期刊文献+
共找到266,626篇文章
< 1 2 250 >
每页显示 20 50 100
基于图的Co-Training网页分类 被引量:9
1
作者 侯翠琴 焦李成 《电子学报》 EI CAS CSCD 北大核心 2009年第10期2173-2180,2219,共9页
本文充分利用网页数据的超链接关系和文本信息,提出了一种用于网页分类的归纳式半监督学习算法:基于图的Co-training网页分类算法(Graph based Co-training algorithmfor web page classification),简称GCo-training,并从理论上证明了... 本文充分利用网页数据的超链接关系和文本信息,提出了一种用于网页分类的归纳式半监督学习算法:基于图的Co-training网页分类算法(Graph based Co-training algorithmfor web page classification),简称GCo-training,并从理论上证明了算法的有效性.GCo-training在Co-training算法框架下,迭代地学习一个基于由超链接信息构造的图的半监督分类器和一个基于文本特征的Bayes分类器.基于图的半监督分类器只利用少量的标记数据,通过挖掘数据间大量的关系信息就可达到比较高的预测精度,可为Bayes分类器提供大量的标记信息;反过来学习大量标记信息后的Bayes分类器也可为基于图的分类器提供有效信息.迭代过程中,二者互相帮助,不断提高各自的性能,而后Bayes分类器可以用来预测大量未见数据的类别.在Web→KB数据集上的实验结果表明,与利用文本特征和锚文本特征的Co-training算法和基于EM的Bayes算法相比,GCo-training算法性能优越. 展开更多
关键词 半监督 co-training 归纳式 网页分类
下载PDF
基于差异性评估对Co-training文本分类算法的改进 被引量:4
2
作者 唐焕玲 林正奎 鲁明羽 《电子学报》 EI CAS CSCD 北大核心 2008年第B12期138-143,共6页
Co-training算法要求两个特征视图满足一致性和独立性假设,但是,许多实际应用中不存自然的划分且满足这种假设的两个视图,且直接评估两个视图的独立性有一定的难度.分析Co-training的理论假设,本文把寻找两个满足一致性和独立性特征视... Co-training算法要求两个特征视图满足一致性和独立性假设,但是,许多实际应用中不存自然的划分且满足这种假设的两个视图,且直接评估两个视图的独立性有一定的难度.分析Co-training的理论假设,本文把寻找两个满足一致性和独立性特征视图的目标,转变成寻找两个既满足一定的正确性,又存在较大的差异性的两个基分类器的问题.首先利用特征评估函数建立多个特征视图,每个特征视图包含足够的信息训练生成一个基分类器,然后通过评估基分类器之间的差异性间接评估二者的独立性,选择两个满足一定的正确性和差异性比较大的基分类器协同训练.根据每个视图上采用的分类算法是否相同,提出了两种改进算法TV-SC和TV-DC.实验表明改进的TV-SC和TV-DC算法明显优于基于随机分割特征视图的Co-Rnd算法,而且TV-DC算法的分类效果要优于TV-SC算法. 展开更多
关键词 半监督文本分类 co-training 特征视图 差异性评估 标注文本 未标注文本
下载PDF
基于Co-training的用户属性预测研究
3
作者 金玉 王霞 +2 位作者 琚生根 孙界平 刘玉娇 《四川大学学报(工程科学版)》 CSCD 北大核心 2017年第S2期179-185,共7页
针对当前基于第三方应用数据进行用户属性预测算法研究,其较少考虑应用前台实际使用时长问题,由此,本文在应用的使用频率及使用时长的基础上,构造了应用前台均使用时长特征,该特征能进一步刻画用户对应用的兴趣度;同时,为充分利用大量... 针对当前基于第三方应用数据进行用户属性预测算法研究,其较少考虑应用前台实际使用时长问题,由此,本文在应用的使用频率及使用时长的基础上,构造了应用前台均使用时长特征,该特征能进一步刻画用户对应用的兴趣度;同时,为充分利用大量未标注数据,从多角度特征对用户属性进行预测,由此本文采用了Co-training框架,该框架包含两个均由栈式自编码器与神经网络相结合的网络结构。实验过程中,对于栈式自编码算法,先利用未标注的数据对网络进行参数初始化,使得网络参数处于一个较优的位置,再利用有标注的数据,采用基于准确率的梯度下降算法,对网络参数进行更新,最终达到收敛。实验结果表明,本文算法在准确率、召回率、F1值上均有所提高。 展开更多
关键词 用户属性 co-training 栈式自编码 梯度下降算法
下载PDF
半监督学习的Co-training算法研究 被引量:1
4
作者 刘蓉 《电脑编程技巧与维护》 2010年第14期4-5,共2页
介绍一种基于半监督学习的协同训练(Co-training)分类算法,当可用的训练样本比较少时,使用传统的方法进行分类,如决策树分类,将无法得到用户满意的结果,而且它们需要大量的标记样本。事实上,获取有标签的样本的代价是相当昂贵的。于是,... 介绍一种基于半监督学习的协同训练(Co-training)分类算法,当可用的训练样本比较少时,使用传统的方法进行分类,如决策树分类,将无法得到用户满意的结果,而且它们需要大量的标记样本。事实上,获取有标签的样本的代价是相当昂贵的。于是,使用较少的已标记样本和大量的无标记样本进行协同训练的半监督学习,成为研究者首选。 展开更多
关键词 半监督学习 协同训练(co-training) 分类
下载PDF
Co-training机器学习方法在中文组块识别中的应用 被引量:8
5
作者 刘世岳 李珩 +1 位作者 张俐 姚天顺 《中文信息学报》 CSCD 北大核心 2005年第3期73-79,共7页
采用半指导机器学习方法co training实现中文组块识别。首先明确了中文组块的定义,co training算法的形式化定义。文中提出了基于一致性的co training选取方法将增益的隐马尔可夫模型(TransductiveHMM)和基于转换规则的分类器(fnTBL)组... 采用半指导机器学习方法co training实现中文组块识别。首先明确了中文组块的定义,co training算法的形式化定义。文中提出了基于一致性的co training选取方法将增益的隐马尔可夫模型(TransductiveHMM)和基于转换规则的分类器(fnTBL)组合成一个分类体系,并与自我训练方法进行了比较,在小规模汉语树库语料和大规模未带标汉语语料上进行中文组块识别,实验结果要比单纯使用小规模的树库语料有所提高,F值分别达到了85 34%和83 4 1% ,分别提高了2 13%和7 2 1%。 展开更多
关键词 计算机应用 中文信息处理 co-training算法 中文组块 分类器
下载PDF
基于样本条件价值改进的Co-training算法 被引量:4
6
作者 程圣军 刘家锋 +1 位作者 黄庆成 唐降龙 《自动化学报》 EI CSCD 北大核心 2013年第10期1665-1673,共9页
Co-training是一种主流的半监督学习算法.该算法中两视图下的分类器通过迭代的方式,互为对方从无标记样本集中挑选新增样本,以更新对方训练集.Co-training以分类器的后验概率输出作为新增样本的挑选策略,该策略忽略了样本对于当前分类... Co-training是一种主流的半监督学习算法.该算法中两视图下的分类器通过迭代的方式,互为对方从无标记样本集中挑选新增样本,以更新对方训练集.Co-training以分类器的后验概率输出作为新增样本的挑选策略,该策略忽略了样本对于当前分类器的价值.针对该问题,本文提出一种改进的Co-training式算法—CVCOT(Conditional value-based co-training),即采用基于样本条件价值的挑选策略来优化Co-training.通过定义无标记样本的条件价值,各视图下的分类器以样本条件价值为依据来挑选新增样本,以此更新训练集.该策略既可保证新增样本的标记可靠性,又能优先将价值较高的富信息样本补充到训练集中,可以有效地优化分类器.在UCI数据集和网页分类应用上的实验结果表明:CVCOT具有较好的分类性能和学习效率. 展开更多
关键词 机器学习 半监督学习 co-training 富信息样本 条件价值
下载PDF
用于在线产品评论质量分析的Co-training算法 被引量:6
7
作者 靳健 季平 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第3期289-295,共7页
在线评论广泛存在于电子商务网站平台,其中包含着客户对产品的评价及偏好.高效分析在线评论数据并满足客户需求,对许多谋求立足于竞争激烈的国际化市场的企业来说至关重要.但因在线评论的质量不一,使得如何分析在线评论的质量成为一项... 在线评论广泛存在于电子商务网站平台,其中包含着客户对产品的评价及偏好.高效分析在线评论数据并满足客户需求,对许多谋求立足于竞争激烈的国际化市场的企业来说至关重要.但因在线评论的质量不一,使得如何分析在线评论的质量成为一项重要工作.从两个方面提取特征对在线评论进行描述,并构建了一种Co-training算法来判断评论的质量.通过对比实验验证了该算法相对于单一分类算法的优势. 展开更多
关键词 数据质量 co-training算法 在线产品评论 评论质量 文本挖掘 产品设计
下载PDF
基于Co-training训练CRF模型的评价对象识别 被引量:1
8
作者 张彩琴 王素格 乔磊 《计算机应用与软件》 CSCD 北大核心 2013年第9期32-34,56,共4页
评价对象是指某段评论中评价词语所修饰的对象或对象的属性。为了识别评论中的评价对象,提出基于Co-training的训练CRF模型方法。该方法首先人工标注少量的原始数据集,使用Co-training方式对未标注数据进行自动识别,以扩大已标注训练数... 评价对象是指某段评论中评价词语所修饰的对象或对象的属性。为了识别评论中的评价对象,提出基于Co-training的训练CRF模型方法。该方法首先人工标注少量的原始数据集,使用Co-training方式对未标注数据进行自动识别,以扩大已标注训练数据。通过原始标注数据集和Co-training方式标注数据集,训练CRF模型。在汽车领域中,对待标注汽车评论语料中评价对象识别的精确率为67.483%,召回率为67.832%。 展开更多
关键词 CRF模型 评价对象 特征模板 co-training
下载PDF
基于Co-training的图像自动标注
9
作者 柯逍 李绍滋 陈国龙 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第4期486-492,共7页
图像自动标注是图像理解与模式识别等领域中具有挑战性的关键研究问题.目前图像自动标注领域存在着一些问题,如未标注数据规模要远大于标注数据规模,只能单独使用某种图像分割策略与某类图像表示方法.针对上述问题,提出了基于Co-trainin... 图像自动标注是图像理解与模式识别等领域中具有挑战性的关键研究问题.目前图像自动标注领域存在着一些问题,如未标注数据规模要远大于标注数据规模,只能单独使用某种图像分割策略与某类图像表示方法.针对上述问题,提出了基于Co-training的图像自动标注方法,通过构建4个独立的特征属性进而建立4个子分类器,将不同的图像分割方法与特征表示方法整合到一个统一框架中,利用提出的基于投票与一致性相结合的自适应算法扩展原始训练集.该方法通过使用Co-training算法,利用大量未标注数据来提升图像自动标注的性能.通过在Corel 5K数据库上进行实验,验证了提出方法的有效性. 展开更多
关键词 图像自动标注 Co—training算法 统一框架 相关模型
下载PDF
Feature selection for co-training 被引量:2
10
作者 李国正 刘天羽 《Journal of Shanghai University(English Edition)》 CAS 2008年第1期47-51,共5页
Co-training is a semi-supervised learning method, which employs two complementary learners to label the unlabeled data for each other and to predict the test sample together. Previous studies show that redundant infor... Co-training is a semi-supervised learning method, which employs two complementary learners to label the unlabeled data for each other and to predict the test sample together. Previous studies show that redundant information can help improve the ratio of prediction accuracy between semi-supervised learning methods and supervised learning methods. However, redundant information often practically hurts the performance of learning machines. This paper investigates what redundant features have effect on the semi-supervised learning methods, e.g. co-training, and how to remove the redundant features as well as the irrelevant features. Here, FESCOT (feature selection for co-training) is proposed to improve the generalization performance of co-training with feature selection. Experimental results on artificial and real world data sets show that FESCOT helps to remove irrelevant and redundant features that hurt the performance of the co-training method. 展开更多
关键词 feature selection semi-supervised learning co-training
下载PDF
Minimax entropy-based co-training for fault diagnosis of blast furnace 被引量:1
11
作者 Dali Gao Chunjie Yang +2 位作者 Bo Yang Yu Chen Ruilong Deng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第7期231-239,共9页
Due to the problems of few fault samples and large data fluctuations in the blast furnace(BF)ironmaking process,some transfer learning-based fault diagnosis methods are proposed.The vast majority of such methods perfo... Due to the problems of few fault samples and large data fluctuations in the blast furnace(BF)ironmaking process,some transfer learning-based fault diagnosis methods are proposed.The vast majority of such methods perform distribution adaptation by reducing the distance between data distributions and applying a classifier to generate pseudo-labels for self-training.However,since the training data is dominated by labeled source domain data,such classifiers tend to be weak classifiers in the target domain.In addition,the features generated after domain adaptation are likely to be at the decision boundary,resulting in a loss of classification performance.Hence,we propose a novel method called minimax entropy-based co-training(MMEC)that adversarially optimizes a transferable fault diagnosis model for the BF.The structure of MMEC includes a dual-view feature extractor,followed by two classifiers that compute the feature's cosine similarity to representative vector of each class.Knowledge transfer is achieved by alternately increasing and decreasing the entropy of unlabeled target samples with the classifier and the feature extractor,respectively.Transfer BF fault diagnosis experiments show that our method improves accuracy by about 5%over state-of-the-art methods. 展开更多
关键词 co-training Fault diagnosis Blast furnace Minimax entropy Transfer learning
下载PDF
Semi-supervised LIBS quantitative analysis method based on co-training regression model with selection of effective unlabeled samples 被引量:1
12
作者 Xiaomeng LI Huili LU +1 位作者 Jianhong YANG Fu CHANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2019年第3期114-124,共11页
The accuracy of laser-induced breakdown spectroscopy(LIBS) quantitative method is greatly dependent on the amount of certified standard samples used for training. However, in practical applications, only limited stand... The accuracy of laser-induced breakdown spectroscopy(LIBS) quantitative method is greatly dependent on the amount of certified standard samples used for training. However, in practical applications, only limited standard samples with labeled certified concentrations are available. A novel semi-supervised LIBS quantitative analysis method is proposed, based on co-training regression model with selection of effective unlabeled samples. The main idea of the proposed method is to obtain better regression performance by adding effective unlabeled samples in semisupervised learning. First, effective unlabeled samples are selected according to the testing samples by Euclidean metric. Two original regression models based on least squares support vector machine with different parameters are trained by the labeled samples separately, and then the effective unlabeled samples predicted by the two models are used to enlarge the training dataset based on labeling confidence estimation. The final predictions of the proposed method on the testing samples will be determined by weighted combinations of the predictions of two updated regression models. Chromium concentration analysis experiments of 23 certified standard high-alloy steel samples were carried out, in which 5 samples with labeled concentrations and 11 unlabeled samples were used to train the regression models and the remaining 7 samples were used for testing. With the numbers of effective unlabeled samples increasing, the root mean square error of the proposed method went down from 1.80% to 0.84% and the relative prediction error was reduced from 9.15% to 4.04%. 展开更多
关键词 LIBS EFFECTIVE unlabeled samples co-training SEMI-SUPERVISED LABELING CONFIDENCE estimation
下载PDF
Underwater four-quadrant dual-beam circumferential scanning laser fuze using nonlinear adaptive backscatter filter based on pauseable SAF-LMS algorithm 被引量:2
13
作者 Guangbo Xu Bingting Zha +2 位作者 Hailu Yuan Zhen Zheng He Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期1-13,共13页
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ... The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance. 展开更多
关键词 Laser fuze Underwater laser detection Backscatter adaptive filter Spline least mean square algorithm Nonlinear filtering algorithm
下载PDF
MCWOA Scheduler:Modified Chimp-Whale Optimization Algorithm for Task Scheduling in Cloud Computing 被引量:1
14
作者 Chirag Chandrashekar Pradeep Krishnadoss +1 位作者 Vijayakumar Kedalu Poornachary Balasundaram Ananthakrishnan 《Computers, Materials & Continua》 SCIE EI 2024年第2期2593-2616,共24页
Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay ... Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO). 展开更多
关键词 Cloud computing SCHEDULING chimp optimization algorithm whale optimization algorithm
下载PDF
Recognition of Chinese Organization Name Using Co-training
15
作者 柯逍 李绍滋 陈锦秀 《Journal of Donghua University(English Edition)》 EI CAS 2010年第2期193-198,共6页
Chinese organization name recognition is hard and important in natural language processing. To reduce tagged corpus and use untagged corpus,we presented combing Co-training with support vector machines (SVM) and condi... Chinese organization name recognition is hard and important in natural language processing. To reduce tagged corpus and use untagged corpus,we presented combing Co-training with support vector machines (SVM) and conditional random fields (CRF) to improve recognition results. Based on principles of uncorrelated and compatible,we constructed different classifiers from different views within SVM or CRF alone and combination of these two models. And we modified a heuristic untagged samples selection algorithm to reduce time complexity. Experimental results show that under the same tagged data,Co-training has 10% F-measure higher than using SVM or CRF alone; under the same F-measure,Co-training saves at most 70% of tagged data to achieve the same performance. 展开更多
关键词 co-training named entity recognition conditional random fields CRF) support vector machines (SVM)
下载PDF
Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection 被引量:1
16
作者 Hala AlShamlan Halah AlMazrua 《Computers, Materials & Continua》 SCIE EI 2024年第4期675-694,共20页
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec... In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment. 展开更多
关键词 Bio-inspired algorithms BIOINFORMATICS cancer classification evolutionary algorithm feature selection gene expression grey wolf optimizer harris hawks optimization k-nearest neighbor support vector machine
下载PDF
Rao Algorithms-Based Structure Optimization for Heterogeneous Wireless Sensor Networks 被引量:1
17
作者 Shereen K.Refaay Samia A.Ali +2 位作者 Moumen T.El-Melegy Louai A.Maghrabi Hamdy H.El-Sayed 《Computers, Materials & Continua》 SCIE EI 2024年第1期873-897,共25页
The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few hav... The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few have been performed for heterogeneouswireless sensor networks.This paper utilizes Rao algorithms to optimize the structure of heterogeneous wireless sensor networks according to node locations and their initial energies.The proposed algorithms lack algorithm-specific parameters and metaphorical connotations.The proposed algorithms examine the search space based on the relations of the population with the best,worst,and randomly assigned solutions.The proposed algorithms can be evaluated using any routing protocol,however,we have chosen the well-known routing protocols in the literature:Low Energy Adaptive Clustering Hierarchy(LEACH),Power-Efficient Gathering in Sensor Information Systems(PEAGSIS),Partitioned-based Energy-efficient LEACH(PE-LEACH),and the Power-Efficient Gathering in Sensor Information Systems Neural Network(PEAGSIS-NN)recent routing protocol.We compare our optimized method with the Jaya,the Particle Swarm Optimization-based Energy Efficient Clustering(PSO-EEC)protocol,and the hybrid Harmony Search Algorithm and PSO(HSA-PSO)algorithms.The efficiencies of our proposed algorithms are evaluated by conducting experiments in terms of the network lifetime(first dead node,half dead nodes,and last dead node),energy consumption,packets to cluster head,and packets to the base station.The experimental results were compared with those obtained using the Jaya optimization algorithm.The proposed algorithms exhibited the best performance.The proposed approach successfully prolongs the network lifetime by 71% for the PEAGSIS protocol,51% for the LEACH protocol,10% for the PE-LEACH protocol,and 73% for the PEGSIS-NN protocol;Moreover,it enhances other criteria such as energy conservation,fitness convergence,packets to cluster head,and packets to the base station. 展开更多
关键词 Wireless sensor networks Rao algorithms OPTIMIZATION LEACH PEAGSIS
下载PDF
Multi-Strategy Assisted Multi-Objective Whale Optimization Algorithm for Feature Selection 被引量:1
18
作者 Deng Yang Chong Zhou +2 位作者 Xuemeng Wei Zhikun Chen Zheng Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1563-1593,共31页
In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature sel... In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate.Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter,but the results obtained depend on the value of the parameter.To eliminate this parameter’s influence,the problem can be reformulated as a multi-objective optimization problem.The Whale Optimization Algorithm(WOA)is widely used in optimization problems because of its simplicity and easy implementation.In this paper,we propose a multi-strategy assisted multi-objective WOA(MSMOWOA)to address feature selection.To enhance the algorithm’s search ability,we integrate multiple strategies such as Levy flight,Grey Wolf Optimizer,and adaptive mutation into it.Additionally,we utilize an external repository to store non-dominant solution sets and grid technology is used to maintain diversity.Results on fourteen University of California Irvine(UCI)datasets demonstrate that our proposed method effectively removes redundant features and improves classification performance.The source code can be accessed from the website:https://github.com/zc0315/MSMOWOA. 展开更多
关键词 Multi-objective optimization whale optimization algorithm multi-strategy feature selection
下载PDF
Falcon Optimization Algorithm-Based Energy Efficient Communication Protocol for Cluster-Based Vehicular Networks 被引量:1
19
作者 Youseef Alotaibi B.Rajasekar +1 位作者 R.Jayalakshmi Surendran Rajendran 《Computers, Materials & Continua》 SCIE EI 2024年第3期4243-4262,共20页
Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effect... Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods. 展开更多
关键词 Vehicular networks communication protocol CLUSTERING falcon optimization algorithm ROUTING
下载PDF
Application of DSAPSO Algorithm in Distribution Network Reconfiguration with Distributed Generation 被引量:1
20
作者 Caixia Tao Shize Yang Taiguo Li 《Energy Engineering》 EI 2024年第1期187-201,共15页
With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization p... With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms.Consequently,traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima.To tackle this issue,a more advanced particle swarm optimization algorithm is proposed.To address the varying emphases at different stages of the optimization process,a dynamic strategy is implemented to regulate the social and self-learning factors.The Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal solutions,thereby mitigating premature convergence in the population optimization process.The inertia weight is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local search abilities.The incorporation of the Pareto principle involves the consideration of network losses and voltage deviations as objective functions.A fuzzy membership function is employed for selecting the results.Simulation analysis is carried out on the restructuring of the distribution network,using the IEEE-33 node system and the IEEE-69 node system as examples,in conjunction with the integration of distributed energy resources.The findings demonstrate that,in comparison to other intelligent optimization algorithms,the proposed enhanced algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network.Furthermore,it enhances the amplitude of node voltages,thereby improving the stability of distribution network operations and power supply quality.Additionally,the algorithm exhibits a high level of generality and applicability. 展开更多
关键词 Reconfiguration of distribution network distributed generation particle swarm optimization algorithm simulated annealing algorithm active network loss
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部