index,the DSE 30 index,and the BSE Sensex.The results were compared to other machine learning models such as support vector regression,random forest,and k-nearest neighbor.The best results for the three datasets were obtained by the RNN-based models combined with the attention mechanism.The performances of the RNN and attention-based models are higher and would be more effective for applications in the business industry. 展开更多
关键词 Machine learning deep learning stock market PREDICTION data analysis
下载PDF
A Survey on Stock Market Manipulation Detectors Using Artificial Intelligence
9
作者 Mohd Asyraf Zulkifley Ali Fayyaz Munir +1 位作者 Mohd Edil Abd Sukor Muhammad Hakimi Mohd Shafiai 《Computers, Materials & Continua》 SCIE EI 2023年第5期4395-4418,共24页
A well-managed financial market of stocks,commodities,derivatives,and bonds is crucial to a country’s economic growth.It provides confidence to investors,which encourages the inflow of cash to ensure good market liqu... A well-managed financial market of stocks,commodities,derivatives,and bonds is crucial to a country’s economic growth.It provides confidence to investors,which encourages the inflow of cash to ensure good market liquidity.However,there will always be a group of traders that aims to manipulate market pricing to negatively influence stock values in their favor.These illegal trading activities are surely prohibited according to the rules and regulations of every country’s stockmarket.It is the role of regulators to detect and prevent any manipulation cases in order to provide a trading platform that is fair and efficient.However,the complexity of manipulation cases has increased significantly,coupled with high trading volumes,which makes the manual observations of such cases by human operators no longer feasible.As a result,many intelligent systems have been developed by researchers all over the world to automatically detect various types of manipulation cases.Therefore,this review paper aims to comprehensively discuss the state-of-theart methods that have been developed to detect and recognize stock market manipulation cases.It also provides a concise definition of manipulation taxonomy,including manipulation types and categories,as well as some of the output of early experimental research.In summary,this paper provides a thorough review of the automated methods for detecting stock market manipulation cases. 展开更多
关键词 Artificial intelligence machine learning convolutional neural network recurrent neural network stock market manipulation
下载PDF
Investor sentiments and stock marketsduring the COVID-19 pandemic 被引量:2
10
作者 Emre Cevik Buket Kirci Altinkeski +1 位作者 Emrah Ismail Cevik Sel Dibooglu 《Financial Innovation》 2022年第1期1896-1929,共34页
This study examines the relationship between positive and negative investor sentiments and stock market returns and volatility in Group of 20 countries using variousmethods, including panel regression with fixed effec... This study examines the relationship between positive and negative investor sentiments and stock market returns and volatility in Group of 20 countries using variousmethods, including panel regression with fixed effects, panel quantile regressions, apanel vector autoregression (PVAR) model, and country-specific regressions. We proxyfor negative and positive investor sentiments using the Google Search Volume Indexfor terms related to the coronavirus disease (COVID-19) and COVID-19 vaccine, respectively. Using weekly data from March 2020 to May 2021, we document significantrelationships between positive and negative investor sentiments and stock marketreturns and volatility. Specifically, an increase in positive investor sentiment leads toan increase in stock returns while negative investor sentiment decreases stock returnsat lower quantiles. The effect of investor sentiment on volatility is consistent acrossthe distribution: negative sentiment increases volatility, whereas positive sentimentreduces volatility. These results are robust as they are corroborated by Granger causalitytests and a PVAR model. The findings may have portfolio implications as they indicatethat proxies for positive and negative investor sentiments seem to be good predictorsof stock returns and volatility during the pandemic. 展开更多
关键词 COVID-19 Investor sentiment stock market returns VOLATILITY
下载PDF
Dynamic connectedness between stock markets in the presence of the COVID‑19 pandemic:does economic policy uncertainty matter? 被引量:3
11
作者 Manel Youssef Khaled Mokni Ahdi Noomen Ajmi 《Financial Innovation》 2021年第1期273-299,共27页
This study investigates the dynamic connectedness between stock indices and the effect of economic policy uncertainty(EPU)in eight countries where COVID-19 was most widespread(China,Italy,France,Germany,Spain,Russia,t... This study investigates the dynamic connectedness between stock indices and the effect of economic policy uncertainty(EPU)in eight countries where COVID-19 was most widespread(China,Italy,France,Germany,Spain,Russia,the US,and the UK)by implementing the time-varying VAR(TVP-VAR)model for daily data over the period spanning from 01/01/2015 to 05/18/2020.Results showed that stock markets were highly connected during the entire period,but the dynamic spillovers reached unprecedented heights during the COVID-19 pandemic in the first quarter of 2020.Moreover,we found that the European stock markets(except Italy)transmitted more spillovers to all other stock markets than they received,primarily during the COVID-19 outbreak.Further analysis using a nonlinear framework showed that the dynamic connectedness was more pronounced for negative than for positive returns.Also,findings showed that the direction of the EPU effect on net connectedness changed during the pandemic onset,indicating that information spillovers from a given market may signal either good or bad news for other markets,depending on the prevailing economic situation.These results have important implications for individual investors,portfolio managers,policymakers,investment banks,and central banks. 展开更多
关键词 stock markets Dynamic connectedness COVID-19 pandemic Economic policy uncertainty TVP-VAR model
下载PDF
Detecting the lead–lag effect in stock markets:definition,patterns,and investment strategies 被引量:1
12
作者 Yongli Li Tianchen Wang +1 位作者 Baiqing Sun Chao Liu 《Financial Innovation》 2022年第1期1478-1513,共36页
Human activities widely exhibit a power-law distribution.Considering stock trading as a typical human activity in the financial domain,the first aim of this paper is to validate whether the well-known power-law distri... Human activities widely exhibit a power-law distribution.Considering stock trading as a typical human activity in the financial domain,the first aim of this paper is to validate whether the well-known power-law distribution can be observed in this activity.Interestingly,this paper determines that the number of accumulated lead–lag days between stock pairs meets the power-law distribution in both the U.S.and Chinese stock markets based on 10 years of trading data.Based on this finding this paper adopts the power-law distribution to formally define the lead–lag effect,detect stock pairs with the lead–lag effect,and then design a pure lead–lag investment strategy as well as enhancement investment strategies by integrating the lead–lag strategy into classic alpha-factor strategies.Tests conducted on 20 different alpha-factor strategies demonstrate that both perform better than the selected benchmark strategy and that the lead–lag strategy provides useful signals that significantly improve the performance of basic alpha-factor strategies.Our results therefore indicate that the lead–lag effect may provide effective information for designing more profitable investment strategies. 展开更多
关键词 Power-law distribution Lead-lag effect stock market Complex network Investment strategy
下载PDF
A Critical Review of the Effects of Stock Returns and Market Timing on Capital Structure
13
作者 YE Hongru JI Jie ZOU Yuanyuan 《Management Studies》 2023年第6期312-321,共10页
Capital structure is regarded as the combination of debt and equity firms used to finance operations and investments.The choice of capital structure significantly impacts a company’s cost of capital,profitability,and... Capital structure is regarded as the combination of debt and equity firms used to finance operations and investments.The choice of capital structure significantly impacts a company’s cost of capital,profitability,and risk profile.Among a series of factors that affect capital structure,this paper focuses on stock returns and market timing.In this review,an array of papers is analyzed to summarize what current research claims regarding the influence of stock returns and market timing on capital structure.This paper centers on the stock return and market timing theories and also discusses other theories like the trade-off theory,the pecking order theory,and the signaling theory. 展开更多
关键词 capital structure stock returns market timing
下载PDF
Markov-Switching Time-Varying Copula Modeling of Dependence Structure between Oil and GCC Stock Markets 被引量:1
14
作者 Heni Boubaker Nadia Sghaier 《Open Journal of Statistics》 2016年第4期565-589,共25页
This paper proposes a Markov-switching copula model to examine the presence of regime change in the time-varying dependence structure between oil price changes and stock market returns in six GCC countries. The margin... This paper proposes a Markov-switching copula model to examine the presence of regime change in the time-varying dependence structure between oil price changes and stock market returns in six GCC countries. The marginal distributions are assumed to follow a long-memory model while the copula parameters are supposed to evolve according to the Markov-switching process. Furthermore, we estimate the Value-at-Risk (VaR) based on the proposed approach. The empirical results provide evidence of three regime changes, representing precrisis, financial crisis and post-crisis, in the dependence structure between energy and GCC stock markets. In particular, in the pre- and post-crisis regimes, there is no dependence, while in the crisis regime, there is significant tail dependence. For OPEC countries, we find lower tail dependence whereas in non-OPEC countries, we see upper tail dependence. VaR experiments show that the Markov-switching time- varying copula model performs better than the time-varying copula model. 展开更多
关键词 Time-Varying Copulas Markov-Switching Model Oil Price Changes GCC stock markets VAR
下载PDF
Model of Risk Forewarn and Investment Decision in Stock Markets and Its Realization
15
作者 邹辉文 汤兵勇 +1 位作者 王丽萍 徐光伟 《Journal of Donghua University(English Edition)》 EI CAS 2004年第6期134-141,共8页
Based on the discussion of characteristic and mechanism of the stock prices volatility in Chinese emerging stock markets, this research designs an index system for risk forewarn, and builds up an investment decision m... Based on the discussion of characteristic and mechanism of the stock prices volatility in Chinese emerging stock markets, this research designs an index system for risk forewarn, and builds up an investment decision model based on the forewarn of the market risk signal. Then, on probing into the structure and function of the realization of the model, the paper presents the method of data interface. 展开更多
关键词 stock market RISK forewarn system structure data INTERFACE
下载PDF
Information flow between stock markets:A Koopman decomposition approach
16
作者 Semba Sherehe Huiyun Wan +1 位作者 Changgui Gu Huijie Yang 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第1期711-719,共9页
Stock markets in the world are linked by complicated and dynamical relationships into a temporal network.Extensive works have provided us with rich findings from the topological properties and their evolutionary traje... Stock markets in the world are linked by complicated and dynamical relationships into a temporal network.Extensive works have provided us with rich findings from the topological properties and their evolutionary trajectories,but the underlying dynamical mechanism is still not in order.In the present work,we proposed a technical scheme to reveal the dynamical law from the temporal network.The index records for the global stock markets form a multivariate time series.One separates the series into segments and calculates the information flows between the markets,resulting in a temporal market network representing the state and its evolution.Then the technique of the Koopman decomposition operator is adopted to find the law stored in the information flows.The results show that the stock market system has a high flexibility,i.e.,it jumps easily between different states.The information flows mainly from high to low volatility stock markets.And the dynamical process of information flow is composed of many dynamic modes distribute homogenously in a wide range of periods from one month to several ten years,but there exist only nine modes dominating the macroscopic patterns. 展开更多
关键词 transfer entropy Koopman operator stock markets
下载PDF
Estimation of Dynamic VaR in Chinese Stock Markets Based on Time Scale and Extreme Value Theory
17
作者 林宇 黄登仕 +1 位作者 杨洁 魏宇 《Journal of Southwest Jiaotong University(English Edition)》 2008年第1期73-80,共8页
The accuracy and time scale invariance of value-at-risk (VaR) measurement methods for different stock indices and at different confidence levels are tested. Extreme value theory (EVT) is applied to model the extre... The accuracy and time scale invariance of value-at-risk (VaR) measurement methods for different stock indices and at different confidence levels are tested. Extreme value theory (EVT) is applied to model the extreme tail of standardized residual series of daily/weekly indices losses, and parametric and nonparametric methods are used to estimate parameters of the general Pareto distribution (GPD), and dynamic VaR for indices of three stock markets in China. The accuracy and time scale invariance of risk measurement methods through back-testing approach are also examined. Results show that not all the indices accept time scale invariance; there are some differences in accuracy between different indices at various confidence levels. The most powerful dynamic VaR estimation methods are EVT-GJR-Hill at 97.5% level for weekly loss to Shanghai stock market, and EVT-GARCH-MLE (Hill) at 99.0% level for weekly loss to Taiwan and Hong Kong stock markets, respectively. 展开更多
关键词 Chinese stock markets Dynamic VaR Time scaling Extreme value theory Back-testing
下载PDF
The Information Efficiency and Functionality Efficiency of Stock Markets
18
作者 邹辉文 《Journal of Donghua University(English Edition)》 EI CAS 2011年第4期431-438,共8页
The efficiency of a stock market is principally measured by its information efficiency and functionality efficiency. Both metrics are closdy related to the information of stock markets. However, there is no uniform de... The efficiency of a stock market is principally measured by its information efficiency and functionality efficiency. Both metrics are closdy related to the information of stock markets. However, there is no uniform definition of information in the economy field since researchers may have various opinions on the information of stock markets. In this research, a comparatively strict definition of information in sense of economy is presented. Based on this definition, the optimal conditions to reach the maximum information efficiency and functionality efficiency of stock markets are derived. The conclusion is, only when the market's operation and information transmission mechanisms are fully effective, its information completeness degree is optimal, all investors take optimal equilibrium actions, and the information efficiency and functionality efficiency of stock markets will be optimal. Based on the conclusions, the information efficiency and functionality efficiency of reality stock markets in China are studied and the corresponding supervision countermeasures are suggested. 展开更多
关键词 information definition stock market information efficiency functionality efficiency
下载PDF
Financial Integration Among the ASEAN 5 + 3 Stock Markets: A Preliminary Look at the First 10 Years of the New Millenium
19
作者 Leila C. Kabigting Rene B. Hapitan 《Chinese Business Review》 2013年第5期305-314,共10页
The purpose of this study is to investigate the financial integration of the stock markets of the ASEAN 5 + 3 countries. These countries include Indonesia, Malaysia, Philippines, Singapore, Thailand, China, Japan, an... The purpose of this study is to investigate the financial integration of the stock markets of the ASEAN 5 + 3 countries. These countries include Indonesia, Malaysia, Philippines, Singapore, Thailand, China, Japan, and South Korea. The research determined the stock return volatility for each country's index during the first decade of the new millennium. The findings showed that there is the presence of integration and co-integration with Philippine index's return with the index's returns of the following countries: Indonesia, Singapore, and Thailand. Furthermore, there is evidence of volatility clustering in these stock markets. The study concluded with the policy implications of greater integration in light of the planned cross trading among four ASEAN bourses, namely, Philippines, Singapore, Thailand, and Malaysia by 2012. 展开更多
关键词 ASEAN 5 3 financial integration stock markets stock return volatility global financial crisis cross border ownership
下载PDF
Nonlinearity in Stock Exchange Markets: The Case of Bist 100 Indices
20
作者 Jamilu Said Babangida 《Chinese Business Review》 2021年第1期15-21,共7页
In this paper,using data for the Bist 100 index,we investigate the presence of nonlinearities by employing several nonlinearity tests.The Brock,Dechert,and Scheinkman(BDS)and runs tests were first applied to the serie... In this paper,using data for the Bist 100 index,we investigate the presence of nonlinearities by employing several nonlinearity tests.The Brock,Dechert,and Scheinkman(BDS)and runs tests were first applied to the series to show an initial indication of nonlinearity.The findings for the BDS and runs test of randomness were followed by other sets of direct nonlinearity tests developed by White(1989),Terasvirta(1993),Keenan(1985),and Tsay(1986).Also,the Threshold Autoregression(TAR)test is employed as a final test to confirm the existence of nonlinearity in the Turkish stock exchange market.From the results of the nonlinearity test,it is concluded that the Bist 100 index is characterised by the presence of nonlinearities and cycles.This finding is in contrast with the efficient market hypothesis(EMH)implying that the Turkish stock exchange market is inefficient. 展开更多
关键词 stock market NONLINEARITY efficient market hypothesis Bist 100 index
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部