The development of the Paleogene coal seams in China's offshore basin areas generally had the characteristics of coal measures with large thicknesses,large numbers of coal seams,thin single coal seams,poor stabili...The development of the Paleogene coal seams in China's offshore basin areas generally had the characteristics of coal measures with large thicknesses,large numbers of coal seams,thin single coal seams,poor stability,scattered vertical distribution,and a wide distribution range.This study selected the Enping Formation of the ZhuⅠDepression in the northern section of the South China Sea as an example to determine the macro-control factors of the development of the Paleogene coal seam groups.An analysis was carried out on the influencing effects and patterns of the astronomical cycles related to the development of the thin coal seam groups in the region.A floating astronomical time scale of the Enping Formation was established,and the sedimentary time limit of the Enping Formation was determined to be approximately 6.15 Ma±.In addition,the cyclostratigraphy analysis results of the natural gamma-ray data of Well XJ in the Enping Formation of the Xijiang Sag revealed that the development of the thin coal seams had probably been affected by short eccentricity and precession factors.The formation process of coal seams was determined to have been affected by high seasonal contrast,precipitation,and insolation.During the periods with high values of short eccentricity,the seasonal contrasts tended to be high.During those periods,fluctuations in the precession controls resulted in periodic volume changes in precipitation and insolation of the region,resulting in the development of thin coal seams.It was also found that the periods with low precession were the most conducive to coal seam development.On that basis,combined with such factors as sedimentary environmental conditions conducive to the development of thin coal seam groups,this study established a theoretical model of the comprehensive influences of short eccentricity and precession on the development and distribution of Paleogene thin coal seam groups in offshore lacustrine basins.The patterns of the Paleogene astronomical periods and paleoclimate evolution,along with the control factors which impacted the development of thin coal seam groups in offshore lacustrine basins,were revealed.展开更多
Star River(or Star Bay), an elite works of Hong Yu Group, is located in Sijixinghe Road, Chaoyang Beilu,Beijing. It is a distinguished residence area, occupyingland of 300 thousand sq. meters. The north side is a for-...Star River(or Star Bay), an elite works of Hong Yu Group, is located in Sijixinghe Road, Chaoyang Beilu,Beijing. It is a distinguished residence area, occupyingland of 300 thousand sq. meters. The north side is a for-est garden with 1600 or more mu, the eastern side is agreen belt with 2000-more mu.With an investment of RMB1.5 billion, Beijing StarRiver provides a beautiful landscape and high-qualityresidence. In order to realize a high harmony of con-struction and environment, Beijing Star River has in-vested millions into environmental construction.Star River has won a reputation of Detailed Qualityby Milton Kotler, a world famous marketing master. "Iwould start marketing the apartments in Los Angles, inNew York city, in Chicago, London, " Milton said.One day in September, brothers Kotler(Milton Kotlerand Philip Kotler), world famous marketing masters wereinvited to Star River as noble guests. Their praise forStar River were so high that people would prefer to takeit as an artistic job rather than a residence.展开更多
The discharge of acid mine drainage from abandoned high sulfur(S)coal mines has caused serious pollution in the Shandi River,Yangquan,Shanxi Province.To determine the impact of long-term acid mine drainage on the micr...The discharge of acid mine drainage from abandoned high sulfur(S)coal mines has caused serious pollution in the Shandi River,Yangquan,Shanxi Province.To determine the impact of long-term acid mine drainage on the microorganisms in the river,we collected river sediments from a polluted tributary(Group P)and the mainstream of Shandi River(Group R)to study the bacterial diversity and community composition.The results showed that the tributary was seriously polluted by acid drainage from abandoned coal mines,with the pH value of the sediment being<2.5,resulting in the low bacterial richness and diversity of the tributary samples.Acidophillic Fe-and S-metabolizing bacteria,such as Metallibacterium,Acidiphilium,and Acidithiobacillus,were the dominant genera in Group P samples,while the Group R was dominated by the neutral anaerobic iron-reducing bacteria Geothrix and Geobacter.Results of principal co-ordinates analysis(PCoA)revealed that the bacterial communities are significantly different between groups P and R,and the significant different species were mainly attributed to phylum Proteobacteria,Actinobacteria,and Acidobacteria.The distribution of the microbial community is mainly influenced by pH,and the Fe and Cd concentrations.Metallicactrium,the dominant genus,is negatively correlated with pH(R^(2)=-0.95)and positively correlated with Fe(R^(2)=0.99),while Geothrix and Geobacter,are mainly affected by the heavy metals.This study determined the impact of river pollution caused by abandoned coal mine drainage,especially on the microbial diversity and community composition within the river sediment.展开更多
The seasonal and spatial changes in the chemical composition of the water in abandoned mine drainages and rivers in Yudong River area in the years of 2017-2018 were analyzed.The effects of mine water drainage on the s...The seasonal and spatial changes in the chemical composition of the water in abandoned mine drainages and rivers in Yudong River area in the years of 2017-2018 were analyzed.The effects of mine water drainage on the seasonality and physicochemical properties of the river water after mine closure were evaluated,and the feasibility of irrigation using river water and the degree of pollution to farmland were assessed using the Water Quality Standard for Farmland Irrigation.The results show that the mine water has low pH value(<3.5-4)and high levels of total hardness,SO_(4)^(2−),Fe,Al,and Zn.In addition,the pH of the mine water is negatively correlated with the presence of other metal ions.The correlation coefficient between the chemical oxygen demand(COD)and Fe reached 0.989.While the pollution levels of Pinglu and Baishui rivers were low,the confluence region of the two rivers was seriously polluted.However,only the levels of Fe and Cd slightly exceeded the Surface Water Environmental Quality Standard after the confluence of Yudong and Chongan rivers.Overall,the heavy pollution type of the confluent river is consistent with mine water pollution.The water quality is slightly better in the dry season compared than in the high-water period.Sulfate and Fe content decreased by 39 and 16 mg/L,respectively,and Cd content decreased two-fold.Despite these findings,this study shows that from 2017 to 2018,the pH and Cd content of the rivers at the confluence exceeded the irrigation limit and the water quality continued to deteriorate,which may pose a soil contamination risk.Long-term use of the river for irrigation water may cause toxic elements such as Cd,Fe,Mn,SO_(4)^(2−),Al,and F-to enter the food chain,thereby endangering the life and health of villagers in Yudong River area.展开更多
This work focuses on the production of a new composite material using Yellow River sediment and coal slime ash via alkali-activating method. XRD, FTIR and SEM/EDS were used to characterize the alkali-activated product...This work focuses on the production of a new composite material using Yellow River sediment and coal slime ash via alkali-activating method. XRD, FTIR and SEM/EDS were used to characterize the alkali-activated products and microstructure of the composite material. Compressive strength was tested to characterize the mechanical property of the composite material. It is found that the compressive strength of the Yellow River sediment-coal slime ash composites increases as the added Ca(OH)_2 content grows. The compressive strength increases fast in the early stage but slowly after 28 days. The strength of the composites can be significantly improved via the addition of small amount of Na OH and gypsum. The products(C-S-H, ettringite and CaCO_3), especially C-S-H, make much contribution to the enhancement of strength. The highest strength of the composites can reach 14.4 MPa after 90 days curing with 5% Ca(OH)_2, 0.2% NaOH and 7.5% gypsum. The improved properties of the composites show great potential of utilizing Yellow River sediment for inexpensive construction materials.展开更多
This paper focuses on the village coal pillar under huge thick loose bed and thin bedrock over high prelatic water level at the north of the Yellow River. The strip mining technology was used to protect the village ho...This paper focuses on the village coal pillar under huge thick loose bed and thin bedrock over high prelatic water level at the north of the Yellow River. The strip mining technology was used to protect the village houses. The stratum structure control action of mining subsidence was used to design the mining and pillar width. To further raise resources recovery, we adopted the mutative scheme of mining and pillar width. Observation was carried out while mining. Research shows there is feasibility of the strip mining technology to protecting the village buildings of the village coal pillar under huge thick loose bed and thin bedrock over high prelatic water level at the north of the Yellow River. Finally, subsidence parameters of strip mining were obtained. It is the basic data of the strip mining of the coal field at the north of the Yellow River.展开更多
Based on panel data such as 2009-2018 R&D expenditures,full-time equivalent of R&D personnel,Number of valid invention patents,and technology market turnover in China's Shanghai,Jiangsu,Zhejiang,and Anhui ...Based on panel data such as 2009-2018 R&D expenditures,full-time equivalent of R&D personnel,Number of valid invention patents,and technology market turnover in China's Shanghai,Jiangsu,Zhejiang,and Anhui provinces(cities),using Griliches-Jaffe knowledge to produce Function,construct Time fixed effects model,conduct empirical research on the main factors affecting the technological innovation capability of the Yangtze River Delta,focusing on the relationship between the technological market and technological innovation capability.The results show that human capital and R&D expenditures have a significant and positive impact on the technological innovation capacity of the Yangtze River Delta.Although the technology market has a positive effect on the scientific and technological innovation capacity of the Yangtze River Delta,the effect is not significant.Propose countermeasures and suggestions to strengthen the influence of the technology market on technological innovation.展开更多
基金The Scientific Research Project under contract No.CCL2021RCPS172KQNthe Formation Mechanism and Distribution Prediction of Cenozoic Marine Source rocks in Qiongdongnan and Pearl River Mouth Basin under contract No.2021-KT-YXKY01+3 种基金the Resource Potential,Accumulation Mechanism and Breakthrough Direction of Potential Oil-rich Sags in Offshore Basins of China under contract No.2021-KT-YXKY-03the National Natural Science Foundation of China(NSFC)under contract No.42372132the Open Foundation of Hebei Provincial Key Laboratory of Resource Survey and Researchthe National Natural Science Foundation of China(NSFC)under contract Nos 42072188,42272205。
文摘The development of the Paleogene coal seams in China's offshore basin areas generally had the characteristics of coal measures with large thicknesses,large numbers of coal seams,thin single coal seams,poor stability,scattered vertical distribution,and a wide distribution range.This study selected the Enping Formation of the ZhuⅠDepression in the northern section of the South China Sea as an example to determine the macro-control factors of the development of the Paleogene coal seam groups.An analysis was carried out on the influencing effects and patterns of the astronomical cycles related to the development of the thin coal seam groups in the region.A floating astronomical time scale of the Enping Formation was established,and the sedimentary time limit of the Enping Formation was determined to be approximately 6.15 Ma±.In addition,the cyclostratigraphy analysis results of the natural gamma-ray data of Well XJ in the Enping Formation of the Xijiang Sag revealed that the development of the thin coal seams had probably been affected by short eccentricity and precession factors.The formation process of coal seams was determined to have been affected by high seasonal contrast,precipitation,and insolation.During the periods with high values of short eccentricity,the seasonal contrasts tended to be high.During those periods,fluctuations in the precession controls resulted in periodic volume changes in precipitation and insolation of the region,resulting in the development of thin coal seams.It was also found that the periods with low precession were the most conducive to coal seam development.On that basis,combined with such factors as sedimentary environmental conditions conducive to the development of thin coal seam groups,this study established a theoretical model of the comprehensive influences of short eccentricity and precession on the development and distribution of Paleogene thin coal seam groups in offshore lacustrine basins.The patterns of the Paleogene astronomical periods and paleoclimate evolution,along with the control factors which impacted the development of thin coal seam groups in offshore lacustrine basins,were revealed.
文摘Star River(or Star Bay), an elite works of Hong Yu Group, is located in Sijixinghe Road, Chaoyang Beilu,Beijing. It is a distinguished residence area, occupyingland of 300 thousand sq. meters. The north side is a for-est garden with 1600 or more mu, the eastern side is agreen belt with 2000-more mu.With an investment of RMB1.5 billion, Beijing StarRiver provides a beautiful landscape and high-qualityresidence. In order to realize a high harmony of con-struction and environment, Beijing Star River has in-vested millions into environmental construction.Star River has won a reputation of Detailed Qualityby Milton Kotler, a world famous marketing master. "Iwould start marketing the apartments in Los Angles, inNew York city, in Chicago, London, " Milton said.One day in September, brothers Kotler(Milton Kotlerand Philip Kotler), world famous marketing masters wereinvited to Star River as noble guests. Their praise forStar River were so high that people would prefer to takeit as an artistic job rather than a residence.
基金the National Natural Science Foundation of China(No.41977159).
文摘The discharge of acid mine drainage from abandoned high sulfur(S)coal mines has caused serious pollution in the Shandi River,Yangquan,Shanxi Province.To determine the impact of long-term acid mine drainage on the microorganisms in the river,we collected river sediments from a polluted tributary(Group P)and the mainstream of Shandi River(Group R)to study the bacterial diversity and community composition.The results showed that the tributary was seriously polluted by acid drainage from abandoned coal mines,with the pH value of the sediment being<2.5,resulting in the low bacterial richness and diversity of the tributary samples.Acidophillic Fe-and S-metabolizing bacteria,such as Metallibacterium,Acidiphilium,and Acidithiobacillus,were the dominant genera in Group P samples,while the Group R was dominated by the neutral anaerobic iron-reducing bacteria Geothrix and Geobacter.Results of principal co-ordinates analysis(PCoA)revealed that the bacterial communities are significantly different between groups P and R,and the significant different species were mainly attributed to phylum Proteobacteria,Actinobacteria,and Acidobacteria.The distribution of the microbial community is mainly influenced by pH,and the Fe and Cd concentrations.Metallicactrium,the dominant genus,is negatively correlated with pH(R^(2)=-0.95)and positively correlated with Fe(R^(2)=0.99),while Geothrix and Geobacter,are mainly affected by the heavy metals.This study determined the impact of river pollution caused by abandoned coal mine drainage,especially on the microbial diversity and community composition within the river sediment.
基金The authors wish to thank the financial support provided by the National Natural Science Foundation of China(41977159).
文摘The seasonal and spatial changes in the chemical composition of the water in abandoned mine drainages and rivers in Yudong River area in the years of 2017-2018 were analyzed.The effects of mine water drainage on the seasonality and physicochemical properties of the river water after mine closure were evaluated,and the feasibility of irrigation using river water and the degree of pollution to farmland were assessed using the Water Quality Standard for Farmland Irrigation.The results show that the mine water has low pH value(<3.5-4)and high levels of total hardness,SO_(4)^(2−),Fe,Al,and Zn.In addition,the pH of the mine water is negatively correlated with the presence of other metal ions.The correlation coefficient between the chemical oxygen demand(COD)and Fe reached 0.989.While the pollution levels of Pinglu and Baishui rivers were low,the confluence region of the two rivers was seriously polluted.However,only the levels of Fe and Cd slightly exceeded the Surface Water Environmental Quality Standard after the confluence of Yudong and Chongan rivers.Overall,the heavy pollution type of the confluent river is consistent with mine water pollution.The water quality is slightly better in the dry season compared than in the high-water period.Sulfate and Fe content decreased by 39 and 16 mg/L,respectively,and Cd content decreased two-fold.Despite these findings,this study shows that from 2017 to 2018,the pH and Cd content of the rivers at the confluence exceeded the irrigation limit and the water quality continued to deteriorate,which may pose a soil contamination risk.Long-term use of the river for irrigation water may cause toxic elements such as Cd,Fe,Mn,SO_(4)^(2−),Al,and F-to enter the food chain,thereby endangering the life and health of villagers in Yudong River area.
基金Funded by the National Natural Science Foundation of China(No.51578108)the Ministry of Water Resource of the People’s Republic of China(No.201501003)
文摘This work focuses on the production of a new composite material using Yellow River sediment and coal slime ash via alkali-activating method. XRD, FTIR and SEM/EDS were used to characterize the alkali-activated products and microstructure of the composite material. Compressive strength was tested to characterize the mechanical property of the composite material. It is found that the compressive strength of the Yellow River sediment-coal slime ash composites increases as the added Ca(OH)_2 content grows. The compressive strength increases fast in the early stage but slowly after 28 days. The strength of the composites can be significantly improved via the addition of small amount of Na OH and gypsum. The products(C-S-H, ettringite and CaCO_3), especially C-S-H, make much contribution to the enhancement of strength. The highest strength of the composites can reach 14.4 MPa after 90 days curing with 5% Ca(OH)_2, 0.2% NaOH and 7.5% gypsum. The improved properties of the composites show great potential of utilizing Yellow River sediment for inexpensive construction materials.
文摘This paper focuses on the village coal pillar under huge thick loose bed and thin bedrock over high prelatic water level at the north of the Yellow River. The strip mining technology was used to protect the village houses. The stratum structure control action of mining subsidence was used to design the mining and pillar width. To further raise resources recovery, we adopted the mutative scheme of mining and pillar width. Observation was carried out while mining. Research shows there is feasibility of the strip mining technology to protecting the village buildings of the village coal pillar under huge thick loose bed and thin bedrock over high prelatic water level at the north of the Yellow River. Finally, subsidence parameters of strip mining were obtained. It is the basic data of the strip mining of the coal field at the north of the Yellow River.
文摘Based on panel data such as 2009-2018 R&D expenditures,full-time equivalent of R&D personnel,Number of valid invention patents,and technology market turnover in China's Shanghai,Jiangsu,Zhejiang,and Anhui provinces(cities),using Griliches-Jaffe knowledge to produce Function,construct Time fixed effects model,conduct empirical research on the main factors affecting the technological innovation capability of the Yangtze River Delta,focusing on the relationship between the technological market and technological innovation capability.The results show that human capital and R&D expenditures have a significant and positive impact on the technological innovation capacity of the Yangtze River Delta.Although the technology market has a positive effect on the scientific and technological innovation capacity of the Yangtze River Delta,the effect is not significant.Propose countermeasures and suggestions to strengthen the influence of the technology market on technological innovation.