期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Decision tree and deep learning based probabilistic model for character recognition 被引量:6
1
作者 A.K.Sampath Dr.N.Gomathi 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第12期2862-2876,共15页
One of the most important methods that finds usefulness in various applications, such as searching historical manuscripts, forensic search, bank check reading, mail sorting, book and handwritten notes transcription, i... One of the most important methods that finds usefulness in various applications, such as searching historical manuscripts, forensic search, bank check reading, mail sorting, book and handwritten notes transcription, is handwritten character recognition. The common issues in the character recognition are often due to different writing styles, orientation angle, size variation(regarding length and height), etc. This study presents a classification model using a hybrid classifier for the character recognition by combining holoentropy enabled decision tree(HDT) and deep neural network(DNN). In feature extraction, the local gradient features that include histogram oriented gabor feature and grid level feature, and grey level co-occurrence matrix(GLCM) features are extracted. Then, the extracted features are concatenated to encode shape, color, texture, local and statistical information, for the recognition of characters in the image by applying the extracted features to the hybrid classifier. In the experimental analysis, recognition accuracy of 96% is achieved. Thus, it can be suggested that the proposed model intends to provide more accurate character recognition rate compared to that of character recognition techniques used in the literature. 展开更多
关键词 GREY level co-occurrence matrix FEATURE histogram oriented GABOR gradient FEATURE hybrid CLASSIFIER holoentropy enabled decision tree CLASSIFIER
下载PDF
基于级联特征分类器的行人检测算法 被引量:2
2
作者 徐辉 李海翔 +2 位作者 唐世轩 刘威龙 王雨晨 《实验室研究与探索》 CAS 北大核心 2021年第2期127-132,共6页
为进一步提升方向梯度直方图-局部二值模式(HOG-LBP)特征融合的行人算法在检测精度以及加快融合后的算法检测速度,提出了一种基于级联特征分类器的行人检测算法。计算样本集的方向梯度共生直方图(CoHOG)特征和鲁棒局部二值模式(RLBP)特... 为进一步提升方向梯度直方图-局部二值模式(HOG-LBP)特征融合的行人算法在检测精度以及加快融合后的算法检测速度,提出了一种基于级联特征分类器的行人检测算法。计算样本集的方向梯度共生直方图(CoHOG)特征和鲁棒局部二值模式(RLBP)特征,使用这两种特征训练两种特征弱分类器,并将两种特征融合训练CoHOG-RLBP特征弱分类器。针对算法中存在的特征维数过高导致算法检测速度慢的问题,将各特征分类器以不同数量进行级联,构建一个6级特征弱分类器组成的级联特征分类器实现对行人目标的检测,同时使用soft-NMS算法对输出的检测窗口进行融合。在INRIA行人数据集上进行实验,实验结果表明本文算法有效提高了检测的精度与速度。 展开更多
关键词 方向梯度共生直方图 鲁棒局部二值模式 级联特征分类器 特征融合
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部