期刊文献+
共找到151,278篇文章
< 1 2 250 >
每页显示 20 50 100
Double-directional control bolt support technology and engineering application at large span Y-type intersections in deep coal mines 被引量:13
1
作者 GUO, Zhibiao SHI, Jianjun +2 位作者 WANG, Jiong CAI, Feng WANG, Fuqiang 《Mining Science and Technology》 EI CAS 2010年第2期254-259,共6页
Under deep and complex geological conditions,severe deformation occurs at intersection points of Y-type roadways with large cross sections during engineering projects in coal mines,especially at junction arches.Based ... Under deep and complex geological conditions,severe deformation occurs at intersection points of Y-type roadways with large cross sections during engineering projects in coal mines,especially at junction arches.Based on in-situ investigations and theoretical studies,we have summarized typical forms of destruction and identified high stress and unrestricted support at both sides of junction arch as its main causes.In this study,we also presented double-directional control bolt support technology for a large Y-type span intersection,applied to deep intersection engineering in the Jiahe Coal Mine,which has proved effective. 展开更多
关键词 Y-type intersection double-directional control bolt support deep coal mines
下载PDF
Mobile platform of rocker-type coal mine rescue robot 被引量:3
2
作者 LI Yunwang GE Shirong +2 位作者 ZHU Hua FANG Haifang GAO Jinke 《Mining Science and Technology》 EI CAS 2010年第3期466-471,共6页
After a coal mine disaster,especially a gas and coal dust explosion,the space-restricted and unstructured underground terrain and explosive gas require coal mine rescue robots with good obstacle-surmounting performanc... After a coal mine disaster,especially a gas and coal dust explosion,the space-restricted and unstructured underground terrain and explosive gas require coal mine rescue robots with good obstacle-surmounting performance and explosion-proof capability. For this type of environment,we designed a mobile platform for a rocker-type coal mine rescue robot with four independent drive wheels.The composition and operational principles of the mobile platform are introduced,we discuss the flameproof design of the rocker assembly,as well as the operational principles and mechanical structure of the bevel gear differential and the main parameters are provided.Motion simulation of the differential function and condition of the robot running on virtual,uneven terrain is carried out with ADAMS.The simulation results show that the differential device can maintain the main body of the robot at an average angle between two rockers.The robot model has good operating performance.Experiments on terrain adaptability and surmounting obstacle performance of the robot prototype have been carried out.The results indicate that the prototype has good terrain adaptability and strong obstacle-surmounting performance. 展开更多
关键词 coal mine rescue robot rocker suspension DIFFERENTIAL explosion-proof design
下载PDF
New prospecting progress using information and big data of coal and oil exploration holes on sandstone-type uranium deposit in North China 被引量:15
3
作者 Ruo-shi Jin Pei-sen Miao +6 位作者 Xian-zhang Sima Reng-An Yu Yin-hang Cheng Chao Tang Tian-fu Zhang Cong Ao Xue-ming Teng 《China Geology》 2018年第1期167-168,共2页
1.Objective A series of Mesozoic-Cenozoic continental sedimentary basins exist in North China,coexisting with coal,oil/gas,and salt resources.Many previous drilling projects have been conducted within these basins to ... 1.Objective A series of Mesozoic-Cenozoic continental sedimentary basins exist in North China,coexisting with coal,oil/gas,and salt resources.Many previous drilling projects have been conducted within these basins to explore coal,petroleum,and mineral resources,however,these data have not been integrated due to different industries owners.In order to efficiently explore the large-sized,easily extracted,and environmentally friendly,sandstone-type uranium deposits,previous coal and oil exploration drilling-hole data are systematically collected, processed,and analyzed to improve the sandstone-type uranium prospecting exploitation.At the same time,we also discussed the uranium source,ore-forming process and model for the sandstone-type uranium deposits. 展开更多
关键词 New PROSPECTING progress INFORMATION coal and oil EXPLORATION HOLES
下载PDF
Quantitative identification of coal-type gas and oil-type gas in source-mixed gas at the northern margin of Qaidam Basin 被引量:1
4
作者 Bao Yuan Wei Chongtao +2 位作者 Peng Dehua Jiang Bo Wang Chaoyong 《International Journal of Mining Science and Technology》 SCIE EI 2013年第3期435-439,共5页
The current study tested the gas component and carbon isotopic composition of gas samples from 6 oilgas fields at the northern margin of Qaidam Basin, and established a chart to quantitatively identify the mixing rati... The current study tested the gas component and carbon isotopic composition of gas samples from 6 oilgas fields at the northern margin of Qaidam Basin, and established a chart to quantitatively identify the mixing ratio of source-mixed gas. Besides, this research quantitatively investigated the natural gas generated by different types of organic matter. The results show that different ratios of source-mixed gas exist in the 6 oil-gas fields at the northern margin of Qaidam Basin. Among them, Mabei has the highest mixing ratio of coal-type gas, followed by Nanbaxian, Mahai, Lenghu-4, Lenghu-3 and Lenghu-5, with the ratios of coal-type gas 91%, 87%, 83%, 66%, 55% and 36%, respectively. Lenghu-3 and Lenghu-4 oil-gas fields were mainly filled by coal-type gas earlier. For Lenghu-3, the gas was mainly generated from low matured source rocks in lower Jurassic Series of Lengxi sub-sag. For Lenghu-4, the gas was mainly generated from humus-mature source rocks in lower Jurassic Series of the northern slope of Kunteyi sub-sag. Gas in Lenghu-5 was mainly later filled oil-type gas, which was generated from high matured sapropelics in lower Jurassic Series of Kunteyi sub-sag. Earlier filled coal-type gas was the main part of Mahai, Nanbaxian and Mabei oil-gas fields. Gas source of Mahai was mainly generated from high mature humics in lower Jurassic Series of Yibei sub-sag; for Nanbaxian, the gas was mainly generated from high matured humics in middle-lower Jurassic Series of Saishiteng sub-sag; for Mabei, the gas was mainly generated from humus-mature source rocks in middle Jurassic Series of Yuqia sub-sag. 展开更多
关键词 Source-mixed gas Quantitative identification coal-type gas Oil-type gas Northern margin of Qaidam Basin
下载PDF
A study on the genetic relations between Permian Longtan Formation coal series strata and Carlin-type gold deposits,southwestern Guizhou Province,China 被引量:5
5
作者 NIE Aiguo MEI Shiquan +2 位作者 GUAN Daiyun WU Pan ZHANG Zhuru 《Chinese Journal Of Geochemistry》 EI CAS 2008年第3期291-298,共8页
A large number of the Carlin-type gold deposits occur in the Longtan Formation in southwestern Guizhou Province.The Long-tan Formation contains abundant basalt,tuff and siliceous rocks.All rocks of the Longtan Formati... A large number of the Carlin-type gold deposits occur in the Longtan Formation in southwestern Guizhou Province.The Long-tan Formation contains abundant basalt,tuff and siliceous rocks.All rocks of the Longtan Formation are enriched in gold,which were deposited in a limited platform environment in the transition zone from marine to continental.The process of sedimentation was accompanied by the eruption of Emeishan basalt and hydrothermal deposition controlled by co-sedimentary submarine deep faults in the west,which led to the formation of a peculiar gold-bearing formation with coal series strata.This formation controlled the occurrence of the Carlin-type gold deposits in southwestern Guizhou Province.In response to the remobilization of the Emei mantle plume during the Yanshanian period,As,Au and other ore-forming materials were continuously extracted by deeply circulating waters from the Emeishan basalt and coal seams,thereafter forming ore-forming hydrothermal solutions.When these elements were transported in the coal seams,large amounts of As,Au and other elements were enriched in pyrite within the coal seams,thus forming high-As coal and Carlin-type gold deposits in the Longtan Formation coal series strata. 展开更多
关键词 二叠纪 煤层 黄金沉积物 遗传关系 贵州
下载PDF
Geological characteristics and exploration breakthroughs of coal rock gas in Carboniferous Benxi Formation,Ordos Basin,NW China 被引量:3
6
作者 ZHAO Zhe XU Wanglin +8 位作者 ZHAO Zhenyu YI Shiwei YANG Wei ZHANG Yueqiao SUN Yuanshi ZHAO Weibo SHI Yunhe ZHANG Chunlin GAO Jianrong 《Petroleum Exploration and Development》 SCIE 2024年第2期262-278,共17页
To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal ro... To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal rock reservoirs,coal rock quality,and coal rock gas features,resources and enrichment.Coal rock gas is a high-quality resource distinct from coalbed methane,and it has unique features in terms of burial depth,gas source,reservoir,gas content,and carbon isotopic composition.The Benxi Formation coal rocks cover an area of 16×104km^(2),with thicknesses ranging from 2 m to 25 m,primarily consisting of bright and semi-bright coals with primitive structures and low volatile and ash contents,indicating a good coal quality.The medium-to-high rank coal rocks have the total organic carbon(TOC)content ranging from 33.49%to 86.11%,averaging75.16%.They have a high degree of thermal evolution(Roof 1.2%-2.8%),and a high gas-generating capacity.They also have high stable carbon isotopic values(δ13C1of-37.6‰to-16‰;δ13C2of-21.7‰to-14.3‰).Deep coal rocks develop matrix pores such as gas bubble pores,organic pores,and inorganic mineral pores,which,together with cleats and fractures,form good reservoir spaces.The coal rock reservoirs exhibit the porosity of 0.54%-10.67%(averaging 5.42%)and the permeability of(0.001-14.600)×10^(-3)μm^(2)(averaging 2.32×10^(-3)μm^(2)).Vertically,there are five types of coal rock gas accumulation and dissipation combinations,among which the coal rock-mudstone gas accumulation combination and the coal rock-limestone gas accumulation combination are the most important,with good sealing conditions and high peak values of total hydrocarbon in gas logging.A model of coal rock gas accumulation has been constructed,which includes widespread distribution of medium-to-high rank coal rocks continually generating gas,matrix pores and cleats/fractures in coal rocks acting as large-scale reservoir spaces,tight cap rocks providing sealing,source-reservoir integration,and five types of efficient enrichment patterns(lateral pinchout complex,lenses,low-amplitude structures,nose-like structures,and lithologically self-sealing).According to the geological characteristics of coal rock gas,the Benxi Formation is divided into 8 plays,and the estimated coal rock gas resources with a buried depth of more than 2000 m are more than 12.33×10^(12)m^(3).The above understandings guide the deployment of risk exploration.Two wells drilled accordingly obtained an industrial gas flow,driving the further deployment of exploratory and appraisal wells.Substantial breakthroughs have been achieved,with the possible reserves over a trillion cubic meters and the proved reserves over a hundred billion cubic meters,which is of great significance for the reserves increase and efficient development of natural gas in China. 展开更多
关键词 coal rock gas coalbed methane medium-to-high rank coal CLEAT Ordos Basin Carboniferous Benxi Formation risk exploration
下载PDF
Numerical analysis on the factors affecting post-peak characteristics of coal under uniaxial compression 被引量:2
7
作者 Zhiguo Lu Wenjun Ju +1 位作者 Fuqiang Gao Taotao Du 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期42-60,共19页
The post-peak characteristics of coal serve as a direct reflection of its failure process and are essential parameters for evaluating brittleness and bursting liability.Understanding the significant factors that influ... The post-peak characteristics of coal serve as a direct reflection of its failure process and are essential parameters for evaluating brittleness and bursting liability.Understanding the significant factors that influence post-peak characteristics can offer valuable insights for the prevention of coal bursts.In this study,the Synthetic Rock Mass method is employed to establish a numerical model,and the factors affecting coal post-peak characteristics are analyzed from four perspectives:coal matrix mechanical parameters,structural weak surface properties,height-to-width ratio,and loading rate.The research identifies four significant influencing factors:deformation modulus,density of discrete fracture networks,height-to-width ratio,and loading rate.The response and sensitivity of post-peak characteristics to single-factor and multi-factor interactions are assessed.The result suggested that feasible prevention and control measures for coal bursts can be formulated through four approaches:weakening the mechanical properties of coal pillars,increasing the number of structural weak surfaces in coal pillars,reducing the width of coal pillars,and optimizing mining and excavation speed.The efficacy of measures aimed at weakening the mechanical properties of coal is successfully demonstrated through a case study on coal burst prevention using large-diameter borehole drilling. 展开更多
关键词 Post-peak behavior Synthetic rock mass coal bursts coal burst prevention
下载PDF
Disasters of gas-coal spontaneous combustion in goaf of steeply inclined extra-thick coal seams 被引量:1
8
作者 Qiming Zhang Enyuan Wang +2 位作者 Xiaojun Feng Shuxin Liu Dong Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4141-4153,共13页
In light of the escalating global energy imperatives,mining of challenging-to-access resources,such as steeply inclined extra-thick coal seams(SIEC),has emerged as one of the future trends within the domain of energy ... In light of the escalating global energy imperatives,mining of challenging-to-access resources,such as steeply inclined extra-thick coal seams(SIEC),has emerged as one of the future trends within the domain of energy advancement.However,there is a risk of gas and coal spontaneous combustion coupling disasters(GCC)within the goaf of SIEC due to the complex goaf structure engendered by the unique mining methodologies of SIEC.To ensure that SIEC is mined safely and efficiently,this study conducts research on the GCC within the goaf of SIEC using field observation,theoretical analysis,and numerical modeling.The results demonstrate that the dip angle,the structural dimensions in terms of width-to-length ratio,and compressive strength of the overlying rock are the key factors contributing to the goaf instability of SIEC.The gangue was asymmetrically filled,primarily accumulating within the central and lower portions of the goaf,and the filling height increased proportionally with the advancing caving height,the expansion coefficient,and the thickness of the surrounding rock formation.The GCC occurs in the goaf of SIEC,with an air-return side range of 41 m and an air-intake side range of 14 m,at the intersection area of the“<”-shaped oxygen concentration distribution(coal spontaneous combustion)and the“>”-shaped gas concentration distribution(gas explosion).The optimal nitrogen flow rate is 1000 m3/h with an injection port situated 25 m away from the working face for the highest nitrogen diffusion efficacy and lowest risk of gas explosion,coal spontaneous combustion,and GCC.It has significant engineering applications for ensuring the safe mining of SIEC threatened by the GCC. 展开更多
关键词 Steeply inclined extra-thick coal seams Gas explosion coal spontaneous combustion Coupling disaster Numerical simulation
下载PDF
Stability analysis of longwall top-coal caving face in extra-thick coal seams based on an innovative numerical hydraulic support model 被引量:1
9
作者 Jun Guo Wenbo Huang +7 位作者 Guorui Feng Jinwen Bai Lirong Li Zi Wang Luyang Yu Xiaoze Wen Jie Zhang Wenming Feng 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期491-505,共15页
The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct ... The relationship between support and surrounding rock is of great significance to the control of surrounding rock in mining process.In view of the fact that most of the existing numerical simulation methods construct virtual elements and stress servo control to approximately replace the hydraulic support problem,this paper establishes a new numerical model of hydraulic support with the same working characteristics as the actual hydraulic support by integrating numerical simulation software Rhino,Griddle and FLAC3D,which can realize the simulation of different working conditions.Based on this model,the influence mechanism of the supporting strength of hydraulic support on surrounding rock stress regulation and coal stability in front of the top coal caving face in extra thick coal seam were researched.Firstly,under different support intensity,the abutment pressure of the bearing coal and the coal in front of it presents the “three-stage”evolution characteristics.The influence range of support intensity is 15%–30%.Secondly,1.5 MPa is the upper limit of impact that the support strength can have on the front coal failure area.Thirdly,within a displacement range of 2.76 m from the coal wall,a support strength of1.5 MPa provides optimal control of the horizontal displacement of the coal. 展开更多
关键词 Extremely thick coal seam Fully mechanized top coal caving Support strength Support-surrounding rock interaction
下载PDF
Surface engineering of P2-type cathode material targeting long-cycling and high-rate sodium-ion batteries 被引量:1
10
作者 Jun Xiao Yang Xiao +11 位作者 Shijian Wang Zefu Huang Jiayi Li Cheng Gong Guilai Zhang Bing Sun Hong Gao Huiqiao Li Xin Guo Yong Wang Hao Liu Guoxiu Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期444-452,I0009,共10页
The widespread interest in layered P2-type Mn-based cathode materials for sodium-ion batteries(SIBs)stems from their cost-effectiveness and abundant resources.However,the inferior cycle stability and mediocre rate per... The widespread interest in layered P2-type Mn-based cathode materials for sodium-ion batteries(SIBs)stems from their cost-effectiveness and abundant resources.However,the inferior cycle stability and mediocre rate performance impede their further development in practical applications.Herein,we devised a wet chemical precipitation method to deposit an amorphous aluminum phosphate(AlPO_(4),denoted as AP)protective layer onto the surface of P2-type Na_(0.55)Ni_(0.1)Co_(0.7)Mn_(0.8)O_(2)(NCM@AP).The resulting NCM@5AP electrode,with a 5 wt%coating,exhibits extended cycle life(capacity retention of78.4%after 200 cycles at 100 mA g^(-1))and superior rate performance(98 mA h g^(-1)at 500 mA g^(-1))compared to pristine NCM.Moreover,our investigation provides comprehensive insights into the phase stability and active Na^(+)ion kinetics in the NCM@5AP composite electrode,shedding light on the underlying mechanisms responsible for the enhanced performance observed in the coated electrode. 展开更多
关键词 Layered metal oxides Sodium-ion batteries P2-type structure Surface engineering
下载PDF
Structural properties of residual carbon in coal gasification fine slag and their influence on flotation separation and resource utilization:A review 被引量:6
11
作者 Rui Han Anning Zhou +4 位作者 Ningning Zhang Kaiqiang Guo Mengyan Cheng Heng Chen Cuicui Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期217-230,共14页
Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery a... Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC. 展开更多
关键词 coal gasification fine slag residual carbon pore structure surface functional groups microcrystalline structure flotation sep-aration resource utilization
下载PDF
Designing ultrastable P2/O3-type layered oxides for sodium ion batteries by regulating Na distribution and oxygen redox chemistry 被引量:1
12
作者 Jieyou Huang Weiliang Li +3 位作者 Debin Ye Lin Xu Wenwei Wu Xuehang Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期466-476,共11页
P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phas... P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phases remains a necessity.Herein,we design a P2/O3-type Na_(0.76)Ni_(0.31)Zn_(0.07)Mn_(0.50)Ti_(0.12)0_(2)(NNZMT)with high chemical/electrochemical stability by enhancing the coupling between the two phases.For the first time,a unique Na*extraction is observed from a Na-rich O3 phase by a Na-poor P2 phase and systematically investigated.This process is facilitated by Zn^(2+)/Ti^(4+)dual doping and calcination condition regulation,allowing a higher Na*content in the P2 phase with larger Na^(+)transport channels and enhancing Na transport kinetics.Because of reduced Na^(+)in the O3 phase,which increases the difficulty of H^(+)/Na^(+) exchange,the hydrostability of the O3 phase in NNZMT is considerably improved.Furthermore,Zn^(2+)/Ti^(4+)presence in NNZMT synergistically regulates oxygen redox chemistry,which effectively suppresses O_(2)/CO_(2) gas release and electrolyte decomposition,and completely inhibits phase transitions above 4.0 V.As a result,NNZMT achieves a high discharge capacity of 144.8 mA h g^(-1) with a median voltage of 3.42 V at 20 mA g^(-1) and exhibits excellent cycling performance with a capacity retention of 77.3% for 1000 cycles at 2000 mA g^(-1).This study provides an effective strategy and new insights into the design of high-performance layered-oxide cathode materials with enhanced structure/interface stability forSIBs. 展开更多
关键词 Sodium-ion batteries P2/O3-type layered oxides Na distribution Oxygen redox chemistry Hydrostability
下载PDF
Thermally-induced cracking behaviors of coal reservoirs subjected to cryogenic liquid nitrogen shock 被引量:1
13
作者 Songcai Han Qi Gao +5 位作者 Xinchuang Yan Lile Li Lei Wang Xian Shi Chuanliang Yan Daobing Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期2894-2908,共15页
The benefits of using cryogenic liquid nitrogen shock to enhance coal permeability have been confirmed from experimental perspectives.In this paper,we develop a fully coupled thermo-elastic model in combination with t... The benefits of using cryogenic liquid nitrogen shock to enhance coal permeability have been confirmed from experimental perspectives.In this paper,we develop a fully coupled thermo-elastic model in combination with the strain-based isotropic damage theory to uncover the cooling-dominated cracking behaviors through three typical cases,i.e.coal reservoirs containing a wellbore,a primary fracture,and a natural fracture network,respectively.The progressive cracking processes,from thermal fracture initiation,propagation or cessation,deflection,bifurcation to multi-fracture interactions,can be well captured by the numerical model.It is observed that two hierarchical levels of thermal fractures are formed,in which the number of shorter thermal fractures consistently exceeds that of the longer ones.The effects of coal properties related to thermal stress levels and thermal diffusivity on the fracture morphology are quantified by the fracture fractal dimension and the statistical fracture number.The induced fracture morphology is most sensitive to changes in the elastic modulus and thermal expansion coefficient,both of which dominate the complexity of the fracture networks.Coal reservoir candidates with preferred thermal-mechanical properties are also recommended for improving the stimulation effect.Further findings are that there exists a critical injection temperature and a critical in-situ stress difference,above which no thermal fractures would be formed.Preexisting natural fractures with higher density and preferred orientations are also essential for the formation of complex fracture networks.The obtained results can provide some theoretical support for cryogenic fracturing design in coal reservoirs. 展开更多
关键词 coal reservoirs Cryogenic shock Thermal cracking behaviors Fracture morphology
下载PDF
Theoretical analysis of hydrogen solubility in direct coal liquefaction solvents 被引量:1
14
作者 Xiaobin Zhang Aoqi Wang +1 位作者 Xingbao Wang Wenying Li 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期187-197,共11页
The cyclic hydrogenation technology in a direct coal liquefaction process relies on the dissolved hydrogen of the solvent or oil participating in the hydrogenation reaction.Thus,a theoretical basis for process optimiz... The cyclic hydrogenation technology in a direct coal liquefaction process relies on the dissolved hydrogen of the solvent or oil participating in the hydrogenation reaction.Thus,a theoretical basis for process optimization and reactor design can be established by analyzing the solubility of hydrogen in liquefaction solvents.Experimental studies of hydrogen solubility in liquefaction solvents are challenging due to harsh reaction conditions and complex solvent compositions.In this study,the composition and content of liquefied solvents were analyzed.As model compounds,hexadecane,toluene,naphthalene,tetrahydronaphthalene,and phenanthrene were chosen to represent the liquefied solvents in chain alkanes and monocyclic,bicyclic,and tricyclic aromatic hydrocarbons.The solubility of hydrogen X(mol/mol)in pure solvent components and mixed solvents(alkanes and aromatics mixed in proportion to the chain alkanes+bicyclic aromatic hydrocarbons,bicyclic saturated aromatic hydrocarbons+bicyclic aromatic hydrocarbons,and bicyclic aromatic hydrocarbons+compounds containing het-eroatoms composed of mixed components)are determined using Aspen simulation at temperature and pressure conditions of 373–523 K and 2–10 MPa.The results demonstrated that at high temperatures and pressures,the solubility of hydrogen in the solvent increases with the increase in temperature and pressure,with the pressure having a greater impact.Further-more,the results revealed that hydrogen is more soluble in straight-chain alkanes than in other solvents,and the solubility of eicosanoids reaches a maximum of 0.296.The hydrogen solubility in aromatic ring compounds decreased gradually with an increase in the aromatic ring number.The influence of chain alkanes on the solubility of hydrogen predominates in a mixture of solvents with different mixing ratios of chain alkanes and aromatic hydrocarbons.The solubility of hydrogen in mixed aromatic solvents is less than that in the corresponding single solvents.Hydrogen is less soluble in solvent compounds containing heteroatoms than in compounds without heteroatoms. 展开更多
关键词 Direct coal liquefaction Liquefaction solvents Process simulation Hydrogen solubility
下载PDF
Pore-pressure and stress-coupled creep behavior in deep coal:Insights from real-time NMR analysis 被引量:1
15
作者 Wenhao Jia Hongwei Zhou +3 位作者 Senlin Xie Yimeng Wang Xinfeng Hu Lei Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期77-90,共14页
Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxi... Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxial creep test on deep coal at various pore pressures using a test system that combines in-situ mechanical loading with real-time nuclear magnetic resonance(NMR) detection was conducted.Full-scale quantitative characterization, online real-time detection, and visualization of MPFS during coal creep influenced by pore pressure and stress coupling were performed using NMR and NMR imaging(NMRI) techniques. The results revealed that seepage pores and microfractures(SPM) undergo the most significant changes during coal creep, with creep failure gradually expanding from dense primary pore fractures. Pore pressure presence promotes MPFS development primarily by inhibiting SPM compression and encouraging adsorption pores(AP) to evolve into SPM. Coal enters the accelerated creep stage earlier at lower stress levels, resulting in more pronounced creep deformation. The connection between the micro and macro values was established, demonstrating that increased porosity at different pore pressures leads to a negative exponential decay of the viscosity coefficient. The Newton dashpot in the ideal viscoplastic body and the Burgers model was improved using NMR experimental results, and a creep model that considers pore pressure and stress coupling using variable-order fractional operators was developed. The model’s reasonableness was confirmed using creep experimental data. The damagestate adjustment factors ω and β were identified through a parameter sensitivity analysis to characterize the effect of pore pressure and stress coupling on the creep damage characteristics(size and degree of difficulty) of coal. 展开更多
关键词 Real-time monitoring Pore pressure-stress coupling Microscopic pore-fracture structure Variable-order fractional creep model Deep coal
下载PDF
多功能CoAl-LDH/CdS光催化剂的制备及其性能研究 被引量:1
16
作者 唐丹琪 阳敏 +3 位作者 朱子 张海燕 李铭 李佑稷 《功能材料》 CAS CSCD 北大核心 2024年第7期7166-7176,共11页
在能源危机和环境污染的双重挑战下,开发集能量转化和环境治理于一体的多功能光催化剂是促进太阳能-化学能转化的有效策略。采用正六边形的CoAl-LDH纳米薄片为载体,通过原位生长CdS纳米颗粒的方法,构建了CoAl-LDH/CdS的Ⅱ型异质结。利用... 在能源危机和环境污染的双重挑战下,开发集能量转化和环境治理于一体的多功能光催化剂是促进太阳能-化学能转化的有效策略。采用正六边形的CoAl-LDH纳米薄片为载体,通过原位生长CdS纳米颗粒的方法,构建了CoAl-LDH/CdS的Ⅱ型异质结。利用CoAl-LDH纳米薄片在可见光区域的宽普吸收性和良好载体的特性,结合CdS的高光量子产率,再通过异质结构的构建,获得了多功能CoAl-LDH/CdS光催化材料。并通过优化CdS的负载量,获得的CoAl-LDH/CdS-2光催剂降解罗丹明B的降解率最大(在光催化降解时间t=60 min时内,降解率=88.48%),分别是CdS和CoAl-LDH单体的1.18倍和8.62倍。其中CoAl-LDH/CdS-1的CO产量最高为39.02 mol/g,分别是纯CoAl-LDH和纯CdS的4.2倍和2.5倍,这主要归功于复合材料中CoAl-LDH纳米片和CdS纳米颗粒间紧密异质结构的构建,丰富的耦合界面大大降低了光生载流子的复合率,这为多功能光催化剂的开发提供了理论基础。 展开更多
关键词 coal-LDH CDS 异质结 光催化降解 CO 2还原
下载PDF
Incorporating empirical knowledge into data-driven variable selection for quantitative analysis of coal ash content by laser-induced breakdown spectroscopy 被引量:1
17
作者 吕一涵 宋惟然 +1 位作者 侯宗余 王哲 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第7期148-156,共9页
Laser-induced breakdown spectroscopy(LIBS)has become a widely used atomic spectroscopic technique for rapid coal analysis.However,the vast amount of spectral information in LIBS contains signal uncertainty,which can a... Laser-induced breakdown spectroscopy(LIBS)has become a widely used atomic spectroscopic technique for rapid coal analysis.However,the vast amount of spectral information in LIBS contains signal uncertainty,which can affect its quantification performance.In this work,we propose a hybrid variable selection method to improve the performance of LIBS quantification.Important variables are first identified using Pearson's correlation coefficient,mutual information,least absolute shrinkage and selection operator(LASSO)and random forest,and then filtered and combined with empirical variables related to fingerprint elements of coal ash content.Subsequently,these variables are fed into a partial least squares regression(PLSR).Additionally,in some models,certain variables unrelated to ash content are removed manually to study the impact of variable deselection on model performance.The proposed hybrid strategy was tested on three LIBS datasets for quantitative analysis of coal ash content and compared with the corresponding data-driven baseline method.It is significantly better than the variable selection only method based on empirical knowledge and in most cases outperforms the baseline method.The results showed that on all three datasets the hybrid strategy for variable selection combining empirical knowledge and data-driven algorithms achieved the lowest root mean square error of prediction(RMSEP)values of 1.605,3.478 and 1.647,respectively,which were significantly lower than those obtained from multiple linear regression using only 12 empirical variables,which are 1.959,3.718 and 2.181,respectively.The LASSO-PLSR model with empirical support and 20 selected variables exhibited a significantly improved performance after variable deselection,with RMSEP values dropping from 1.635,3.962 and 1.647 to 1.483,3.086 and 1.567,respectively.Such results demonstrate that using empirical knowledge as a support for datadriven variable selection can be a viable approach to improve the accuracy and reliability of LIBS quantification. 展开更多
关键词 laser-induced breakdown spectroscopy(LIBS) coal ash content quantitative analysis variable selection empirical knowledge partial least squares regression(PLSR)
下载PDF
Depositional Environment and Origin of Inertinite-rich Coal in the Ordos Basin
18
作者 SHI Qingmin ZHAO Jun +5 位作者 JI Ruijun XUE Weifeng HAN Bo CAI Yue LI Chunhao CUI Shidong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第4期1064-1085,共22页
Inertinite-rich coal is widely distributed in the Ordos Basin,represented by the No.2 coal seam of the Middle Jurassic Yan'an Formation.This paper combined coal petrology and geochemistry to analyze the origin of ... Inertinite-rich coal is widely distributed in the Ordos Basin,represented by the No.2 coal seam of the Middle Jurassic Yan'an Formation.This paper combined coal petrology and geochemistry to analyze the origin of inertinite,changes in the coal-forming environment and control characteristics of wildfire.Research has shown that there are two forms of inertinite sources in the study area.Alongside typical fusinization,wildfire events also play a substantial role in inertinite formation.There are significant fluctuations in the coal-forming environment of samples at different depths.Coal samples were formed in dry forest swamp with low water levels and strong oxidation,which have a high inertinite content,and the samples formed in wet forest swamp and limnic showed low inertinite content.Conversely,the inertinite content of different origins does not fully correspond to the depositional environment characterized by dryness and oxidation.Nonpyrogenic inertinites were significantly influenced by climatic conditions,while pyrofusinite was not entirely controlled by climatic conditions but rather directly impacted by wildfire events.The high oxygen level was the main factor causing widespread wildfire events.Overall,the combination of wildfire activity and oxidation generates a high content of inertinite in the Middle Jurassic coal of the Ordos Basin. 展开更多
关键词 inertinite-rich coal WILDFIRE coal petrology geochemistry biomarkers depositional environment
下载PDF
Geochemical and petrological studies of high sulfur coal and overburden from Makum coalfield (Northeast India) towards understanding and mitigation of acid mine drainage
19
作者 Angana Mahanta Debashis Sarmah +6 位作者 Nilotpol Bhuyan Monikankana Saikia Sarat Phukan K.S.V.Subramanyam Ajit Singh Prasenjit Saikia Binoy K.Saikia 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期133-147,共15页
Opencast coal mining produces trash of soil and rock containing various minerals,that are usually dumped nearby the abandoned sites which causes severe environmental concern including the production of acid mine drain... Opencast coal mining produces trash of soil and rock containing various minerals,that are usually dumped nearby the abandoned sites which causes severe environmental concern including the production of acid mine drainage(AMD)through oxidation pyrite minerals.The current study entailed assessing the potential production of AMD from an opencast coal mining region in Northeast part of India.In order to have a comprehensive overview of the AMD problem in Makum coalfield,the physico-chemical,geochemical,and petrological characteristics of the coal and overburden(OB)samples collected from the Makum coalfield(Northeast India)were thoroughly investigated.The maceral compositions reveal that coal features all three groups of macerals(liptinite,vitrinite,and inertinite),with a high concentration of liptinite indicating the coal of perhydrous,thereby rendering it more reactive.Pyrite(FeS_(2))oxidation kinetics were studied by conducting the aqueous leaching experiments of coal and(OB)samples to interpret the chemical weathering under controlled laboratory conditions of various temperature and time periods,and to replicate the actual mine site leaching.Inductively coupled plasma-optical emission spectroscopy(ICP-OES)was operated to detect the disposal of some precarious elements from coal and OB samples to the leachates during our controlled leaching experiment.The Rare earth element(REE)enrichment in the samples shows the anthropogenic incorporation of the REE in the coal and OB.These experiments reveal the change in conductivity,acid producing tendency,total dissolved solid(TDS),total Iron(Fe)and dissolved Sulfate(SO_(4)^(2−))ions on progress of the leaching experiments.Moreover,the discharge of FeS_(2) via atmospheric oxidation in laboratory condition undergoes a significant growth with the rise of temperature of the reaction systems in the environment and follows pseudo first order kinetics.A bio-remediative strategies is also reported in this paper to mitigate AMD water by employing size-segregated powdered limestone and water hyacinth plant in an indigenously developed site-specific prototype station.Apart from neutralisation of AMD water,this eco-friendly AMD remediation strategy demonstrates a reduction in PHEs concentrations in the treated AMD water. 展开更多
关键词 Opencast mining Pyrite oxidation coal geochemistry coal petrology Rare earth elements AMD remediation
下载PDF
Coal/Gangue Volume Estimation with Convolutional Neural Network and Separation Based on Predicted Volume and Weight
20
作者 Zenglun Guan Murad S.Alfarzaeai +2 位作者 Eryi Hu Taqiaden Alshmeri Wang Peng 《Computers, Materials & Continua》 SCIE EI 2024年第4期279-306,共28页
In the coal mining industry,the gangue separation phase imposes a key challenge due to the high visual similaritybetween coal and gangue.Recently,separation methods have become more intelligent and efficient,using new... In the coal mining industry,the gangue separation phase imposes a key challenge due to the high visual similaritybetween coal and gangue.Recently,separation methods have become more intelligent and efficient,using newtechnologies and applying different features for recognition.One such method exploits the difference in substancedensity,leading to excellent coal/gangue recognition.Therefore,this study uses density differences to distinguishcoal from gangue by performing volume prediction on the samples.Our training samples maintain a record of3-side images as input,volume,and weight as the ground truth for the classification.The prediction process relieson a Convolutional neural network(CGVP-CNN)model that receives an input of a 3-side image and then extractsthe needed features to estimate an approximation for the volume.The classification was comparatively performedvia ten different classifiers,namely,K-Nearest Neighbors(KNN),Linear Support Vector Machines(Linear SVM),Radial Basis Function(RBF)SVM,Gaussian Process,Decision Tree,Random Forest,Multi-Layer Perceptron(MLP),Adaptive Boosting(AdaBosst),Naive Bayes,and Quadratic Discriminant Analysis(QDA).After severalexperiments on testing and training data,results yield a classification accuracy of 100%,92%,95%,96%,100%,100%,100%,96%,81%,and 92%,respectively.The test reveals the best timing with KNN,which maintained anaccuracy level of 100%.Assessing themodel generalization capability to newdata is essential to ensure the efficiencyof the model,so by applying a cross-validation experiment,the model generalization was measured.The useddataset was isolated based on the volume values to ensure the model generalization not only on new images of thesame volume but with a volume outside the trained range.Then,the predicted volume values were passed to theclassifiers group,where classification reported accuracy was found to be(100%,100%,100%,98%,88%,87%,100%,87%,97%,100%),respectively.Although obtaining a classification with high accuracy is the main motive,this workhas a remarkable reduction in the data preprocessing time compared to related works.The CGVP-CNN modelmanaged to reduce the data preprocessing time of previous works to 0.017 s while maintaining high classificationaccuracy using the estimated volume value. 展开更多
关键词 coal coal gangue convolutional neural network CNN object classification volume estimation separation system
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部