The efficiency of a fluidized-bed flocculator with 800-um particles of 1360 kg/m3 in density was studied, and the anti-shock capability of the unit was estimated for three kinds of industrial wastewater: heavy turbid...The efficiency of a fluidized-bed flocculator with 800-um particles of 1360 kg/m3 in density was studied, and the anti-shock capability of the unit was estimated for three kinds of industrial wastewater: heavy turbidity wastewater, dispersed dyeing wastewater and starch wastewater. Steady removal efficiency was contributed by the following characteristics of the flocculator: (1) the dynamic conditions, flocculation time and velocity gradient, which were stabilized at a steady level as the loading rate changed; (2) hydrodynamic characteristics, especially the considerable rise of expanded bed height with increasing superficial velocity when small and light particles were employed as the solid phase; (3) flocs growth characteristics in the fluidized bed, which caused the density and size of the flocs being maintained at a compensational relationship, resulted the stabilized settling velocity of the flocs.展开更多
基金the financial support from the Natural Sciences Foundation of China (50908096, 50908097)the Research Fund for the Doctoral Program of Higher Education of China (20090061120035)Fundamental Research Fund of Jilin University (200903155)
文摘The efficiency of a fluidized-bed flocculator with 800-um particles of 1360 kg/m3 in density was studied, and the anti-shock capability of the unit was estimated for three kinds of industrial wastewater: heavy turbidity wastewater, dispersed dyeing wastewater and starch wastewater. Steady removal efficiency was contributed by the following characteristics of the flocculator: (1) the dynamic conditions, flocculation time and velocity gradient, which were stabilized at a steady level as the loading rate changed; (2) hydrodynamic characteristics, especially the considerable rise of expanded bed height with increasing superficial velocity when small and light particles were employed as the solid phase; (3) flocs growth characteristics in the fluidized bed, which caused the density and size of the flocs being maintained at a compensational relationship, resulted the stabilized settling velocity of the flocs.