It has always been a difficult problem to extract horizontal and vertical displacement components from the InSAR LOS (Line of Sight) displacement since the advent of monitoring ground surface deformation with InSAR ...It has always been a difficult problem to extract horizontal and vertical displacement components from the InSAR LOS (Line of Sight) displacement since the advent of monitoring ground surface deformation with InSAR technique. Having tried to fit the firsthand field investigation data with a least squares model and obtained a preliminary result, this paper, based on the previous field data and the InSAR data, presents a linear cubic interpolation model which well fits the feature of earthquake fracture zone. This model inherits the precision of investigation data; moreover make use of some advantages of the InSAR technique, such as quasi-real time observation, continuous recording and all-weather measurement. Accordingly, by means of the model this paper presents a method to decompose the InSAR slant range co-seismic displacement (i.e. LOS change) into horizontal and vertical displacement components. Approaching the real motion step by step, finally a serial of curves representing the co-seismic horizontal and vertical displacement component along the main earthquake fracture zone are approximately obtained.展开更多
Co-seismic displacements associated with the Mw9.0 earthquake on March 11, 2011 in Japan are numerically simulated on the basis of a finite-fault dislocation model with PSGRN/PSCMP software. Compared with the inland G...Co-seismic displacements associated with the Mw9.0 earthquake on March 11, 2011 in Japan are numerically simulated on the basis of a finite-fault dislocation model with PSGRN/PSCMP software. Compared with the inland GPS observation, 90% of the computed eastward, northward and vertical displacements have residuals less than 0.10 m, suggesting that the simulated results can be, to certain extent, used to demon- strate the co-seismic deformation in the near field. In this model, the maximum eastward displacement increa- ses from 6 m along the coast to 30 m near the epicenter, where the maximum southward displacement is 13 m. The three-dimensional display shows that the vertical displacement reaches a maximum uplift of 14.3 m, which is comparable to the tsunami height in the near-trench region. The maximum subsidence is 5.3 m.展开更多
The methods were discussed to calculate the gravity variation due to crustal deformation based on a model of dis-location on a finite rectangular plane. Taking the Lijiang MS=7.0 earthquake as an example the calculati...The methods were discussed to calculate the gravity variation due to crustal deformation based on a model of dis-location on a finite rectangular plane. Taking the Lijiang MS=7.0 earthquake as an example the calculating princi-ple of fault parameters were determined, and the results were given. Of particular interests were the characteristics of the gravity variations in different dislocation types. With comparison between the calculated results and the practical measurements, it was found that the model could to some extent account for the observations. But it failed to give explanations to the more far spatial gravity variation.展开更多
Based on the spherical earth dislocation theory and a fault slip model of the Tohoku-Oki M_(W)9.0 earthquake,the co-seismic Coulomb failure stress changes(ΔCFS)on the northern Tanlu fault zone at depths of 0–40 km a...Based on the spherical earth dislocation theory and a fault slip model of the Tohoku-Oki M_(W)9.0 earthquake,the co-seismic Coulomb failure stress changes(ΔCFS)on the northern Tanlu fault zone at depths of 0–40 km are calculated.By comparing two sets of results from the spherical earth dislocation theory and the semi-infinite space one,the effect of earth curvature on the calculation results is analyzed quantitatively.First,we systematically summarize previous researches related to the northern Tanlu fault zone,divide the fault zone as detailed as possible,give the geometric parameters of each segment,and establish a segmented structural model of the northern Tanlu fault zone.Second,we calculate the Coulomb stress changes on the northern Tanlu fault zone by using the spherical earth dislocation theory.The result shows the Coulomb stress changes are no more than 0.003 MPa,which proves the great earthquake did not significantly change the stress state of the fault zone.Finally,we quantitatively analyze the disparities between the results of semi-infinite space dislocation theory and the spherical earth one.The average disparity between them is about 7.7%on the northern Tanlu fault zone and is 16.8%on the Fangzheng graben,the maximum disparity on this graben reaches up to 25.5%.It indicates that the effect of earth curvature can not be ignored.So it’s necessary to use the spherical earth dislocation theory instead of the semi-infinite space one to study the Coulomb stress change in the far field.展开更多
Co-seismic strain changes of the Wenchuan MwT. 9 earthquake recorded with three four-component borehole strainmeters showed NW-SE and roughly EW extensions, respectively, at two locations in the interior and northern ...Co-seismic strain changes of the Wenchuan MwT. 9 earthquake recorded with three four-component borehole strainmeters showed NW-SE and roughly EW extensions, respectively, at two locations in the interior and northern part of Tibetan plateau, and NS shortening at a location south of the epicenter, in agreement with the tectonic stress field of this region retical values obtained with half-space effects, such as local crustal structure The observed values of as much as 10-7 are, however, larger than theo- and spherical-earth dislocation theories, implying the existence of other and initial stress.展开更多
The greatest earthquake in the modern history of Japan and probably the fourth greatest in the last 100 years in the world occurred on March 11, 2011 off the Pacific coast of Tohoku.Large tsunami and ground motions ca...The greatest earthquake in the modern history of Japan and probably the fourth greatest in the last 100 years in the world occurred on March 11, 2011 off the Pacific coast of Tohoku.Large tsunami and ground motions caused severe damage in wide areas, particularly many towns along the Pacific coast. So far, gravity change caused by such a great earthquake has been reported for the 1964 Alaska and the 2010 Maule events. However, the spatial-temporal resolution of the gravity data for these cases is insufficient to depict a co-seismic gravity field variation in a spatial scale of a plate subduction zone. Here, we report an unequivocal co-seismic gravity change over the Japanese Island, obtained from a hybrid gravity observation(combined absolute and relative gravity measurements). The time interval of the observation before and after the earthquake is within 1 year at almost all the observed sites, including 13 absolute and 16 relative measurement sites, which deduced tectonic and environmental contributions to the gravity change. The observed gravity agrees well with the result calculated by a dislocation theory based on a self-gravitating and layered spherical earth model. In this computation, a co-seismic slip distribution is determined by an inversion of Global Positioning System(GPS) data. Of particular interest is that the observed gravity change in some area is negative where a remarkable subsidence is observed by GPS, which can not be explained by simple vertical movement of the crust. This indicated that the mass redistribution in the underground affects the gravity change. This result supports the result that Gravity Recovery and Climate Experiment(GRACE) satellites detected a crustal dilatation due to the 2004 Sumatra earthquake by the terrestrial observation with a higher spatial and temporal resolution.展开更多
基金National Natural Science Foundation of China (40374013) and Joint Seismological Science Foundation of China (106045).
文摘It has always been a difficult problem to extract horizontal and vertical displacement components from the InSAR LOS (Line of Sight) displacement since the advent of monitoring ground surface deformation with InSAR technique. Having tried to fit the firsthand field investigation data with a least squares model and obtained a preliminary result, this paper, based on the previous field data and the InSAR data, presents a linear cubic interpolation model which well fits the feature of earthquake fracture zone. This model inherits the precision of investigation data; moreover make use of some advantages of the InSAR technique, such as quasi-real time observation, continuous recording and all-weather measurement. Accordingly, by means of the model this paper presents a method to decompose the InSAR slant range co-seismic displacement (i.e. LOS change) into horizontal and vertical displacement components. Approaching the real motion step by step, finally a serial of curves representing the co-seismic horizontal and vertical displacement component along the main earthquake fracture zone are approximately obtained.
基金supported by the National Natural Science Foundation of China ( 40572125 40872129)
文摘Co-seismic displacements associated with the Mw9.0 earthquake on March 11, 2011 in Japan are numerically simulated on the basis of a finite-fault dislocation model with PSGRN/PSCMP software. Compared with the inland GPS observation, 90% of the computed eastward, northward and vertical displacements have residuals less than 0.10 m, suggesting that the simulated results can be, to certain extent, used to demon- strate the co-seismic deformation in the near field. In this model, the maximum eastward displacement increa- ses from 6 m along the coast to 30 m near the epicenter, where the maximum southward displacement is 13 m. The three-dimensional display shows that the vertical displacement reaches a maximum uplift of 14.3 m, which is comparable to the tsunami height in the near-trench region. The maximum subsidence is 5.3 m.
基金Joint Seismological Science Foundation of China (No.101005).
文摘The methods were discussed to calculate the gravity variation due to crustal deformation based on a model of dis-location on a finite rectangular plane. Taking the Lijiang MS=7.0 earthquake as an example the calculating princi-ple of fault parameters were determined, and the results were given. Of particular interests were the characteristics of the gravity variations in different dislocation types. With comparison between the calculated results and the practical measurements, it was found that the model could to some extent account for the observations. But it failed to give explanations to the more far spatial gravity variation.
基金This study was supported financially by the National Key R&D Program of China(No.2018YFC1503704)the National Natural Science Foundation of China(No.41874003)。
文摘Based on the spherical earth dislocation theory and a fault slip model of the Tohoku-Oki M_(W)9.0 earthquake,the co-seismic Coulomb failure stress changes(ΔCFS)on the northern Tanlu fault zone at depths of 0–40 km are calculated.By comparing two sets of results from the spherical earth dislocation theory and the semi-infinite space one,the effect of earth curvature on the calculation results is analyzed quantitatively.First,we systematically summarize previous researches related to the northern Tanlu fault zone,divide the fault zone as detailed as possible,give the geometric parameters of each segment,and establish a segmented structural model of the northern Tanlu fault zone.Second,we calculate the Coulomb stress changes on the northern Tanlu fault zone by using the spherical earth dislocation theory.The result shows the Coulomb stress changes are no more than 0.003 MPa,which proves the great earthquake did not significantly change the stress state of the fault zone.Finally,we quantitatively analyze the disparities between the results of semi-infinite space dislocation theory and the spherical earth one.The average disparity between them is about 7.7%on the northern Tanlu fault zone and is 16.8%on the Fangzheng graben,the maximum disparity on this graben reaches up to 25.5%.It indicates that the effect of earth curvature can not be ignored.So it’s necessary to use the spherical earth dislocation theory instead of the semi-infinite space one to study the Coulomb stress change in the far field.
基金supported by Basic Research Foundation from Institute of Earthquake Science (0210240101)Seismological Science Foundation for Young Scientist of Earthquake Administration of Gansu Province and Lanzhou Institute of Seismology,CEA
文摘Co-seismic strain changes of the Wenchuan MwT. 9 earthquake recorded with three four-component borehole strainmeters showed NW-SE and roughly EW extensions, respectively, at two locations in the interior and northern part of Tibetan plateau, and NS shortening at a location south of the epicenter, in agreement with the tectonic stress field of this region retical values obtained with half-space effects, such as local crustal structure The observed values of as much as 10-7 are, however, larger than theo- and spherical-earth dislocation theories, implying the existence of other and initial stress.
基金supported by the Research Fund Program of Institute of Seismology, Chinese Earthquake Administration (IS201226045)the Open Research Fund Program of the State Key Laboratory of Geodesy and Earth's Dynamics (SKLGED2013-3-7-E)the National Natural Science Foundation of China (41404065)
文摘The greatest earthquake in the modern history of Japan and probably the fourth greatest in the last 100 years in the world occurred on March 11, 2011 off the Pacific coast of Tohoku.Large tsunami and ground motions caused severe damage in wide areas, particularly many towns along the Pacific coast. So far, gravity change caused by such a great earthquake has been reported for the 1964 Alaska and the 2010 Maule events. However, the spatial-temporal resolution of the gravity data for these cases is insufficient to depict a co-seismic gravity field variation in a spatial scale of a plate subduction zone. Here, we report an unequivocal co-seismic gravity change over the Japanese Island, obtained from a hybrid gravity observation(combined absolute and relative gravity measurements). The time interval of the observation before and after the earthquake is within 1 year at almost all the observed sites, including 13 absolute and 16 relative measurement sites, which deduced tectonic and environmental contributions to the gravity change. The observed gravity agrees well with the result calculated by a dislocation theory based on a self-gravitating and layered spherical earth model. In this computation, a co-seismic slip distribution is determined by an inversion of Global Positioning System(GPS) data. Of particular interest is that the observed gravity change in some area is negative where a remarkable subsidence is observed by GPS, which can not be explained by simple vertical movement of the crust. This indicated that the mass redistribution in the underground affects the gravity change. This result supports the result that Gravity Recovery and Climate Experiment(GRACE) satellites detected a crustal dilatation due to the 2004 Sumatra earthquake by the terrestrial observation with a higher spatial and temporal resolution.