期刊文献+
共找到3,421篇文章
< 1 2 172 >
每页显示 20 50 100
Integrating remote sensing and 3-PG model to simulate the biomass and carbon stock of Larix olgensis plantation
1
作者 Yu Bai Yong Pang Dan Kong 《Forest Ecosystems》 SCIE CSCD 2024年第4期543-555,共13页
Accurate estimations of biomass and its temporal dynamics are crucial for monitoring the carbon cycle in forest ecosystems and assessing forest carbon sequestration potentials.Recent studies have shown that integratin... Accurate estimations of biomass and its temporal dynamics are crucial for monitoring the carbon cycle in forest ecosystems and assessing forest carbon sequestration potentials.Recent studies have shown that integrating process-based models(PBMs)with remote sensing data can enhance simulations from stand to regional scales,significantly improving the ability to simulate forest growth and carbon stock dynamics.However,the utilization of PBMs for large-scale simulation of larch carbon storage distribution is still limited.In this study,we applied the parameterized 3-PG(Physiological Principles Predicting Growth)model across the Mengjiagang Forest Farm(MFF)to make broad-scale predictions of the biomass and carbon stocks of Larix olgensis plantation.The model was used to simulate average diameter at breast height(DBH)and total biomass,which were later validated with a wide range of observation data including sample plot data,forest management inventory data,and airborne laser scanning data.The results showed that the 3-PG model had relatively high accuracy for predicting both DBH and total biomass at stand and regional scale,with determination coefficients ranging from 0.78 to 0.88.Based on the estimation of total biomass,we successfully produced a carbon stock map of the Larix olgensis plantation in MFF with a spatial resolution of 20 m,which helps with relevant management advice.These findings indicate that the integration of 3-PG model and remote sensing data can well predict the biomass and carbon stock at regional and even larger scales.In addition,this integration facilitates the evaluation of forest carbon sequestration capacity and the development of forest management plans. 展开更多
关键词 3-PG model LARCH biomass carbon stock ALS
下载PDF
In Situ Mineralization of Biomass-Derived Hydrogels Boosts Capacitive Electrochemical Energy Storage in Free-Standing 3D Carbon Aerogels
2
作者 Anjali Achazhiyath Edathil Babak Rezaei +1 位作者 Kristoffer Almdal Stephan Sylνest Keller 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期359-371,共13页
Here,a novel fabrication method for making free-standing 3D hierarchical porous carbon aerogels from molecularly engineered biomass-derived hydrogels is presented.In situ formed flower-like CaCO_(3)molecularly embedde... Here,a novel fabrication method for making free-standing 3D hierarchical porous carbon aerogels from molecularly engineered biomass-derived hydrogels is presented.In situ formed flower-like CaCO_(3)molecularly embedded within the hydrogel network regulated the pore structure during in situ mineralization assisted one-step activation graphitization(iMAG),while the intrinsic structural integrity of the carbon aerogels was maintained.The homogenously distributed minerals simultaneously acted as a hard template,activating agent,and graphitization catalyst.The decomposition of the homogenously distributed CaCO_(3)during iMAG followed by the etching of residual CaO through a mild acid washing endowed a robust carbon aerogel with high porosity and excellent electrochemical performance.At 0.5 mA cm^(-2),the gravimetric capacitance increased from 0.01 F g^(-1)without mineralization to 322 F g^(-1)with iMAG,which exceeds values reported for any other free-standing or powder-based biomass-derived carbon electrodes.An outstanding cycling stability of~104%after 1000 cycles in 1 M HClO4 was demonstrated.The assembled symmetric supercapacitor device delivered a high specific capacitance of 376 F g^(-1)and a high energy density of 26 W h kg^(-1)at a power density of 4000 W kg^(-1),with excellent cycling performance(98.5%retention after 2000 cycles).In combination with the proposed 3D printed mold-assisted solution casting(3DMASC),iMAG allows for the generation of free-standing carbon aerogel architectures with arbitrary shapes.Furthermore,the novel method introduces flexibility in constructing free-standing carbon aerogels from any ionically cross-linkable biopolymer while maintaining the ability to tailor the design,dimensions,and pore size distribution for specific energy storage applications. 展开更多
关键词 biomass carbon aerogel sustainable energy materials FREE-STANDING SUPERCAPACITORS
下载PDF
Facile preparation of Fe/N-based biomass porous carbon composite towards enhancing the thermal decomposition of DAP-4
3
作者 Er-hai An Xiao-xia Li +5 位作者 Cun-juan Yu Ying-xin Tan Zi-jun Fan Qing-xia Li Peng Deng Xiong Cao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期288-294,共7页
Fe/N-based biomass porous carbon composite(Fe/N-p Carbon) was prepared by a facile high-temperature carbonization method from biomass,and the effect of Fe/N-p Carbon on the thermal decomposition of energetic molecular... Fe/N-based biomass porous carbon composite(Fe/N-p Carbon) was prepared by a facile high-temperature carbonization method from biomass,and the effect of Fe/N-p Carbon on the thermal decomposition of energetic molecular perovskite-based material DAP-4 was studied.Biomass porous carbonaceous materials was considered as the micro/nano support layers for in situ deposition of Fe/N precursors.Fe/Np Carbon was prepared simply by the high-temperature carbonization method.It was found that it showed the inherent catalysis properties for thermal decomposition of DAP-4.The heat release of DAP-4/Fe/N-p Carbon by DSC curves tested had increased slightly,compared from DAP-4/Fe/N-p Carbon-0.The decomposition temperature peak of DAP-4 at the presence of Fe/N-p Carbon had reduced by 79°C from384.4°C(pure DAP-4) to 305.4°C(DAP-4/Fe/N-p Carbon-3).The apparent activation energy of DAP-4thermal decomposition also had decreased by 29.1 J/mol.The possible catalytic decomposition mechanism of DAP-4 with Fe/N-p Carbon was proposed. 展开更多
关键词 biomass materials Porous carbon DAP-4 Thermal decomposition Facile method
下载PDF
Cross-upgrading of biomass hydrothermal carbonization and pyrolysis for high quality blast furnace injection fuel production:Physicochemical characteristics and gasification kinetics analysis
4
作者 Han Dang Runsheng Xu +2 位作者 Jianliang Zhang Mingyong Wang Jinhua Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期268-281,共14页
The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile con... The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile content of biochar ranged from 16.19%to 45.35%,and the alkali metal content,ash content,and specific surface area were significantly reduced.The optimal route for biochar pro-duction is hydrothermal carbonization-pyrolysis(P-HC),resulting in biochar with a higher calorific value,C=C structure,and increased graphitization degree.The apparent activation energy(E)of the sample ranges from 199.1 to 324.8 kJ/mol,with P-HC having an E of 277.8 kJ/mol,lower than that of raw biomass,primary biochar,and anthracite.This makes P-HC more suitable for blast furnace injection fuel.Additionally,the paper proposes a path for P-HC injection in blast furnaces and calculates potential environmental benefits.P-HC of-fers the highest potential for carbon emission reduction,capable of reducing emissions by 96.04 kg/t when replacing 40wt%coal injec-tion. 展开更多
关键词 blast furnace injection biomass cross-upgrading hydrothermal carbonization PYROLYSIS physicochemical properties gasific-ation properties
下载PDF
Effects of urbanization and forest type on species composition and diversity,forest characteristics,biomass carbon sink,and their associations in Changchun,Northeast China:implications for urban carbon stock improvement
5
作者 Yuanyuan Wang Xinzhu Dai +5 位作者 Xingling Chen Dan Zhang Guiqing Lin Yuanhang Zhou Tianyi Wang Yulong Cui 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期146-162,共17页
Differences in forest attributes and carbon sequestration of each organ and layer between broadleaved and conifer forests of central and outer urban areas are not well-defined,hindering the precise management of urban... Differences in forest attributes and carbon sequestration of each organ and layer between broadleaved and conifer forests of central and outer urban areas are not well-defined,hindering the precise management of urban forests and improvement of function.To clarify the effect of two forest types with different urbanization intensities,we determined differences in vegetation composition and diversity,structural traits,and carbon stocks of 152 plots(20 m×20 m)in urban park forests in Changchun,which had the largest green quantity and carbon density effectiveness.We found that 1.1-fold thicker and healthier trees,and 1.6-to 2.0-fold higher,healthier,denser,and more various shrubs but with sparser trees and herbs occurred in the central urban forests(p<0.05)than in the outer forests.The conifer forests exhibited 30–70%obviously higher tree aboveground carbon sequestration(including stem and leaf)and 20%bigger trees,especially in the outer forests(p<0.05).In contrast,1.1-to 1.5-fold higher branch stocks,healthier and more diverse trees were found in broadleaved forests of both the inner and outer forests(p<0.05).Plant size and dominant species had similarly important roles in carbon stock improvement,especially big-sized woody plants and Pinus tabuliformis.In addition,a higher number of deciduous or needle species positively affected the broadleaved forest of the central urban area and conifer forest of the outer urban area,respectively.These findings can be used to guide precise management and accelerate the improvement of urban carbon function in Northeast China in the future. 展开更多
关键词 Species diversity Forest characteristics biomass carbon sink Forest-type effect Urbanization effect Urban forests
下载PDF
A thermodynamic view on the in-situ carbon dioxide reduction by biomass-derived hydrogen during calcium carbonate decomposition
6
作者 Peng Jiang Hao Zhang +5 位作者 Guanhan Zhao Lin Li Tuo Ji Liwen Mu Xiaohua Lu Jiahua Zhu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期231-240,共10页
In the carbonate industry,deep decarbonization strategies are necessary to effectively remediate CO_(2).These strategies mainly include both sustainable energy supplies and the conversion of CO_(2)in downstream proces... In the carbonate industry,deep decarbonization strategies are necessary to effectively remediate CO_(2).These strategies mainly include both sustainable energy supplies and the conversion of CO_(2)in downstream processes.This study developed a coupled process of biomass chemical looping H2 production and reductive calcination of CaCO_(3).Firstly,a mass and energy balance of the coupled process was established in Aspen Plus.Following this,process optimization and energy integration were implemented to provide optimized operation conditions.Lastly,a life cycle assessment was carried out to assess the carbon footprint of the coupled process.Results reveal that the decomposition temperature of CaCO_(3)in an H_(2)atmosphere can be reduced to 780℃(generally around 900℃),and the conversion of CO_(2)from CaCO_(3)decomposition reached 81.33%with an H2:CO ratio of 2.49 in gaseous products.By optimizing systemic energy through heat integration,an energy efficiency of 86.30%was achieved.Additionally,the carbon footprint analysis revealed that the process with energy integration had a low global warming potential(GWP)of-2.624 kg·kg^(-1)(CO_(2)/CaO).Conclusively,this work performed a systematic analysis of introducing biomass-derived H_(2)into CaCO_(3)calcination and demonstrated the positive role of reductive calcination using green H_(2)in mitigating CO_(2)emissions within the carbonate industry. 展开更多
关键词 biomass CaCO_(3)reductive calcination Chemical looping Hydrogen production carbon footprint Thermodynamics process
下载PDF
Impact of Planted Mangrove Species on Biomass Carbon and Other Structural Attributes in Ayeyarwady Region
7
作者 Aung Wunna Tun Wai Nyein Aye 《Open Journal of Forestry》 2024年第1期98-116,共19页
This study examines the impact of different mangrove species on the structure and carbon storage potential of mangrove stands in Myanmar. We focused on three species: Avicennia officinalis, Avicennia marina and Brugui... This study examines the impact of different mangrove species on the structure and carbon storage potential of mangrove stands in Myanmar. We focused on three species: Avicennia officinalis, Avicennia marina and Bruguiera sexangula. These species were selected for their fast growth, ability to protect against cyclones, and effectiveness in coastal defense during mangrove restoration. To collect data on tree structure and carbon storage, we conducted field surveys measuring parameters such as diameter at breast height (DBH), tree height and crown diameter for each tree. Non-destructive methods were used for data collection. Using ANOVA and post-hoc multiple comparison tests, we assessed differences in structure and carbon stock among the three species. Regression analysis was also performed to understand the relationship between carbon stock and structural attributes. In terms of stand densities, we observed variations among species, with pioneer stage plantations exhibiting higher densities compared to mature stands. Seedlings showed sufficient regeneration, supporting the sustainability of the forest. Biomass accumulation varied across species, with A. officinalis having the highest average biomass. Aboveground biomass showed a strong correlation with basal area. A. officinalis had the highest total biomass carbon accumulation at 55.29 ± 20.91 Mg C ha<sup>-1</sup>, with 77.43% aboveground carbon and 22.57% belowground carbon. A. marina stored 41.09 ± 11.03 Mg C ha<sup>-1</sup>, with a similar distribution of 76.05% aboveground and 23.95% belowground carbon, while B. sexangula stored 23.23 ± 3.12 Mg C ha<sup>-1</sup>, with 70.70% aboveground carbon and 29.30% belowground carbon. The amount of aboveground carbon was a significant portion of the overall carbon storage and correlated with tree density, diameter, basal area and height. Our findings highlight the importance of selecting suitable species and considering structural attributes for mangrove restoration and carbon storage efforts. These results provide valuable insights for managing mangrove plantations at regional and global levels. On average, the reported carbon sequestration was 154.40 MgCO<sub>2</sub>-eq ha<sup>-1</sup>. 展开更多
关键词 Species Selection biomass carbon Storage Ayeyarwady Region Myanmar
下载PDF
Biomass carbon materials for high-performance secondary battery electrodes:A review
8
作者 Qiankun Zhou Wenjie Yang +5 位作者 Lili Wang Hongdian Lu Shibin Nie Liangji Xu Wei Yang Chunxiang Wei 《Resources Chemicals and Materials》 2024年第2期123-145,共23页
Recently,the challenges pertaining to the recycling of metal-based electrode materials and the resulting environmental pollution have impeded the advancement of battery technology.Consequently,biomass-derived carbon m... Recently,the challenges pertaining to the recycling of metal-based electrode materials and the resulting environmental pollution have impeded the advancement of battery technology.Consequently,biomass-derived carbon materials,distinguished by their eco-friendliness and consistent performance,stand as a pivotal solution to this predicament.Researchers have made significant strides in the integration of porous carbon materials derived from biomass into battery systems.Nevertheless,these materials face issues such as limited efficiency,modest yields,and a complex fabrication process.This paper endeavors to summarize the recent advancements in the utilization of biomass-derived carbon materials within the realm of batteries,offering a comprehensive examination of their battery performance from three distinct perspectives:synthesis,structure,and application.We posit that composite materials composed of biomass-derived carbon align with the trajectory of future development and present extensive potential for application.Ultimately,we will expound upon our profound outlook regarding the furtherance of biomass-derived carbon materials. 展开更多
关键词 biomass carbon POROSITY DOPANT Electrode Ionic batteries
下载PDF
Breaking the temperature limit of hydrothermal carbonization of lignocellulosic biomass by decoupling temperature and pressure 被引量:4
9
作者 Shijie Yu Xiaoxiao Yang +2 位作者 Qinghai Li Yanguo Zhang Hui Zhou 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第4期1216-1227,共12页
Hydrothermal carbonization(HTC) of lignocellulosic biomass is a promising technology for the production of carbon materials with negative carbon emissions. However, the high reaction temperature and energy consumption... Hydrothermal carbonization(HTC) of lignocellulosic biomass is a promising technology for the production of carbon materials with negative carbon emissions. However, the high reaction temperature and energy consumption have limited the development of HTC technology. In conventional batch reactors, the temperature and pressure are typically coupled at saturated states. In this study, a decoupled temperature and pressure hydrothermal(DTPH) reaction system was developed to decrease the temperature of the HTC reaction of lignocellulosic biomass(rice straw and poplar leaves). The properties of hydrochars were analyzed by scanning electron microscopy(SEM), Fourier transform infrared(FTIR) spectroscopy, X-ray photoelectron spectroscopy(XPS), Raman spectroscopy, X-ray diffraction(XRD), thermogravimetric analyzer(TGA), etc. to propose the reaction mechanism. The results showed that the HTC reaction of lignocellulosic biomass could be realized at a low temperature of 200℃ in the DTPH process, breaking the temperature limit(230℃) in the conventional process. The DTPH method could break the barrier of the crystalline structure of cellulose in the lignocellulosic biomass with high cellulose content, realizing the carbonization of cellulose and hemicellulose with the dehydration, unsaturated bond formation, and aromatization. The produced hydrochar had an appearance of carbon microspheres, with high calorific values, abundant oxygen-containing functional groups, a certain degree of graphitization, and good thermal stability. Cellulose acts not only as a barrier to protect itself and hemicellulose from decomposition, but also as a key precursor for the formation of carbon microspheres. This study shows a promising method for synthesizing carbon materials from lignocellulosic biomass with a carbon-negative effect. 展开更多
关键词 biomass LIGNOCELLULOSE Hydrothermal treatment Hydrochar carbon materials
下载PDF
Enhanced microwave absorption property of silver decorated biomass ordered porous carbon composite materials with frequency selective surface incorporation 被引量:4
10
作者 Yi Liu Jingnan Qin +2 位作者 Linlin Lu Jie Xu Xiaolei Su 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第3期525-535,共11页
Porous carbon(PC)is a promising electromagnetic(EM)wave absorbing material thanks to its light weight,large specific surface area as well as good dissipating capacity.To further improve its microwave absorbing perform... Porous carbon(PC)is a promising electromagnetic(EM)wave absorbing material thanks to its light weight,large specific surface area as well as good dissipating capacity.To further improve its microwave absorbing performance,silver coated porous carbon(Ag@PC)is synthesized by one-step hydro-thermal synthesis process making use of fir as a biomass formwork.Phase compositions,morphological structure,and microwave absorption capability of the Ag@PC has been explored.Research results show that the metallic Ag was successfully reduced and the particles are evenly distributed inward the pores of the carbon formwork,which accelerates graphitization process of the amorphous carbon.The Ag@PC composite without adding polyvinyl pyrrolidone(PVP)exhibits higher dielectric constant and better EM wave dissipating capability.This is because the larger particles of Ag give rise to higher electric conductivity.After combing with frequency selective surface(FSS),the EM wave absorbing performance is further improved and the frequency region below-10 d B is located in8.20-11.75 GHz,and the minimal reflection loss value is-22.5 dB.This work indicates that incorporating metallic Ag particles and FSS provides a valid way to strengthen EM wave absorbing capacity of PC material. 展开更多
关键词 biomass carbon Ag@PC composite material frequency selective surface electromagnetic wave absorbing property
下载PDF
One-step floating conversion of biomass into highly graphitized and continuous carbon nanotube yarns 被引量:1
11
作者 Gongxun Zhai Qianqian Wang +5 位作者 Fuyao Liu Zexu Hu Chao Jia Dengxin Li Hengxue Xiang Meifang Zhu 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第6期1711-1718,共8页
The rapid growth of the demand for carbon nanotubes(CNTs) has greatly promoted their large-scale synthesis and development. However,the continuous production of CNT fibers by floating catalyst chemical vapor depositio... The rapid growth of the demand for carbon nanotubes(CNTs) has greatly promoted their large-scale synthesis and development. However,the continuous production of CNT fibers by floating catalyst chemical vapor deposition(FCCVD) requires a large amount of non-renewable carbon sources. Here, the continuous production of highly graphitized CNT yarns from biomass tannic acid(TA) is reported. The chelation of TA and catalyst promotes the rapid cracking of biomass into carbon source gas, and the pyrolysis cracking produces the reducing gas, which solves the problems of the continuous production of CNT yarns using biomass. Through simple twisting, the mechanical strength of CNT yarn can reach 886 ± 46 MPa, and the electrical conductivity and graphitization(IG/ID) can reach 2 × 10^(5)S m^(-1)and 6.3, respectively. This work presents a promising solution for the continuous preparation of CNT yarns based on green raw material. 展开更多
关键词 carbon nanotube Tannic acid biomass Pyrolysis Floating catalyst chemical vapor deposition
下载PDF
Absorption properties and mechanism of lightweight and broadband electromagnetic wave-absorbing porous carbon by the swelling treatment 被引量:4
12
作者 Jianghao Wen Di Lan +4 位作者 Yiqun Wang Lianggui Ren Ailing Feng Zirui Jia Guanglei Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1701-1712,共12页
Bioderived carbon materials have garnered considerable interest in the fields of microwave absorption and shielding due to their reproducibility and environmental friendliness.In this study,KOH was evenly distributed ... Bioderived carbon materials have garnered considerable interest in the fields of microwave absorption and shielding due to their reproducibility and environmental friendliness.In this study,KOH was evenly distributed on biomass Tremella using the swelling induction method,leading to the preparation of a three-dimensional network-structured hierarchical porous carbon(HPC)through carbonization.The achieved microwave absorption intensity is robust at-47.34 dB with a thin thickness of 2.1 mm.Notably,the widest effective absorption bandwidth,reaching 7.0 GHz(11–18 GHz),is attained at a matching thickness of 2.2 mm.The exceptional broadband and reflection loss performance are attributed to the 3D porous networks,interface effects,carbon network defects,and dipole relaxation.HPC has outstanding absorption characteristics due to its excellent impedance matching and high attenuation constant.The uniform pore structures considerably optimize the impedance-matching performance of the material,while the abundance of interfaces and defects enhances the dielectric loss,thereby improving the attenuation constant.Furthermore,the impact of carbonization temperature and swelling rate on microwave absorption performance was systematically investigated.This research presents a strategy for preparing absorbing materials using biomass-derived HPC,showcasing considerable potential in the field of electromagnetic wave absorption. 展开更多
关键词 biomass hierarchical porous carbon dielectric loss electromagnetic wave absorption
下载PDF
No effect of invasive tree species on aboveground biomass increments of oaks and pines in temperate forests 被引量:1
13
作者 Sebastian Bury Marcin K.Dyderski 《Forest Ecosystems》 SCIE CSCD 2024年第4期401-413,共13页
Prunus serotina and Robinia pseudoacacia are the most widespread invasive trees in Central Europe.In addition,according to climate models,decreased growth of many economically and ecologically important native trees w... Prunus serotina and Robinia pseudoacacia are the most widespread invasive trees in Central Europe.In addition,according to climate models,decreased growth of many economically and ecologically important native trees will likely be observed in the future.We aimed to assess the impact of these two neophytes,which differ in the biomass range and nitrogen-fixing abilities observed in Central European conditions,on the relative aboveground biomass increments of native oaks Qucrcus robur and Q.petraea and Scots pine Pinus sylvestris.We aimed to increase our understanding of the relationship between facilitation and competition between woody alien species and overstory native trees.We established 72 circular plots(0.05 ha)in two different forest habitat types and stands varying in age in western Poland.We chose plots with different abundances of the studied neophytes to determine how effects scaled along the quantitative invasion gradient.Furthermore,we collected growth cores of the studied native species,and we calculated aboveground biomass increments at the tree and stand levels.Then,we used generalized linear mixed-effects models to assess the impact of invasive species abundances on relative aboveground biomass increments of native tree species.We did not find a biologically or statistically significant impact of invasive R.pseudoacacia or P.serotina on the relative aboveground,biomass increments of native oaks and pines along the quantitative gradient of invader biomass or on the proportion of total stand biomass accounted for by invaders.The neophytes did not act as native tree growth stimulators but also did not compete with them for resources,which would escalate the negative impact of climate change on pines and oaks.The neophytes should not significantly modify the carbon sequestration capacity of the native species.Our work combines elements of the per capita effect of invasion with research on mixed forest management. 展开更多
关键词 Invasion ecology Exotic trees Relative aboveground biomass increment Competition FACILITATION carbon sequestration
下载PDF
Synthesis of Carbon dots from Biomass Chenpi for the Detection of Hg^(2+)
14
作者 Jun Xiang Xiaoqing Chen +4 位作者 Qi Liu Huihua Jing Tongqiang Chen Wanli Tang Wenyang Xu 《Journal of Renewable Materials》 EI 2023年第10期3739-3750,共12页
Biomass-derived carbon dots(C-dots)are considered a very important carbon material in metal ion detection of their small environmental impact,simple preparation process,and relatively low cost.A green approach for syn... Biomass-derived carbon dots(C-dots)are considered a very important carbon material in metal ion detection of their small environmental impact,simple preparation process,and relatively low cost.A green approach for synthesizing biomass-derived C-dots from Chenpi using a hydrothermal method without further processing is proposed in the present study.The as-synthesized C-dots show excellent fluorescence properties,superior resistance to UV irradiation photobleaching,and high photostability in salt-containing solutions.The C-dots were used in the form of label-free fluorescent probes for sensitively detecting Hg^(2+)selectively.The outcome relationship behaved linearly and was established based on a given range between 10–300 nM concentration,with a detection limit of 7.0 nM.This green strategy obtains a high C-dot quantum yield of 10.8%and satisfactory results in detecting Hg^(2+)in actual water samples. 展开更多
关键词 carbon nanodots biomass chenpi mercury ions fluorescence detection
下载PDF
Fixed-Bed Column Adsorption Modeling of MnO4- Ions from Acidic Aqueous Solutions on Activated Carbons Prepared with the Biomass
15
作者 Charly Mve Mfoumou Francis Ngoye +3 位作者 Pradel Tonda-Mikiela Mbouiti Lionel Berthy Bouassa Mougnala Spenseur Guy Raymond Feuya Tchouya 《Open Journal of Inorganic Chemistry》 CAS 2023年第2期25-42,共18页
Activated carbons calcined at 400˚C and 600˚C (AC-400 and AC-600), prepared using palm nuts, collected in the town of Franceville in Gabon, were used to study the dynamic adsorption of MnO<sub>4</sub>-<... Activated carbons calcined at 400˚C and 600˚C (AC-400 and AC-600), prepared using palm nuts, collected in the town of Franceville in Gabon, were used to study the dynamic adsorption of MnO<sub>4</sub>-</sup> ions in acidic media on fixed bed column and on the kinetic modeling of experimental data of breakthrough curves of  MnO<sub>4</sub>-</sup> ions obtained. Results on the adsorption of MnO<sub>4</sub>-</sup>  ions in fixed-bed dynamics obtained on AC-400 and AC-600 adsorbents beds indicated that the AC-400 bed appears to be the most efficient in removing MnO<sub>4</sub>-</sup>  ions in acidic media. Indeed, the adsorbed amounts, the adsorbed capacities at saturation and the elimination percentage of MnO<sub>4</sub>-</sup>  ions obtained with AC-400 (31.24 mg;52.06 mg·g<sup>-1</sup> and 41.65% respectively) were higher compared to those obtained with AC-600 (9.87 mg;16.45 mg·g<sup>-1</sup> and 17.79% respectively). The breakthrough curves kinetic modeling revealed that the Thomas model and the pseudo-first-order kinetic model were the most suitable models to describe the adsorption of MnO<sub>4</sub>-</sup>  ions on adsorbents studied in our experimental conditions. The results of the intraparticle diffusion model showed that intraparticle diffusion was involved in the adsorption mechanism of MnO<sub>4</sub>-</sup>  ions on investigated adsorbents and was not the limiting step and the only process controlling MnO<sub>4</sub>-</sup>  ions adsorption. In contrast to AC-400, the intraparticle diffusion on AC-600 bed plays an important role in the adsorption mechanism of MnO<sub>4</sub>-</sup>  ions. 展开更多
关键词 Acidic Media MnO4 style=margin-left:-6px >- biomass Activated carbon Dynamic Adsorption Kinetics Models
下载PDF
Quantification of Above-Ground Biomass and Carbon Sequestration Potential of Roadside Trees in the Plateau Department of Benin Republic
16
作者 Dende Ibrahim Adekanmbi Igor Armand Yevide +4 位作者 Kafui Inès Edna Deleke Koko Adandé Belarmain Fandohan Basile Sègbégnon Michoagan Moussahoudou Issa Agossou Bruno Djossa 《Journal of Geoscience and Environment Protection》 2023年第9期20-27,共8页
Roadside trees are effective natural solutions for mitigating climate change. Despite the usefulness of trees to carbon sequestration, there is a dearth of information on the estimation of biomass and carbon stock for... Roadside trees are effective natural solutions for mitigating climate change. Despite the usefulness of trees to carbon sequestration, there is a dearth of information on the estimation of biomass and carbon stock for roadside trees in the study area. This study aimed to estimate the carbon stock and carbon dioxide equivalent of roadside trees. A complete enumeration of trees was carried out in Kétou, Pobè and Sakété within the communes of the Plateau Department, Bénin Republic. Total height and diameter at breast height were measured from trees along the roads while individual wood density value was obtained from wood density database. The allometric method of biomass estimation was adopted for the research. The results showed that the total estimations for above-ground biomass, carbon stock and carbon equivalent from all the enumerated roadside trees were 154.53 mt, 72.63 mt and 266.55 mt, respectively. The results imply that the roadside trees contain a substantial amount of carbon stock that can contribute to climate change mitigation through carbon sequestration. 展开更多
关键词 Above-Ground biomass Allometric Model carbon Sequestration Roadside Trees Bénin Republic
下载PDF
Ultra-high specific surface area activated carbon from Taihu cyanobacteria via KOH activation for enhanced methylene blue adsorption
17
作者 Yifang Mi Wenqiang Wang +4 位作者 Sen Zhang Yalong Guo Yufeng Zhao Guojin Sun Zhihai Cao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期106-116,共11页
Cyanobacteria-based activated carbon(CBAC)was successfully prepared by pyrolysis-activation of Taihu cyanobacteria.When the impregnation ratio and activated temperature were 2 and 800-C,respectively,the optimal CBACs ... Cyanobacteria-based activated carbon(CBAC)was successfully prepared by pyrolysis-activation of Taihu cyanobacteria.When the impregnation ratio and activated temperature were 2 and 800-C,respectively,the optimal CBACs possessed an ultra-high specific surface(2178.90 m^(2)·g^(-1))and plenty of micro-and meso-pores,as well as a high pore volume(1.01 cm^(3)·g^(-1)).Ascribed to ultra-high surface area,π-π interaction,electrostatic interaction,as well as hydrogen-bonding interactions,the CBACs displayed huge superiority in efficient dye removal.The saturated methylene blue adsorption capacity by CBACs could be as high as 1143.4 mg·g^(-1),superior to that of other reported biomass-activated carbons.The adsorption was endothermic and modeled well by the pseudo-second-order kinetic,intra-particle diffusion,and Langmuir models.This work presented the effectiveness of Taihu cyanobacteria adsorbent ascribed to its super large specific surface area and high adsorption ability. 展开更多
关键词 Activated carbon biomass Dye adsorption Taihu cyanobacteria
下载PDF
Preparation and Tribological Properties of Onion-like Carbon/Waterborne Polyurethane Coatings
18
作者 Fei Xingpeng Jiang Wuhao +3 位作者 Wen Maosheng Xu Yong Hu Kunhong Hu Enzhu 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期108-120,共13页
Rice husk powder was used as a carbon source in a high-temperature carbonization reaction for the production of rice husk ash(RHA).Under the catalysis of ferric nitrate,onion-like carbon(OLC)nanomaterial with a partic... Rice husk powder was used as a carbon source in a high-temperature carbonization reaction for the production of rice husk ash(RHA).Under the catalysis of ferric nitrate,onion-like carbon(OLC)nanomaterial with a particle size of approximately 200 nm was successfully prepared and incorporated into waterborne polyurethane(WPU).The tribological properties of the coatings were determined using a controlled-atmosphere tribometer(WMT-2E)under dry-friction conditions.Following the friction test,the friction mechanism was investigated by characterizing the abrasive spot surfaces of the test samples using 3D laser microscopy and scanning electron microscopy/energy dispersive spectrometer.The final results demonstrated that the thermal stability of WPU composite coatings containing various concentrations of OLC nanoparticles was significantly enhanced,binding forces between coatings and steel sheets increased,and hardness improved compared to pure WPU coatings.Tribological tests revealed a notable enhancement in the anti-wear properties of WPU coatings due to the presence of OLC particles.Specifically,the wear rate of the 1.5%OLC/WPU coating was reduced by 45.3%.The coating’s anti-wear mechanism was attributed to the improvement in the mechanical properties of WPU due to OLC,as well as OLC’s participation in the formation of a transfer film under induced friction,which protected the matrix. 展开更多
关键词 biomass carbon onion-like carbon waterborne polyurethane WEAR transfer films
下载PDF
Carbon stock estimation in halophytic wooded savannas of Uruguay:An ecosystem approach
19
作者 Andres Baietto Andres Hirigoyen +3 位作者 Carolina Toranza Franco Schinato Maximiliano Gonzalez Rafael Navarro Cerrillo 《Forest Ecosystems》 SCIE CSCD 2024年第4期580-589,共10页
Savannas constitute a mixture of trees and shrub patches with a more continuous herbaceous understory.The contribution of this biome to the soil organic carbon(SOC)and above-ground biomass(AGB)carbon(C)stock globally ... Savannas constitute a mixture of trees and shrub patches with a more continuous herbaceous understory.The contribution of this biome to the soil organic carbon(SOC)and above-ground biomass(AGB)carbon(C)stock globally is significant.However,they are frequently subjected to land use changes,promoting increases in CO_(2) emissions.In Uruguay,subtropical wooded savannas cover around 100,000 ha,of which approximately 28%is circumscribed to sodic soils(i.e.,subtropical halophytic wooded savannas).Nevertheless,there is little background about the contribution of each ecosystem component to the C stock as well as site-specific allometric equations.The study was conducted in 5 ha of subtropical halophytic wooded savannas of the national protected area Esteros y Algarrobales del Rio Uruguay.This work aimed to estimate the contribution of the main ecosystem components(e.g.,soil,trees,shrubs,and herbaceous plants)to the C stock.Site-specific allometric equations for the most frequent tree species and shrub genus were fitted based on basal diameter(BD)and total height(H).The fitted equations accounted for between 77%and 98%of the aerial biomass variance of Netuma affinis and Vachellia caven.For shrubs(Baccharis sp.),the adjusted equation accounted for 86%of total aerial biomass.C stock for the entire system was 116.71±11.07 Mg·ha^(-1),of which 90.7%was allocated in the soil,8.3%in the trees,0.8%in the herbaceous plants,and 0.2%in the shrubs.These results highlight the importance of subtropical halophytic wooded savannas as C sinks and their relevance in the mitigation of global warming under a climate change scenario. 展开更多
关键词 carbon stock Climate change biomass modeling Sodic soils
下载PDF
Carbon Fiber from Biomass Sources:A Comprehensive Review
20
作者 Md.Touhidul Islam Md.Shahin Howlader +1 位作者 Din Mohamad Shuvo Md.Kamal Uddin 《Non-Metallic Material Science》 2023年第1期14-26,共13页
Global energy demand is rising,fossil fuel prices are rising,fossil fuel reserves are running out,and fossil fuel use contributes to the greenhouse effect.As a clean alternative source of energy to fossil fuels,biomas... Global energy demand is rising,fossil fuel prices are rising,fossil fuel reserves are running out,and fossil fuel use contributes to the greenhouse effect.As a clean alternative source of energy to fossil fuels,biomass is becoming more and more essential.Carbon fiber(CF),often known as graphite fiber,is a thin,strong,and adaptable material utilized in both structural(capacity)and non-structural applications(e.g.,thermal insulation).Precursors are the raw materials used to create carbon fiber,which is mostly derived from fossil fuels.Because of the high cost of precursors and manufacture,carbon fiber has only found employment in a few numbers of high-performance structural materials(e.g.,aerospace).To reduce the price of CF and reliance on fossil fuels,numerous alternative precursors have been studied throughout the years,including biomass-derived precursors such as rayon,lignin,glycerol,and lignocellulosic polysaccharides.This study’s goal is to present a detailed study of biomass-derived CF precursors and their market potential.The authors look into the viability of producing CF from these precursors,as well as the state of technology,potential applications,and cost of production(when data are available).We go over their benefits and drawbacks.We also talk about the physical characteristics of CF made from biomass and contrast them with CF made from polyacrylonitrile(PAN).Additionally,we go into bio-based CF manufacturing and end-product concerns,logistics for biomass feedstock and plant sites,feedstock competition,and risk-reduction techniques.This paper offers a comprehensive overview of the CF potential from all biomass sources and can be used as a resource by both novice and seasoned professionals who are interested in producing CF from non-traditional sources. 展开更多
关键词 carbon fibre POLYACRYLONITRILE biomass LIGNOCELLULOSIC
下载PDF
上一页 1 2 172 下一页 到第
使用帮助 返回顶部