Titanium monocarbide(TiC),which is the most stable titanium-based carbide,has attracted considerable interest in the fields of energy,catalysis,and structural materials due to its excellent properties.Synthesis of hig...Titanium monocarbide(TiC),which is the most stable titanium-based carbide,has attracted considerable interest in the fields of energy,catalysis,and structural materials due to its excellent properties.Synthesis of high-quality TiC powders with low cost and high efficiency is crucial for industrial applications;however major challenges face its realization.Herein,the methods for synthesizing TiC powders based on a reaction system are reviewed.This analysis is focused on the underlying mechanisms by which synthesis methods affect the quality of powders.Notably,strategies for improving the synthesis of highquality powders are analyzed from the perspective of enhancing heat and mass transfer processes.Furthermore,the critical issues,challenges,and development trends of the synthesis technology and application of high-quality TiC powder are discussed.展开更多
The uniform layered LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries was prepared by using (Ni1/3Co1/3Mn1/3)C2O4 as precursor synthesized via oxalate co-precipitation method in air. The effects of calc...The uniform layered LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries was prepared by using (Ni1/3Co1/3Mn1/3)C2O4 as precursor synthesized via oxalate co-precipitation method in air. The effects of calcination temperature and time on the structure and electrochemical properties of the LiNi1/3Co1/3Mn1/3O2 were systemically studied. XRD results revealed that the optimal calcination conditions to prepare the layered LiNi1/3Co1/3Mn1/302 were 950℃ for 15 h. Electrochemical measurement showed that the sample prepared under the such conditions has the highest initial discharge capacity of 160.8 mAh/g and the smallest irreversible capacity loss of 13.5% as well as stable cycling performance at a constant current density of 30 mA/g between 2.5 and 4.3 V versus Li at room temperature.展开更多
The synthesis of precursor of green phosphors, LaPO4: Ce, Tb, by means of co-precipitation with cocurrent flow feed was studied. The effects of the reaction temperature, the kind and concentration of the acid in the b...The synthesis of precursor of green phosphors, LaPO4: Ce, Tb, by means of co-precipitation with cocurrent flow feed was studied. The effects of the reaction temperature, the kind and concentration of the acid in the bottom water, and the charging rate on the physical properties, such as particle size, were investigated. It is found that the particle size of the powder is controllable by adjusting acidity in bottom water and charging rate. The powder with diameter size of 3 to 5μm was obtained. Its XRD and SEM were analyzed. XRD patterns of the as-prepared green phosphor powders display the typical peaks of CePO4. SEM shows that the morphology of powders is ball-shaped.展开更多
The long afterglow fluorescent material of M1-3xAl2O4:Eu2+ x/Dy3+2x(M2+= Sr2+, Ca2+ and Ba2+) phosphors are successfully synthesized by calcining precursor obtained via co-precipitation method at 1300oC for 4 h with r...The long afterglow fluorescent material of M1-3xAl2O4:Eu2+ x/Dy3+2x(M2+= Sr2+, Ca2+ and Ba2+) phosphors are successfully synthesized by calcining precursor obtained via co-precipitation method at 1300oC for 4 h with reducing atmosphere (20% H2 and 80% N2). The phase evolution, morphology and afterglow fluorescent properties are systematically studied by the various instruments of XRD, FE-SEM, PLE/PL spectroscopy and fluorescence decay analysis. The PL spectra shows that the Sr1-3xAl2O4:Eu2+x/Dy3+ 2x phosphors display vivid green emission at s519 nm (4f65d1!4f7 transition of Eu2+) with monitoring of the maximum excitation wavelength at s334 nm (8S7=2!6IJ transition of Eu2+), among which the optimal concentration of Eu2+ and Dy3+ is 15 at.% and 30 at.%, respectively. The color coordinates and temperature of Sr1-3xAl2O4:Eu2+ x/Dy3+ 2x phosphors are approximately at (s0.27, s0.57) and s6700 K, respectively. On the above basis, the M0:55Al2O4:Eu2+ 0:15/Dy3+ 0:3 (M2+= Ca2+ and Ba2+) phosphors is obtained by the same method. The PL spectra of these phosphors shows the strongest blue emission at s440 nm and cyan emission at s499 nm under s334 nm wavelength excitation, respectively, which are blue shifted comparing to Sr1??3xAl2O4:Eu2+ x/Dy3+ 2x phosphors. The color coordinates and temperatures of M0:55Al2O4:Eu2+ 0:15/Dy3+ 0:3 (M2+= Ca2+ and Ba2+) phosphors are approximately at (s0.18, s0.09), s2000 K and (s0.18, s0.42), s11600 K, respectively. In this work, long afterglow materials of green, blue and cyan aluminates phosphors with excellent properties have been prepared, in order to obtain wide application in the field of night automatic lighting and display.展开更多
The ZnO molecule plays an important role in the industry due to it special features, anti-corrosion anti-bacterial properties, as well as due to its low electrical conductivity and heat resistance. In these experiment...The ZnO molecule plays an important role in the industry due to it special features, anti-corrosion anti-bacterial properties, as well as due to its low electrical conductivity and heat resistance. In these experimental researches, the sol-gel method was chosen, which enables control of nucleation, aging and growth of particles in the solution. ZnO synthesis was prepared utilizing chemical method with Zinc acetate dyhidrate and NaOH with the appropriate methanol solvent and heating (60˚C). The methods used in identification and characterization are FTIR, UV/VIS, OPTICAL MICROSCOPY, SEM and XRD. The FTIR spectra of synthesized ZnO with corresponding ones show characteristic bands at the corresponding wavelengths, which confirm the presence of ZnO nanoparticles. SEM characterization of ZnO shows the morphology of needle-shaped nanoparticles. XRD spectar in this research by chemical method indicates the particle size of 17.76 nm.展开更多
Given that impurities may affect the quality and safety of drug products,impurity identification and profiling is an integral part of drug quality control and is particularly important for newly developed medications ...Given that impurities may affect the quality and safety of drug products,impurity identification and profiling is an integral part of drug quality control and is particularly important for newly developed medications such as solriamfetol,which is used to treat excessive daytime sleepiness.Although the highperformance liquid chromatography analysis of commercial solriamfetol has revealed the presence of several impurities,their synthesis,structure elucidation,and chromatographic determination have not been reported yet.To bridge this gap,we herein identified,synthesized,and isolated eight processrelated solriamfetol impurities,characterized them using spectroscopic and chromatographic techniques,and proposed plausible mechanisms of their formation.Moreover,we developed and validated a prompt impurity analysis method based on ultrahigh-performance liquid chromatography with UV detection,revealing that its selectivity,linearity,accuracy,precision,and quantitation limit meet the acceptance criteria of method validation stipulated by the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use.Thus,the developed method was concluded to be suitable for the routine analysis of solriamfetol substances.展开更多
Covalent organic frameworks(COFs), as an emerging class of porous crystalline materials constructed by covalent links between the building monomers, have gained tremendous attention. Over the past 15 years, COFs have ...Covalent organic frameworks(COFs), as an emerging class of porous crystalline materials constructed by covalent links between the building monomers, have gained tremendous attention. Over the past 15 years, COFs have made rapid progress and substantial development in the chemistry and materials fields. However, the synthesis of COFs has been dominated by solvothermal methods for a long time and it usually involves high temperature, high pressure and toxic organic solvents, which created many challenges for environmental considerations. Recently,the exploration of new approaches for facile fabrication of COFs has aroused extensive interest. Hence, in this review, we comprehensively describe the synthetic strategies of COFs from the aspects of nonconventional heating methods and reaction media. In addition, the advantages,limitations and properties of the preparation methods are compared. Finally, we outline the main challenges and development prospects of the synthesis of COFs in the future and propose some possible solutions.展开更多
A coprecipitation/hydrothermal route was utilized to fabricate pure phase BiFeO3 powders using FeCl3·6H2O and Bi(NO3)3·5H2O as starting materials, ammonia as precipitant and NaOH as mineralizer. The synthe...A coprecipitation/hydrothermal route was utilized to fabricate pure phase BiFeO3 powders using FeCl3·6H2O and Bi(NO3)3·5H2O as starting materials, ammonia as precipitant and NaOH as mineralizer. The synthesized powders were characterized by XRD, SEM and DSC-TG analysis. In the process, single-phase BiFeO3 powders could be obtained at a hydrothermal reaction temperature of 180 ℃, with NaOH of 0.15 mol/L, in contrast to 200 ℃ and 4 mol/L for conventional hydrothermal route. Meanwhile, the micro-morphology of synthesized BiFeO3 powders changed with different reaction temperatures and concentrations of NaOH. The N6el temperature, Curie temperature and decomposition temperature of the synthesized BiFeO3 powders were detected to be 301 ℃, 828 ℃ and 964 ℃, respectively. The hydrothermal reactions mechanism to fabricate BiFeO3 powders were discussed based on the in-situ transformation process.展开更多
In this work, the Mg1-x Znx Fe2 O4 Nanoferrites (where x = 0.0, 0.2, 0.4, 0.6 and 0.8) was synthesized using co-precipitation method. The investigation of structural and optical properties was carried out for the synt...In this work, the Mg1-x Znx Fe2 O4 Nanoferrites (where x = 0.0, 0.2, 0.4, 0.6 and 0.8) was synthesized using co-precipitation method. The investigation of structural and optical properties was carried out for the synthesized samples using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Ultraviolet visible spectrophotometer (UV-Vis). XRD revealed that the structure of these nanoparticles is spinel with space group Fd3m and crystallite size lies in the range 21.0 - 42.8 nm. Lattice parameter was found to increases with Zn concentration and this may be due to the larger ionic radius of the Zn2+?ion. FTIR spectroscopy confirmed the formation of spinel ferrite and showed the characteristics absorption bands around 612, 1146, 1404, 1649 and 3245 cm-1. The energy band gap was calculated for samples with different ratio and was found to be 4.77, 4.82, 4.86, 4.87 and 4.95 eV. The substitution was resulted in slight increased in the lattice constant and that sequentially may lead to the slightly decreased in the energy gap.展开更多
The component synthesis active vibration suppression method (CSVS) can be applied to suppress the vibration of flexible systems. By this method, several same or similar time-varying components are arranged according...The component synthesis active vibration suppression method (CSVS) can be applied to suppress the vibration of flexible systems. By this method, several same or similar time-varying components are arranged according to certain rules along the time axis. The synthesized command can suppress the arbitrary unwanted vibration harmonic while achieving the desired rigid body motion. The number of the components increases rapidly when the number of harmonic vibration is growing. In this article, the CSVS based on zero-placement technique is used to construct the synthesized command to suppress the multi-harmonics simultaneously in the discrete domain. The nature of zero-placement method is to put enough zeros to cancel system poles at necessary points. The designed synthesized command has equal time intervals between each component and which is much easier to be implemented. Using this method, the number of components increases linearly with the increasing of the number of being suppressed harmonics. For the spacecraft with flexible appendages, CSVS based on zero-placement is used to design the time optimal large angle maneuver control strategy. Simulations have verified the validity and superiority of the proposed approach.展开更多
Many methods are proposed to deal with the type synthesis of parallel kinematic mechanisms(PKMs), but most of them are less intuitive to some extent. Thus, to propose a concise and intuitive type synthesis method fo...Many methods are proposed to deal with the type synthesis of parallel kinematic mechanisms(PKMs), but most of them are less intuitive to some extent. Thus, to propose a concise and intuitive type synthesis method for engineering application is a very challenging issue, which should be further studied in the field. Grassmann line geometry, which can investigate the dimensions of spatial line-clusters in a concise way, is taken as the mathematic foundation. Atlas method is introduced to visually describe the degrees of freedom(DOFs) and constraints of a mechanism, and the dual rule is brought in to realize the mutual conversion of the freedom-space and constraint-space. Consequently, a systematic method based on Grassmann line geometry and Atlas method is generated and the entire type synthesis process is presented. Three type 4-DOF PKMs, i.e., 1T3R, 2T2R and 3T1R(T: translational DOF; R: rotational DOF), are classified according to the different combinations of the translational DOFs and rotational DOFs. The type synthesis of 4-DOF PKMs is carried out and the possible configurations are thoroughly investigated. Some new PKMs with useful functions are generated during this procedure. The type synthesis method based on Grassmann line geometry and Atlas method is intuitive and concise, and can reduce the complexity of the PKMs' type synthesis. Moreover, this method can provide theoretical guidance for other PKMs' type synthesis and engineering application. A novel type synthesis method is proposed, which solves the existing methods' problems in terms of complicated, not intuitive and unsuitable for practical application.展开更多
The micron-sized Sr2(P2OT):Ce,Tb green phosphors were prepared by being annealed at different temperatures with its precursors synthesized by co-pre-cipitates of (NH4)2HPO4 at ambient temperature. The phase struc...The micron-sized Sr2(P2OT):Ce,Tb green phosphors were prepared by being annealed at different temperatures with its precursors synthesized by co-pre-cipitates of (NH4)2HPO4 at ambient temperature. The phase structure, grain size, surface morphology, and luminescent properties of phosphors were investigated by X-ray diffraction, scanning electron microscope, trans-mission electron microscope, and fluorescence spectrum. The results show that the product of precursor annealed at 1,100 ℃ is Sr2(P2O7):Ce,Tb, which belongs to ortho-rhombic phase. The powder is spherical and the size dis-tribution is in micron grade. The sample with the molar ratio of Sr/Tb/Ce of 100.0:0.4:0.6 shows the best fluores-cence effect annealed at 1,100 ℃ for 3 h. The phosphors produce green fluorescence by being excitated with ultra-violet radiation of 254 nm wavelength, and the main emission peak is at 547 nm. The Sr2(P2O7):Ce,Tb phos-phors synthesized by co-precipitation method of precursors at ambient temperature is a kind of efficient green-emitting phosphors.展开更多
Using cetyltrimethylammonium bromide (CTAB) as the template agent, cerium nitrate as the cerium resource, yttrium nitrate as the yttrium resource, and ammonium carbonate as the precipitating agent, mesoporous CeO2 p...Using cetyltrimethylammonium bromide (CTAB) as the template agent, cerium nitrate as the cerium resource, yttrium nitrate as the yttrium resource, and ammonium carbonate as the precipitating agent, mesoporous CeO2 powders doped with different yttrium contents were successfully synthesized using a chemical precipitation method, under an alkalescent condition. Properties of the obtained samples were characterized and analyzed with X-ray diffraction (XRD), energy dispersive analysis of X-rays (EDAX), transmission electron microscopy (TEM), infrared (IR) absorbance, and the BET method. For the prepared samples with 20% (molar ratio) Y-doped content, a BET specific surface area of 106. 6 m^2 · g^- 1, with an average pore size of3~27 nm were obtained. XRD patterns showed that the doped samples were with a cubic fluorite structure. TEM micrographs revealed that the doped samples showed a spherical morphology with a diameter ranging from 20 to 30 nm and a round pore shape. IR results indicated that the Ce-O-Ce vibration intensity decreased as the Y-doped content increased. N2 adsorption-desorption isotherms showed that the samples possessed typical mesopore characteristics. The average pore size of the samples decreased alter mesoporous CeO2 was doped with yttrium, and the average pore size decreased largely as the Y-doped content increased.展开更多
With the recent advancement in nanotechnology,nanoparticles(NPs)offer an ample variety of smart functions than conventional materials in various aspects.As compared to larger particles,NPs possess unique characteristi...With the recent advancement in nanotechnology,nanoparticles(NPs)offer an ample variety of smart functions than conventional materials in various aspects.As compared to larger particles,NPs possess unique characteristics and excellent abilities,such as low toxicity,chemical stability,surface functionality,and biocompatibility.These advantageous properties allow them to be widely utilized in many applications,including biomedical applications,energy applications,IT applications,and industrial applications.In order to fulfill the increasing demands of NP applications,existing NP synthesis methods need to be improved based on the requirements of different applications to further their usage.A comprehensive understanding of the relationships between synthesis parameters and properties of NPs can help us better fine-tune them with designed properties and minimal toxicity.This review paper will discuss the commonly used synthesis methods of functionalized NPs,as well as future directions and challenges to develop various synthesis methods further.展开更多
High quality potassium hexatitanate whiskers were hydrothermally synthesized in one step under moderate temperature and pressure conditions. Effects of the titanium source and reaction conditions on the hydrothermal r...High quality potassium hexatitanate whiskers were hydrothermally synthesized in one step under moderate temperature and pressure conditions. Effects of the titanium source and reaction conditions on the hydrothermal reaction rate, product phase component, and morphology of whiskers were investigated. The results show that the reactivity of hydrated titania, anatase TiO2, and rutile TiO2 with KOH decreases in turn, and with hydrated titania as titanium source, it is difficult to obtain potassium hexatitanate whiskers with good morphology. In contrast, uniform potassium hexatitanate whiskers with a length of 10-20 μm and a diameter of 200-700 nm were obtained using anatase TiO2 as titanium source. The investigation demonstrates that the initial KOH concentration, annealing temperature and time, molar ratio of K2O/TiO2, etc. significantly affect the morphology of the as-synthesized whiskers. The optimized synthesis condition is as follows: anatase as a titanium source 10 wt.% KOH solution; annealing temperature and time of 300℃ and 5 h, respectively; K2O/TiO2 molar ratio of 5, etc. A rhombic potassium hexatitanate was prepared under the optimum condition and the whisker grew along the [110] direction. The reaction mechanism was discussed.展开更多
We used a chemical reduction method to synthesize the catalysts of cobalt(Co) and cobalt-ruthenium(Co-Ru) bifunctional supported on carbon nanotubes(CNTs) for Fischer–Tropsch synthesis(FTS) in a fixedbed reactor. The...We used a chemical reduction method to synthesize the catalysts of cobalt(Co) and cobalt-ruthenium(Co-Ru) bifunctional supported on carbon nanotubes(CNTs) for Fischer–Tropsch synthesis(FTS) in a fixedbed reactor. These Co-Ru/CNTs catalysts were synthesized with various weight proportions of Ru/Co(0.1 to 0.4 wt%) with keeping a fixed amount of cobalt(10 wt%). Moreover, for comparison purpose, CNTs supported Co-and Co(Ru)-based catalysts at same loading as the above catalysts were prepared through impregnation method. We characterize the present catalysts through the various techniques such as Energy–dispersive X-ray(EDX), Transmission Electron Microscopy(TEM), Brunauer–Emmett–Teller(BET),Hydrogen-Temperature-Programmed Reduction(H_2-TPR), Hydrogen-Temperature-Programmed Desorption(H_2-TPD) and O_2 titration. Thus using the chemical reduction method, a narrow particle size distribution was obtained so that the small cobalt particles were confined inside the CNTs. The Co-based catalyst prepared by impregnation was compared with the Co-Ru catalysts at the same loading. The results demonstrated that the use of chemical reduction method led to decrease the average Co oxide cluster size to8.7 nm so that the reduction enhanced about 24% and stabilized an earlier time at the stream. Among the prepared catalysts, the results indicated that the Co-Ru/CNTs catalysts demonstrated high catalytic activity with the highest long-chain hydrocarbons(C_(5+)), selectivity up to 74.76%, which was higher than those we obtained by the Co-Ru/γ-Al_2O_3(61._20%), Co/CNTs(43.68%) and Co/γ-Al_2O_3(37.69%). At the same time, comparing with those catalyst synthesized by impregnation, the use of chemical reduction led to enhancement of the C_(5+) selectivity from 59.30% to 68.83% and increment in FTS rate about 11% for the Co-Ru/CNTs catalyst.展开更多
The current type synthesis of the redundant actuated parallel mechanisms is adding active-actuated kinematic branches on the basis of the traditional parallel mechanisms,or using screw theory to perform multiple getti...The current type synthesis of the redundant actuated parallel mechanisms is adding active-actuated kinematic branches on the basis of the traditional parallel mechanisms,or using screw theory to perform multiple getting intersection and union to complete type synthesis.The number of redundant parallel mechanisms obtained by these two methods is limited.In this paper,based on Grassmann line geometry and Atlas method,a novel and effective method for type synthesis of redundant actuated parallel mechanisms(PMs)with closed-loop units is proposed.Firstly,the degree of freedom(DOF)and constraint line graph of the moving platform are determined successively,and redundant lines are added in constraint line graph to obtain the redundant constraint line graph and their equivalent line graph,and a branch constraint allocation scheme is formulated based on the allocation criteria.Secondly,a scheme is selected and redundant lines are added in the branch chains DOF graph to construct the redundant actuated branch chains with closed-loop units.Finally,the branch chains that meet the requirements of branch chains configuration criteria and F&C(degree of freedom&constraint)line graph are assembled.In this paper,two types of 2 rotational and 1 translational(2R1T)redundant actuated parallel mechanisms and one type of 2 translational and 1 rotational(2T1R)redundant actuated parallel mechanisms with few branches and closed-loop units were taken as examples,and 238,92 and 15 new configurations were synthesized.All the mechanisms contain closed-loop units,and the mechanisms and the actuators both have good symmetry.Therefore,all the mechanisms have excellent comprehensive performance,in which the two rotational DOFs of the moving platform of 2R1T redundant actuated parallel mechanism can be independently controlled.The instantaneous analysis shows that all mechanisms are not instantaneous,which proves the feasibility and practicability of the method.展开更多
For at least the past five decades,structural synthesis has been used as a main means of finding better mechanisms with some predefined function.In structural synthesis,isomorphism identification is still a problem un...For at least the past five decades,structural synthesis has been used as a main means of finding better mechanisms with some predefined function.In structural synthesis,isomorphism identification is still a problem unsolved well,and to solve this problem is very significant to the design of new mechanisms.According to the given degree of freedom(DOF) and link connection property of planar closed chain mechanisms,vertex assortment is obtained.For solving the isomorphism problem,a method of the adding sub-chains is proposed with the detailed steps and algorithms in the synthesizing process.Employing this method,the identification code and formation code of every topological structure are achieved,therefore many isomorphic structures could be eliminated in time during structural synthesis by comparing those codes among different topological graphs,resulting in the improvement of synthesizing efficiency and accuracy,and the approach for eliminating rigid sub-chains in and after the synthesizing process is also presented.Some examples are given,including how to add sub-chains,how to detect simple rigid sub-chains and how to obtain identification codes and formulation codes et al.Using the adding sub-chain method,the relative information of some common topological graphs is given in the form of table.The comparison result is coincident with many literatures,so the correctness of the adding sub-chain method is convinced.This method will greatly improve the synthesizing efficiency and accuracy,and has a good potential for application.展开更多
Since the utilization of abundant biomass to develop advanced materials has become an utmost priority in recent years,we developed two sustainable routes(i.e.,the impregnation method and the one-pot synthesis)to prepa...Since the utilization of abundant biomass to develop advanced materials has become an utmost priority in recent years,we developed two sustainable routes(i.e.,the impregnation method and the one-pot synthesis)to prepare the hydrochar-supported catalysts and tested its catalytic performance on the reductive amination.Several techniques,such as TEM,XRD and XPS,were adopted to characterize the structural and catalytic features of samples.Results indicated that the impregnation method favors the formation of outer-sphere surface complexes with porous structure as well as well-distributed metallic nanoparticles,while the one-pot synthesis tends to form the inner-sphere surface complexes with relatively smooth appearance and amorphous metals.This difference explains the better activity of catalysts prepared by the impregnation method which can selectively convert benzaldehyde to benzylamine with an excellent yield of 93.7%under the optimal reaction conditions;in contrast,the catalyst prepared by the one-pot synthesis only exhibits a low selectivity near to zero.Furthermore,the gram-scale test catalyzed by the same catalysts exhibits a similar yield of benzylamine in comparison to its smaller scale,which is comparable to the previously reported heterogeneous noble-based catalysts.More surprisingly,the prepared catalysts can be expediently recycled by a magnetic bar and remain the satisfying catalytic activity after reusing up to five times.In conclusion,these developed catalysts enable the synthesis of functional amines with excellent selectivity and carbon balance,proving cost-effective and sustainable access to the wide application of reductive amination.展开更多
基金supported by Basic Frontier Scientific Research of the Chinese Academy of Sciences(ZDBS-LY-JSC041)the National Natural Science Foundation of China(22178348)+1 种基金the open research fund of the State Key Laboratory of Mesoscience and Engineering(MESO-23-D06)the Youth Innovation Promotion Association CAS(292021000085)。
文摘Titanium monocarbide(TiC),which is the most stable titanium-based carbide,has attracted considerable interest in the fields of energy,catalysis,and structural materials due to its excellent properties.Synthesis of high-quality TiC powders with low cost and high efficiency is crucial for industrial applications;however major challenges face its realization.Herein,the methods for synthesizing TiC powders based on a reaction system are reviewed.This analysis is focused on the underlying mechanisms by which synthesis methods affect the quality of powders.Notably,strategies for improving the synthesis of highquality powders are analyzed from the perspective of enhancing heat and mass transfer processes.Furthermore,the critical issues,challenges,and development trends of the synthesis technology and application of high-quality TiC powder are discussed.
基金financially supported by the Natural Science Foundation of Guangxi Province, China (No. GKZ0832256)
文摘The uniform layered LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries was prepared by using (Ni1/3Co1/3Mn1/3)C2O4 as precursor synthesized via oxalate co-precipitation method in air. The effects of calcination temperature and time on the structure and electrochemical properties of the LiNi1/3Co1/3Mn1/3O2 were systemically studied. XRD results revealed that the optimal calcination conditions to prepare the layered LiNi1/3Co1/3Mn1/302 were 950℃ for 15 h. Electrochemical measurement showed that the sample prepared under the such conditions has the highest initial discharge capacity of 160.8 mAh/g and the smallest irreversible capacity loss of 13.5% as well as stable cycling performance at a constant current density of 30 mA/g between 2.5 and 4.3 V versus Li at room temperature.
基金Rare Earth Special Project supported by National Development and Reform Commission
文摘The synthesis of precursor of green phosphors, LaPO4: Ce, Tb, by means of co-precipitation with cocurrent flow feed was studied. The effects of the reaction temperature, the kind and concentration of the acid in the bottom water, and the charging rate on the physical properties, such as particle size, were investigated. It is found that the particle size of the powder is controllable by adjusting acidity in bottom water and charging rate. The powder with diameter size of 3 to 5μm was obtained. Its XRD and SEM were analyzed. XRD patterns of the as-prepared green phosphor powders display the typical peaks of CePO4. SEM shows that the morphology of powders is ball-shaped.
基金the National Natural Science Foundation of China (No. 51602126)the National Key Research and Development Plan of China (No. 2016YFB0303505)+1 种基金China and University of Jinan Postdoctoral Science Foundation (No. 2017M622118 and XBH1716)the 111 Project of International Corporation on Advanced Cement-based Materials (D17001).
文摘The long afterglow fluorescent material of M1-3xAl2O4:Eu2+ x/Dy3+2x(M2+= Sr2+, Ca2+ and Ba2+) phosphors are successfully synthesized by calcining precursor obtained via co-precipitation method at 1300oC for 4 h with reducing atmosphere (20% H2 and 80% N2). The phase evolution, morphology and afterglow fluorescent properties are systematically studied by the various instruments of XRD, FE-SEM, PLE/PL spectroscopy and fluorescence decay analysis. The PL spectra shows that the Sr1-3xAl2O4:Eu2+x/Dy3+ 2x phosphors display vivid green emission at s519 nm (4f65d1!4f7 transition of Eu2+) with monitoring of the maximum excitation wavelength at s334 nm (8S7=2!6IJ transition of Eu2+), among which the optimal concentration of Eu2+ and Dy3+ is 15 at.% and 30 at.%, respectively. The color coordinates and temperature of Sr1-3xAl2O4:Eu2+ x/Dy3+ 2x phosphors are approximately at (s0.27, s0.57) and s6700 K, respectively. On the above basis, the M0:55Al2O4:Eu2+ 0:15/Dy3+ 0:3 (M2+= Ca2+ and Ba2+) phosphors is obtained by the same method. The PL spectra of these phosphors shows the strongest blue emission at s440 nm and cyan emission at s499 nm under s334 nm wavelength excitation, respectively, which are blue shifted comparing to Sr1??3xAl2O4:Eu2+ x/Dy3+ 2x phosphors. The color coordinates and temperatures of M0:55Al2O4:Eu2+ 0:15/Dy3+ 0:3 (M2+= Ca2+ and Ba2+) phosphors are approximately at (s0.18, s0.09), s2000 K and (s0.18, s0.42), s11600 K, respectively. In this work, long afterglow materials of green, blue and cyan aluminates phosphors with excellent properties have been prepared, in order to obtain wide application in the field of night automatic lighting and display.
文摘The ZnO molecule plays an important role in the industry due to it special features, anti-corrosion anti-bacterial properties, as well as due to its low electrical conductivity and heat resistance. In these experimental researches, the sol-gel method was chosen, which enables control of nucleation, aging and growth of particles in the solution. ZnO synthesis was prepared utilizing chemical method with Zinc acetate dyhidrate and NaOH with the appropriate methanol solvent and heating (60˚C). The methods used in identification and characterization are FTIR, UV/VIS, OPTICAL MICROSCOPY, SEM and XRD. The FTIR spectra of synthesized ZnO with corresponding ones show characteristic bands at the corresponding wavelengths, which confirm the presence of ZnO nanoparticles. SEM characterization of ZnO shows the morphology of needle-shaped nanoparticles. XRD spectar in this research by chemical method indicates the particle size of 17.76 nm.
基金This research was funded by the Deanship of Scientific Research at the German-Jordanian University and the Deanship of Scientific Research at Zarqa University.The graphical abstract was created with BioRender software.
文摘Given that impurities may affect the quality and safety of drug products,impurity identification and profiling is an integral part of drug quality control and is particularly important for newly developed medications such as solriamfetol,which is used to treat excessive daytime sleepiness.Although the highperformance liquid chromatography analysis of commercial solriamfetol has revealed the presence of several impurities,their synthesis,structure elucidation,and chromatographic determination have not been reported yet.To bridge this gap,we herein identified,synthesized,and isolated eight processrelated solriamfetol impurities,characterized them using spectroscopic and chromatographic techniques,and proposed plausible mechanisms of their formation.Moreover,we developed and validated a prompt impurity analysis method based on ultrahigh-performance liquid chromatography with UV detection,revealing that its selectivity,linearity,accuracy,precision,and quantitation limit meet the acceptance criteria of method validation stipulated by the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use.Thus,the developed method was concluded to be suitable for the routine analysis of solriamfetol substances.
基金supported by the National Natural Science Foundation of China (Nos. 21822407 and 22074154)Youth Innovation Promotion Association CAS (2021420)the Foundation for Sci & Tech Research Project of Gansu Province (20JR10RA045 and 20JR5RA573)。
文摘Covalent organic frameworks(COFs), as an emerging class of porous crystalline materials constructed by covalent links between the building monomers, have gained tremendous attention. Over the past 15 years, COFs have made rapid progress and substantial development in the chemistry and materials fields. However, the synthesis of COFs has been dominated by solvothermal methods for a long time and it usually involves high temperature, high pressure and toxic organic solvents, which created many challenges for environmental considerations. Recently,the exploration of new approaches for facile fabrication of COFs has aroused extensive interest. Hence, in this review, we comprehensively describe the synthetic strategies of COFs from the aspects of nonconventional heating methods and reaction media. In addition, the advantages,limitations and properties of the preparation methods are compared. Finally, we outline the main challenges and development prospects of the synthesis of COFs in the future and propose some possible solutions.
基金the National Natural Science Foundation of China(No.50372039)
文摘A coprecipitation/hydrothermal route was utilized to fabricate pure phase BiFeO3 powders using FeCl3·6H2O and Bi(NO3)3·5H2O as starting materials, ammonia as precipitant and NaOH as mineralizer. The synthesized powders were characterized by XRD, SEM and DSC-TG analysis. In the process, single-phase BiFeO3 powders could be obtained at a hydrothermal reaction temperature of 180 ℃, with NaOH of 0.15 mol/L, in contrast to 200 ℃ and 4 mol/L for conventional hydrothermal route. Meanwhile, the micro-morphology of synthesized BiFeO3 powders changed with different reaction temperatures and concentrations of NaOH. The N6el temperature, Curie temperature and decomposition temperature of the synthesized BiFeO3 powders were detected to be 301 ℃, 828 ℃ and 964 ℃, respectively. The hydrothermal reactions mechanism to fabricate BiFeO3 powders were discussed based on the in-situ transformation process.
文摘In this work, the Mg1-x Znx Fe2 O4 Nanoferrites (where x = 0.0, 0.2, 0.4, 0.6 and 0.8) was synthesized using co-precipitation method. The investigation of structural and optical properties was carried out for the synthesized samples using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Ultraviolet visible spectrophotometer (UV-Vis). XRD revealed that the structure of these nanoparticles is spinel with space group Fd3m and crystallite size lies in the range 21.0 - 42.8 nm. Lattice parameter was found to increases with Zn concentration and this may be due to the larger ionic radius of the Zn2+?ion. FTIR spectroscopy confirmed the formation of spinel ferrite and showed the characteristics absorption bands around 612, 1146, 1404, 1649 and 3245 cm-1. The energy band gap was calculated for samples with different ratio and was found to be 4.77, 4.82, 4.86, 4.87 and 4.95 eV. The substitution was resulted in slight increased in the lattice constant and that sequentially may lead to the slightly decreased in the energy gap.
文摘The component synthesis active vibration suppression method (CSVS) can be applied to suppress the vibration of flexible systems. By this method, several same or similar time-varying components are arranged according to certain rules along the time axis. The synthesized command can suppress the arbitrary unwanted vibration harmonic while achieving the desired rigid body motion. The number of the components increases rapidly when the number of harmonic vibration is growing. In this article, the CSVS based on zero-placement technique is used to construct the synthesized command to suppress the multi-harmonics simultaneously in the discrete domain. The nature of zero-placement method is to put enough zeros to cancel system poles at necessary points. The designed synthesized command has equal time intervals between each component and which is much easier to be implemented. Using this method, the number of components increases linearly with the increasing of the number of being suppressed harmonics. For the spacecraft with flexible appendages, CSVS based on zero-placement is used to design the time optimal large angle maneuver control strategy. Simulations have verified the validity and superiority of the proposed approach.
基金supported by National Natural Science Foundation of China(Grant No.51135008)National Basic Research Program of China(973 Program,Grant No.2013CB035400)China Postdoctoral Science Foundation(Grant Nos.2012M520256,2013T60107)
文摘Many methods are proposed to deal with the type synthesis of parallel kinematic mechanisms(PKMs), but most of them are less intuitive to some extent. Thus, to propose a concise and intuitive type synthesis method for engineering application is a very challenging issue, which should be further studied in the field. Grassmann line geometry, which can investigate the dimensions of spatial line-clusters in a concise way, is taken as the mathematic foundation. Atlas method is introduced to visually describe the degrees of freedom(DOFs) and constraints of a mechanism, and the dual rule is brought in to realize the mutual conversion of the freedom-space and constraint-space. Consequently, a systematic method based on Grassmann line geometry and Atlas method is generated and the entire type synthesis process is presented. Three type 4-DOF PKMs, i.e., 1T3R, 2T2R and 3T1R(T: translational DOF; R: rotational DOF), are classified according to the different combinations of the translational DOFs and rotational DOFs. The type synthesis of 4-DOF PKMs is carried out and the possible configurations are thoroughly investigated. Some new PKMs with useful functions are generated during this procedure. The type synthesis method based on Grassmann line geometry and Atlas method is intuitive and concise, and can reduce the complexity of the PKMs' type synthesis. Moreover, this method can provide theoretical guidance for other PKMs' type synthesis and engineering application. A novel type synthesis method is proposed, which solves the existing methods' problems in terms of complicated, not intuitive and unsuitable for practical application.
基金financially supported by the National Natural Science Foundation of China(No.21273060)the Program for New Century Excellent Talents in Heilongjiang Provincial University(No.1251-NCET-014)
文摘The micron-sized Sr2(P2OT):Ce,Tb green phosphors were prepared by being annealed at different temperatures with its precursors synthesized by co-pre-cipitates of (NH4)2HPO4 at ambient temperature. The phase structure, grain size, surface morphology, and luminescent properties of phosphors were investigated by X-ray diffraction, scanning electron microscope, trans-mission electron microscope, and fluorescence spectrum. The results show that the product of precursor annealed at 1,100 ℃ is Sr2(P2O7):Ce,Tb, which belongs to ortho-rhombic phase. The powder is spherical and the size dis-tribution is in micron grade. The sample with the molar ratio of Sr/Tb/Ce of 100.0:0.4:0.6 shows the best fluores-cence effect annealed at 1,100 ℃ for 3 h. The phosphors produce green fluorescence by being excitated with ultra-violet radiation of 254 nm wavelength, and the main emission peak is at 547 nm. The Sr2(P2O7):Ce,Tb phos-phors synthesized by co-precipitation method of precursors at ambient temperature is a kind of efficient green-emitting phosphors.
基金Project supported by the International Cooperation of Science and Technology Ministry PRC (2005DFBA028)the National Natural Science Foundation of China (59925412)
文摘Using cetyltrimethylammonium bromide (CTAB) as the template agent, cerium nitrate as the cerium resource, yttrium nitrate as the yttrium resource, and ammonium carbonate as the precipitating agent, mesoporous CeO2 powders doped with different yttrium contents were successfully synthesized using a chemical precipitation method, under an alkalescent condition. Properties of the obtained samples were characterized and analyzed with X-ray diffraction (XRD), energy dispersive analysis of X-rays (EDAX), transmission electron microscopy (TEM), infrared (IR) absorbance, and the BET method. For the prepared samples with 20% (molar ratio) Y-doped content, a BET specific surface area of 106. 6 m^2 · g^- 1, with an average pore size of3~27 nm were obtained. XRD patterns showed that the doped samples were with a cubic fluorite structure. TEM micrographs revealed that the doped samples showed a spherical morphology with a diameter ranging from 20 to 30 nm and a round pore shape. IR results indicated that the Ce-O-Ce vibration intensity decreased as the Y-doped content increased. N2 adsorption-desorption isotherms showed that the samples possessed typical mesopore characteristics. The average pore size of the samples decreased alter mesoporous CeO2 was doped with yttrium, and the average pore size decreased largely as the Y-doped content increased.
文摘With the recent advancement in nanotechnology,nanoparticles(NPs)offer an ample variety of smart functions than conventional materials in various aspects.As compared to larger particles,NPs possess unique characteristics and excellent abilities,such as low toxicity,chemical stability,surface functionality,and biocompatibility.These advantageous properties allow them to be widely utilized in many applications,including biomedical applications,energy applications,IT applications,and industrial applications.In order to fulfill the increasing demands of NP applications,existing NP synthesis methods need to be improved based on the requirements of different applications to further their usage.A comprehensive understanding of the relationships between synthesis parameters and properties of NPs can help us better fine-tune them with designed properties and minimal toxicity.This review paper will discuss the commonly used synthesis methods of functionalized NPs,as well as future directions and challenges to develop various synthesis methods further.
文摘High quality potassium hexatitanate whiskers were hydrothermally synthesized in one step under moderate temperature and pressure conditions. Effects of the titanium source and reaction conditions on the hydrothermal reaction rate, product phase component, and morphology of whiskers were investigated. The results show that the reactivity of hydrated titania, anatase TiO2, and rutile TiO2 with KOH decreases in turn, and with hydrated titania as titanium source, it is difficult to obtain potassium hexatitanate whiskers with good morphology. In contrast, uniform potassium hexatitanate whiskers with a length of 10-20 μm and a diameter of 200-700 nm were obtained using anatase TiO2 as titanium source. The investigation demonstrates that the initial KOH concentration, annealing temperature and time, molar ratio of K2O/TiO2, etc. significantly affect the morphology of the as-synthesized whiskers. The optimized synthesis condition is as follows: anatase as a titanium source 10 wt.% KOH solution; annealing temperature and time of 300℃ and 5 h, respectively; K2O/TiO2 molar ratio of 5, etc. A rhombic potassium hexatitanate was prepared under the optimum condition and the whisker grew along the [110] direction. The reaction mechanism was discussed.
文摘We used a chemical reduction method to synthesize the catalysts of cobalt(Co) and cobalt-ruthenium(Co-Ru) bifunctional supported on carbon nanotubes(CNTs) for Fischer–Tropsch synthesis(FTS) in a fixedbed reactor. These Co-Ru/CNTs catalysts were synthesized with various weight proportions of Ru/Co(0.1 to 0.4 wt%) with keeping a fixed amount of cobalt(10 wt%). Moreover, for comparison purpose, CNTs supported Co-and Co(Ru)-based catalysts at same loading as the above catalysts were prepared through impregnation method. We characterize the present catalysts through the various techniques such as Energy–dispersive X-ray(EDX), Transmission Electron Microscopy(TEM), Brunauer–Emmett–Teller(BET),Hydrogen-Temperature-Programmed Reduction(H_2-TPR), Hydrogen-Temperature-Programmed Desorption(H_2-TPD) and O_2 titration. Thus using the chemical reduction method, a narrow particle size distribution was obtained so that the small cobalt particles were confined inside the CNTs. The Co-based catalyst prepared by impregnation was compared with the Co-Ru catalysts at the same loading. The results demonstrated that the use of chemical reduction method led to decrease the average Co oxide cluster size to8.7 nm so that the reduction enhanced about 24% and stabilized an earlier time at the stream. Among the prepared catalysts, the results indicated that the Co-Ru/CNTs catalysts demonstrated high catalytic activity with the highest long-chain hydrocarbons(C_(5+)), selectivity up to 74.76%, which was higher than those we obtained by the Co-Ru/γ-Al_2O_3(61._20%), Co/CNTs(43.68%) and Co/γ-Al_2O_3(37.69%). At the same time, comparing with those catalyst synthesized by impregnation, the use of chemical reduction led to enhancement of the C_(5+) selectivity from 59.30% to 68.83% and increment in FTS rate about 11% for the Co-Ru/CNTs catalyst.
基金Supported by National Natural Science Foundation of China(Grant No.51875499).
文摘The current type synthesis of the redundant actuated parallel mechanisms is adding active-actuated kinematic branches on the basis of the traditional parallel mechanisms,or using screw theory to perform multiple getting intersection and union to complete type synthesis.The number of redundant parallel mechanisms obtained by these two methods is limited.In this paper,based on Grassmann line geometry and Atlas method,a novel and effective method for type synthesis of redundant actuated parallel mechanisms(PMs)with closed-loop units is proposed.Firstly,the degree of freedom(DOF)and constraint line graph of the moving platform are determined successively,and redundant lines are added in constraint line graph to obtain the redundant constraint line graph and their equivalent line graph,and a branch constraint allocation scheme is formulated based on the allocation criteria.Secondly,a scheme is selected and redundant lines are added in the branch chains DOF graph to construct the redundant actuated branch chains with closed-loop units.Finally,the branch chains that meet the requirements of branch chains configuration criteria and F&C(degree of freedom&constraint)line graph are assembled.In this paper,two types of 2 rotational and 1 translational(2R1T)redundant actuated parallel mechanisms and one type of 2 translational and 1 rotational(2T1R)redundant actuated parallel mechanisms with few branches and closed-loop units were taken as examples,and 238,92 and 15 new configurations were synthesized.All the mechanisms contain closed-loop units,and the mechanisms and the actuators both have good symmetry.Therefore,all the mechanisms have excellent comprehensive performance,in which the two rotational DOFs of the moving platform of 2R1T redundant actuated parallel mechanism can be independently controlled.The instantaneous analysis shows that all mechanisms are not instantaneous,which proves the feasibility and practicability of the method.
基金supported by National Natural Science Foundation of China (Grant No. 51075079)National Hi-tech Research and Development Program of China(863 Program,Grant No. 2008AA04Z202)
文摘For at least the past five decades,structural synthesis has been used as a main means of finding better mechanisms with some predefined function.In structural synthesis,isomorphism identification is still a problem unsolved well,and to solve this problem is very significant to the design of new mechanisms.According to the given degree of freedom(DOF) and link connection property of planar closed chain mechanisms,vertex assortment is obtained.For solving the isomorphism problem,a method of the adding sub-chains is proposed with the detailed steps and algorithms in the synthesizing process.Employing this method,the identification code and formation code of every topological structure are achieved,therefore many isomorphic structures could be eliminated in time during structural synthesis by comparing those codes among different topological graphs,resulting in the improvement of synthesizing efficiency and accuracy,and the approach for eliminating rigid sub-chains in and after the synthesizing process is also presented.Some examples are given,including how to add sub-chains,how to detect simple rigid sub-chains and how to obtain identification codes and formulation codes et al.Using the adding sub-chain method,the relative information of some common topological graphs is given in the form of table.The comparison result is coincident with many literatures,so the correctness of the adding sub-chain method is convinced.This method will greatly improve the synthesizing efficiency and accuracy,and has a good potential for application.
基金This work was supported financially by the National Key R&D Program of China(2018YFB1501500)National Natural Science Foundation of China(51976225).
文摘Since the utilization of abundant biomass to develop advanced materials has become an utmost priority in recent years,we developed two sustainable routes(i.e.,the impregnation method and the one-pot synthesis)to prepare the hydrochar-supported catalysts and tested its catalytic performance on the reductive amination.Several techniques,such as TEM,XRD and XPS,were adopted to characterize the structural and catalytic features of samples.Results indicated that the impregnation method favors the formation of outer-sphere surface complexes with porous structure as well as well-distributed metallic nanoparticles,while the one-pot synthesis tends to form the inner-sphere surface complexes with relatively smooth appearance and amorphous metals.This difference explains the better activity of catalysts prepared by the impregnation method which can selectively convert benzaldehyde to benzylamine with an excellent yield of 93.7%under the optimal reaction conditions;in contrast,the catalyst prepared by the one-pot synthesis only exhibits a low selectivity near to zero.Furthermore,the gram-scale test catalyzed by the same catalysts exhibits a similar yield of benzylamine in comparison to its smaller scale,which is comparable to the previously reported heterogeneous noble-based catalysts.More surprisingly,the prepared catalysts can be expediently recycled by a magnetic bar and remain the satisfying catalytic activity after reusing up to five times.In conclusion,these developed catalysts enable the synthesis of functional amines with excellent selectivity and carbon balance,proving cost-effective and sustainable access to the wide application of reductive amination.