The development of more environment-friendly ways to dispose of oil sludge is currently regarded as a hot topic.In this context,gasification technologies are generally seen as a promising way to combine oil sludge wit...The development of more environment-friendly ways to dispose of oil sludge is currently regarded as a hot topic.In this context,gasification technologies are generally seen as a promising way to combine oil sludge with coal–water slurry(CWS)and generate resourceful fuel.In this study,a novel five-nozzle gasifier reactor was analyzed by means of a CFD(Computational fluid dynamic)method.Among several influential factors,special attention was paid to the height-to-diameter ratio of the gasifier and the mixing ratio of oil sludge,which are known to have a significant impact on the flow field,temperature distribution and gasifier performances.According to the numerical results,the optimal height-to-diameter ratio and oil mixing ratio are about 2.4:1 and 20%,respectively.Furthermore,the carbon conversion rate can become as high as 98.55%with the hydrolysis rate reaching a value of 53.88%.The consumption of raw coal and oxygen is generally reduced,while the effective gas production is increased to 50.93 mol/%.展开更多
In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site moni...In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site monitoring means combining borehole peeping and microseismic monitoring, combined with the theoretical analysis to analyze the danger of water breakout in the bottom plate. The results show that: 1) the theoretically calculated maximum damage depth of the bottom plate is 27.5 m, and its layer is located above the Austrian ash aquifer, which has the danger of water breakout;2) the drill hole peeping at the bottom plate of the working face shows that the depth of the bottom plate fissure development reaches 26 m, and the integrity of the water barrier layer has been damaged, so there is the risk of water breakout;3) for the microseismic monitoring of the anomalous area, the bottom plate of the return air downstream channel occurs in the field with a one-week lag, which shows that microseismic monitoring events may reflect the water breakout of the underground. This shows that the microseismic monitoring events can reflect the changes of the underground flow field, which can provide a reference basis for the early warning of water breakout. The research results can provide reference for the prediction of sudden water hazard.展开更多
The particle image velocity (PIV) technique is introduced to measure theatomization angle, particle size and size distribution of the atomization coal water paste (CWP) ina cold state model. Due to high-density atomiz...The particle image velocity (PIV) technique is introduced to measure theatomization angle, particle size and size distribution of the atomization coal water paste (CWP) ina cold state model. Due to high-density atomization spray, wide size distribution and large-scaleexperimental setup in CWP experiments, a commercial PIV system is updated with a 600-mm-long focallength camera and a convex lens used with a laser beam. This long focal length camera makes the PIVsystem capable of taking the images of micro particles. The measured minimum diameter is about 15μm. The convex lens has the benefit of centralising the sector laser beam of the PIV system, sothat the measurement window of the high density CWP field sectored by the laser beam is brighter andthe images taken by the camera are clearer. The experimental results show that it is a useful andefficient tool for the PIV technique to measure the atomization prosperities of CWP.展开更多
Correct identification of water inrush sources is particularly important to prevent and control mine water disasters.Hydrochemical analysis,Fisher discriminant analysis,and geothermal verification analysis were used t...Correct identification of water inrush sources is particularly important to prevent and control mine water disasters.Hydrochemical analysis,Fisher discriminant analysis,and geothermal verification analysis were used to identify and verify the water sources of the multi-aquifer groundwater system in Gubei coal mine,Anhui Province,North China.Results show that hydrochemical water types of the Cenozoic top aquifer included HCO3-Na+K-Ca,HCO3-Na+K-Mg and HCO3-Na+K,and this aquifer was easily distinguishable from other aquifers because of its low concentration of Na++K+and Cl-.The Cenozoic middle and bottom aquifers,the Permian fissure aquifer,and the Taiyuan and Ordovician limestone aquifers were mainly characterized by the Cl-Na+K and SO4-Cl-Na+K or HCO3-Cl-Na+K water types,and their hydrogeochemistries were similar.Therefore,water sources could not be identified via hydrochemical analysis.Fisher model was established based on the hydrogeochemical characteristics,and its discrimination rate was 89.19%.Fisher discrimination results were improved by combining them with the geothermal analysis results,and this combination increased the identification rate to 97.3%and reasonably explained the reasons behind two water samples misjudgments.The methods described herein are also applicable to other mines with similar geological and hydrogeological conditions in North China.展开更多
In this paper, a combination of field measurement, theoretical analysis and numerical simulation were used to study the main control factors of coal mine water inrush in a main aquifer coal seam and its control scheme...In this paper, a combination of field measurement, theoretical analysis and numerical simulation were used to study the main control factors of coal mine water inrush in a main aquifer coal seam and its control scheme. On the basis of revealing and analyzing the coal seam as the main aquifer in western coal mine of Xiao Jihan coal mine, the simulation software of PHASE-2D was applied to analyze the water inflow under different influencing factors. The results showed that water inflow increases logarithmically with the coal seam thickness, increases as a power function with the permeability coefficient of the coal seam, and increases linearly with the coal seam burial depth and the head pressure; The evaluation model for the factors of coal seam water inrush was gained by using nonlinear regression analysis with SPSS. The mine water inrush risk evaluation partition within the scope of the mining field was obtained,through the engineering application in Xiao Jihan coal mine. To ensure the safe and efficient production of the mine, we studied the coal mine water disaster prevention and control measures of a main aquifer coal seam in aspects of roadway driving and coal seam mining.展开更多
To solve the problem of water seepage of vertical feeding borehole for solid materials,we established the fluid-solid coupling dynamic model of groundwater flowing in rock mass adjacent to the vertical feeding borehol...To solve the problem of water seepage of vertical feeding borehole for solid materials,we established the fluid-solid coupling dynamic model of groundwater flowing in rock mass adjacent to the vertical feeding borehole.Combining with the engineering geological conditions,we built a numeral model to study the influence rule of the aquifer hydraulic pressure and seepage location of feeding borehole on the amount of seepage with fnite element numerical method.The results show that the nonlinear relationship is presented among the amount of seepage,the seepage location and aquifer hydraulic pressure.The higher the aquifer hydraulic pressure is,the closer the distance between seepage location and aquifer is,and the faster the harmful levels of aquifer will grow.In practice,we calculated the allowable seepage of feeding borehole by the optimum moisture content and natural moisture content of backflling materials,and then determined the protection zone of feeding borehole,so the moisture content of backflling materials can be controlled within the scope of optimum moisture content.展开更多
Yushenfu mining area is located in an ecological fragile area in western China, the coal seam of which is the Jurassic Ysn'an Foirnalion. The Jurassic Yan'an Formation con tains five minable coal seams, the to...Yushenfu mining area is located in an ecological fragile area in western China, the coal seam of which is the Jurassic Ysn'an Foirnalion. The Jurassic Yan'an Formation con tains five minable coal seams, the top layer of which is thick, covered by shallow overburden and located under aquifers. Therefore, the mining induced water flowing fractured zone can easily extend to the aquifers of both the Quaternary Sarahu and Jurassic Zhiluo Formation. This would result in a series of negative hydrological and ecological effects, including groundwater leakage, groundwater lowering, furtherly causing surface vegetation withering and dying, surface water body reduction, spring drying out, and water flow of river being decreased substantially. To solve these environmental problems, several technologies have been carried out by Chinese scientists, one of which is water-preserved coal mining. This paper presents a review of the origin, definition and development of water-preserved coal mining, and its applications in Yushenfu mining area. The applicable conditions, research contents, research methodology, and technical foundation of water-preserved coal mining are addressed in this paper. The future research focuses regarding water-preserved coal mining in China are also discussed in this paper. Its results serve as a guide for selecting the methods to be preferred for mining in case the geological conditions, roof overburden structure and coal mining process are similar to Yushenfu mining area.展开更多
Xin’an coal mine, Henan Province, faces the risk of water inrush because 40% of the area of the coal mine is under the surface water of the Xiaolangdi reservoir. To forecast water disaster, an effective aquifuge and ...Xin’an coal mine, Henan Province, faces the risk of water inrush because 40% of the area of the coal mine is under the surface water of the Xiaolangdi reservoir. To forecast water disaster, an effective aquifuge and a limit of water infiltration were determined by rock-phase analysis and long term observations of surface water and groundwater. By field monitoring, as well as physical and numerical simulation experiments, we obtained data reflecting different heights of a water flow fractured zone (WFFZ) under different mining conditions, derived a formula to calculate this height and built a forecasting model with the aid of GIS. On the basis of these activities, the coal mine area was classified into three sub-areas with different potential of water inrush. In the end, our research results have been applied in and verified by industrial mining experiments at three working faces and we were able to present a successful example of coal mining under a large reservoir.展开更多
This research aimed to investigate the changing mechanism of hydro-geochemistry in Ordovician limestone karst(OL) water induced by mountainous coal mining activities. Thus, the hydrogeochemistry evolution of OL water ...This research aimed to investigate the changing mechanism of hydro-geochemistry in Ordovician limestone karst(OL) water induced by mountainous coal mining activities. Thus, the hydrogeochemistry evolution of OL water over 40 years within a typical northern mountainous coal mine named Fengfeng Mine was studied by using Piper diagram, Gibbs scheme, ions correlation and Principal component analysis(PCA) methods. Results showed that, except for HCO3^-, the ions of Ca^2+, Mg^2+, SO4^2-,Na^++K^+, Cl^- and total dissolution solids(TDS) values all increased by years as mining continues. Different hydro-geochemical characteristics in different periods can reflect different water-rock interactions.Accordingly, sulfates dissolution gradually took place of carbonates in water-rock interaction. Especially,OL water-rock interactions in different periods were all affected by rock weathering and evaporationconcentration together. At last, evaporationconcentration co-effect dominated the hydrogeochemistry evolution slowly, along with significant cations exchange over years.展开更多
It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failu...It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failure and the development of the fractured zone while coal mining in Xin'an Coal Mine.The risk of water inrush in this mine is great because 40%of the mining area is under the Xiaolangdi reservoir.Numerical simulations combined with geophysical methods were used in this paper to obtain the development law of the fractured zone under different mining conditions.The comprehensive geophysical method described in this paper has been demonstrated to accurately predict the height of the water-flow fractured zone.Results from the new model, which created from the results of numerical simulations and field measurements,were successfully used for making decisions in the Xin'an Coal Mine when mining under the Xiaolangdi Reservoir.Industrial scale experiments at the number 11201,14141 and 14191 working faces were safely carried out.These achievements provide a successful background for the evaluation and application of coal mining under large reservoirs.展开更多
Accumulation of float coal dust(FCD)in underground mines is an explosion hazard that affects all underground coal mine workers.While this hazard is addressed by the application of rock dust,inadequate rock dusting pra...Accumulation of float coal dust(FCD)in underground mines is an explosion hazard that affects all underground coal mine workers.While this hazard is addressed by the application of rock dust,inadequate rock dusting practices can leave miners exposed to an explosion risk.Researchers at the National Institute for Occupational Safety and Health(NIOSH)have focused on developing a water curtain that removes FCD from the airstream,thereby reducing the buildup of FCD in mine airways.In this study,the number and spacing of the active sprays in the water curtain were varied to determine the optimal configuration to obtain peak knockdown efficiency(KE)while minimizing water consumption.展开更多
The paper reports the effects of surface fractal structures on the rheological behavior and combustion kinetics of raw brown coal and three modified coal water slurries (CWSs). The results show that the fractal stru...The paper reports the effects of surface fractal structures on the rheological behavior and combustion kinetics of raw brown coal and three modified coal water slurries (CWSs). The results show that the fractal structures and physicochemical properties of samples are dependent on various modification processes. The apparent viscosities of the coal water slurries increase with increasing surface fractal dimensions (D), especially with decreasing shear rates. Fur- thermore, it has been proved that the ignition temperatures and apparent activation energies of modified CWSs are lower than that of raw coal water slurry. Compared with the traditional qualitative analysis of the effect of pore structures on CWSs properties, D can more efficiently indicate the quantificational effect of pore structures on the rheological behavior and combustion kinetics of CWSs.展开更多
Water inrush is one of the most dangerous disasters in coal mining.Due to the large-scale mining and complicated hydrogeological conditions,thousands of deaths and huge economic losses have been caused by water inrush...Water inrush is one of the most dangerous disasters in coal mining.Due to the large-scale mining and complicated hydrogeological conditions,thousands of deaths and huge economic losses have been caused by water inrush disasters in China.There are two main factors determining the occurrence of water inrush:water source and water-conducting pathway.Research on the formation mechanism of the water-conducting pathway is the main direction to prevent and control the water inrush,and the seepage mechanism of rock mass during the formation of the water-conducting pathway is the key for the research on the water inrush mechanism.This paper provides a state-of-the-art review of seepage mechanisms during water inrush from three aspects,i.e.,mechanisms of stress-seepage coupling,fow regime transformation and rock erosion.Through numerical methods and experimental analysis,the evolution law of stress and seepage felds in the process of water inrush is fully studied;the fuid movement characteristics under diferent fow regimes are clearly summarized;the law of particle initiation and migration in the process of water inrush is explored,and the efect of rock erosion on hydraulic and mechanical properties of the rock media is also studied.Finally,some limitations of current research are analyzed,and the suggestions for future research on water inrush are proposed in this review.展开更多
The main objective of the present study was introduced water mist suppressiontechnology to prevent and control gas burning which occurred during drilling at Wu20160working-face in No.10 coal mine of Pingdingshan Ltd.....The main objective of the present study was introduced water mist suppressiontechnology to prevent and control gas burning which occurred during drilling at Wu20160working-face in No.10 coal mine of Pingdingshan Ltd..Based on the self-developed ex-periment platform,a series of fire suppression tests to evaluate the performance of a watermist system were conducted.The detailed measurements of the spray characteristics,i.e.,the Sauter Mean Diameter(SMD),the velocity and spray angle which are the main pa-rameters considered in the Study,were obtained by using LS-2000 Sizer.The amount ofwater consumed and the water flux density distribution over the cross section downstreamthe nozzle exit were measured by cup collector method.The operating pressure of thewater mist nozzle is set to 0.5 MPa,the droplet SMD of 104 pm,the water flux density dis-tribution from 0.71 to 8.47 L/(m^2.min),the average velocity of 2.14 m/s.The experimentalresults show that the averaged time required for extinguishment is 3.14 s,and the corre-sponding amount of water used during fire test is about 0.11 kg.The gas fire suppressionsystem reduces the temperature in combustion chamber of the experimental apparatusbelow the ignition point of the gas,which can effectively avoid the occurrence of the gasfire in coal mine.展开更多
Water flooding disasters are one of the five natural coal-mining disasters that threaten the lives of coal miners. The main causes of this flooding are water-conducting fractured zones within coal seams. However, when...Water flooding disasters are one of the five natural coal-mining disasters that threaten the lives of coal miners. The main causes of this flooding are water-conducting fractured zones within coal seams. However, when resistivity methods are used to detect water-conducting fractured zones in coal seams, incorrect conclusions can be drawn because of electrical anisotropy within the water-conducting fractured zones. We present, in this paper, a new geo-electrical model based on the geology of water-conducting fractured zones in coal seams. Factors that influence electrical anisotropy were analyzed, including formation water resistivity, porosity, fracture density, and fracture surface roughness, pressure, and dip angle. Numerical simulation was used to evaluate the proposed electrical method. The results demonstrate a closed relationship between the shape of apparent resistivity and the strike and dip of a fracture. Hence, the findings of this paper provide a practical resistivity method for coal-mining production.展开更多
In order to investigate chromium contamination of coal mine water, to analyze chromium leaching mechanism and to evaluate environment pollution potential of coal mine water, we perform site investigations, physical an...In order to investigate chromium contamination of coal mine water, to analyze chromium leaching mechanism and to evaluate environment pollution potential of coal mine water, we perform site investigations, physical and computer modeling in the Xuzhou-Datun coal mine district. The result of our test samples shows that chromium concentration was 9 μg/L in roof leachate and 3 μg/L in coal leachate. The host rock has a higher pollution potential than that of coal seams. Leaching experiments and XRD test results indicate that chromium is released from the process of transforming illite to kaolinite. The pH, pe and temperature of coal mine water affect the chromium leaching behavior. Modeling results suggest that the adsorption of adsorbents controls chromium concentration in coal mine water. The chromium adsorption ratio is quite low in both an acid and in an alkaline environment. Therefore, coal mine water has a high pollution potential. Under other conditions, chromium adsorption is stronger in a neutral water environment, so that chromium concentrations may be very low.展开更多
Groundwater of Luohe Formation is the main water source for industrial and agricultural and residential use in Binchang mining area,which is one of the key elements to water conservation coal mining.However,few studie...Groundwater of Luohe Formation is the main water source for industrial and agricultural and residential use in Binchang mining area,which is one of the key elements to water conservation coal mining.However,few studies are available to document the enrichment characteristics and influence of underground coal mining on groundwater for the Luohe Formation.This study evaluates the changes of groundwater levels and spring flow caused by mining activities to explore the influence mechanism of coal mining on groundwater by comparatively analysing existing mining data and survey data combined with a series of mapping methods.The results show that the aquifer of Luohe Formation are gradually thinning south-eastwards,disappeared at the mining boundary.In the vertical direction,the lithological structure is distinct,due to alternative sedimentation of meandering river facies and braided river facies.According to the yielding property,the aquifer is divided into three sections,namely,strong water-rich section,medium water-rich section,and weak water-rich section,which are located in northwest and central part,southwest,and the rest part of the mining area,respectively.Mining of Tingnan Coal Mine since 2004 has caused a 3.16 to 194.87 meters drop in groundwater level of Luohe Formation.Until 2015,70.10%of the mining area undergoes a groundwater level drop larger than 10.00 meters.Another influence of underground mining is that the total flow from 34 springs in 8 southern coal mines of the area has decreased by 286.48 L/s with a rate of decrease at 46.95%from 2007 to 2017.The areas that groundwater level falls or spring flow declines are manly located in the mine gob areas.Results also indicate that the ratio of the height of water conducted fracture zone to the mining height in Binchang mining area is between 16.85 and 27.92.This may increase ground water flow in vertical direction,causing a water level in the aquifer system to drop and ultimately decreasing the flow from the springs.The research results will provide data and theoretical support for the protection of groundwater resources and water conservation coal mining of Luohe Formation in Binchang mining area.展开更多
Based on the theory of nonlinear dynamic finite element,the control equation ofcoal and water jet was acquired in the coal breaking process under a water jet.The calculationmodel of coal breaking under a water jet was...Based on the theory of nonlinear dynamic finite element,the control equation ofcoal and water jet was acquired in the coal breaking process under a water jet.The calculationmodel of coal breaking under a water jet was established;the fluid-structure couplingof water jet and coal was implemented by penalty function and convection calculation.The dynamic process of coal breaking under a water jet was simulated and analyzed bycombining the united fracture criteria of the maximum tensile strain and the maximal shearstrain in the two cases of damage to coal and damage failure to coal.展开更多
The work described here was focused on exploring the potential application of coal to purification of oily waste water.Coal was added to oily waste water as an adsorbent and then removed through a flotation process.Th...The work described here was focused on exploring the potential application of coal to purification of oily waste water.Coal was added to oily waste water as an adsorbent and then removed through a flotation process.This allowed economical and highly efficient separation of oil from the waste water.The absorption time,coal type,coal particle size distribution,pH value and oil concentration were investigated.The results indicate that oil absorption by a coal increases for a period of 1.5 h and then gradually tends toward an equilibrium value.It appears that the absorption capacity of anthracite is more than that of lean coal or lignite,given the same coal particle size distribution.The absorption capacity of a coarse coal fraction is less than that of finer coal,given the same of coal type.The absorption capacity of anthracite decreases slightly as the pH increases from 4 to 9.The adsorption of oil on anthracite follows the Freundlich isothermal adsorption law:given initial oil concentrations of 160.5 or 1023.6 mg/L the absorption capacity was 23.8 or 840.0 mg/g.The absorption mechanism consists of two kinds of absorption,a physical process assisted by a chemical one.展开更多
The co-liquefaction of lignite coal and used tire was performed in a 250-ml batch reactor, in supercritical water under a nitrogen atmosphere to investigate the effects of temperature (380-440℃), water/feedstock rati...The co-liquefaction of lignite coal and used tire was performed in a 250-ml batch reactor, in supercritical water under a nitrogen atmosphere to investigate the effects of temperature (380-440℃), water/feedstock ratio (4/1-10/1 (wt./wt.)) and the % used tire content in the feedstock (0-100 wt.%) on the conversion efficiency, liquid yield and oil composition attained. The maximum conversion and oil yield were 67 and 50%, respectively, obtained at 400℃ at 1 min, with water/feedstock ratio of 10/1 and 80% used tire content. The distillation characteristics of the oil products, analyzed by simulated distillation gas chromatography, revealed that the oil composition depended significantly on the reaction temperature. The co-liquefaction of coal and used tire yielded a synergistically increased level of oil production. Moreover, the total conversion level obtained with co-liquefaction alone was almost equal to those obtained in the presence of either Fe2O3 or NiMo as catalysts, under the same conditions. Therefore, supercritical water is a good medium for the dissolution of the volatile matter from a coal and used tire matrix.展开更多
基金Enterprise Horizontal Project(Project Contract No.2021K2450)Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(SJCX22_1437).
文摘The development of more environment-friendly ways to dispose of oil sludge is currently regarded as a hot topic.In this context,gasification technologies are generally seen as a promising way to combine oil sludge with coal–water slurry(CWS)and generate resourceful fuel.In this study,a novel five-nozzle gasifier reactor was analyzed by means of a CFD(Computational fluid dynamic)method.Among several influential factors,special attention was paid to the height-to-diameter ratio of the gasifier and the mixing ratio of oil sludge,which are known to have a significant impact on the flow field,temperature distribution and gasifier performances.According to the numerical results,the optimal height-to-diameter ratio and oil mixing ratio are about 2.4:1 and 20%,respectively.Furthermore,the carbon conversion rate can become as high as 98.55%with the hydrolysis rate reaching a value of 53.88%.The consumption of raw coal and oxygen is generally reduced,while the effective gas production is increased to 50.93 mol/%.
文摘In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site monitoring means combining borehole peeping and microseismic monitoring, combined with the theoretical analysis to analyze the danger of water breakout in the bottom plate. The results show that: 1) the theoretically calculated maximum damage depth of the bottom plate is 27.5 m, and its layer is located above the Austrian ash aquifer, which has the danger of water breakout;2) the drill hole peeping at the bottom plate of the working face shows that the depth of the bottom plate fissure development reaches 26 m, and the integrity of the water barrier layer has been damaged, so there is the risk of water breakout;3) for the microseismic monitoring of the anomalous area, the bottom plate of the return air downstream channel occurs in the field with a one-week lag, which shows that microseismic monitoring events may reflect the water breakout of the underground. This shows that the microseismic monitoring events can reflect the changes of the underground flow field, which can provide a reference basis for the early warning of water breakout. The research results can provide reference for the prediction of sudden water hazard.
文摘The particle image velocity (PIV) technique is introduced to measure theatomization angle, particle size and size distribution of the atomization coal water paste (CWP) ina cold state model. Due to high-density atomization spray, wide size distribution and large-scaleexperimental setup in CWP experiments, a commercial PIV system is updated with a 600-mm-long focallength camera and a convex lens used with a laser beam. This long focal length camera makes the PIVsystem capable of taking the images of micro particles. The measured minimum diameter is about 15μm. The convex lens has the benefit of centralising the sector laser beam of the PIV system, sothat the measurement window of the high density CWP field sectored by the laser beam is brighter andthe images taken by the camera are clearer. The experimental results show that it is a useful andefficient tool for the PIV technique to measure the atomization prosperities of CWP.
基金financially supported by the National Natural Science Foundation of China (Grant No. 41572147)
文摘Correct identification of water inrush sources is particularly important to prevent and control mine water disasters.Hydrochemical analysis,Fisher discriminant analysis,and geothermal verification analysis were used to identify and verify the water sources of the multi-aquifer groundwater system in Gubei coal mine,Anhui Province,North China.Results show that hydrochemical water types of the Cenozoic top aquifer included HCO3-Na+K-Ca,HCO3-Na+K-Mg and HCO3-Na+K,and this aquifer was easily distinguishable from other aquifers because of its low concentration of Na++K+and Cl-.The Cenozoic middle and bottom aquifers,the Permian fissure aquifer,and the Taiyuan and Ordovician limestone aquifers were mainly characterized by the Cl-Na+K and SO4-Cl-Na+K or HCO3-Cl-Na+K water types,and their hydrogeochemistries were similar.Therefore,water sources could not be identified via hydrochemical analysis.Fisher model was established based on the hydrogeochemical characteristics,and its discrimination rate was 89.19%.Fisher discrimination results were improved by combining them with the geothermal analysis results,and this combination increased the identification rate to 97.3%and reasonably explained the reasons behind two water samples misjudgments.The methods described herein are also applicable to other mines with similar geological and hydrogeological conditions in North China.
基金provided by the National Key Basic Research Program of China (No. 2013CB227905)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (No. 51421003)the Jiangsu Province Ordinary University Graduate Student Scientific Research Innovation Projects (No. KYLX16_0564)
文摘In this paper, a combination of field measurement, theoretical analysis and numerical simulation were used to study the main control factors of coal mine water inrush in a main aquifer coal seam and its control scheme. On the basis of revealing and analyzing the coal seam as the main aquifer in western coal mine of Xiao Jihan coal mine, the simulation software of PHASE-2D was applied to analyze the water inflow under different influencing factors. The results showed that water inflow increases logarithmically with the coal seam thickness, increases as a power function with the permeability coefficient of the coal seam, and increases linearly with the coal seam burial depth and the head pressure; The evaluation model for the factors of coal seam water inrush was gained by using nonlinear regression analysis with SPSS. The mine water inrush risk evaluation partition within the scope of the mining field was obtained,through the engineering application in Xiao Jihan coal mine. To ensure the safe and efficient production of the mine, we studied the coal mine water disaster prevention and control measures of a main aquifer coal seam in aspects of roadway driving and coal seam mining.
基金funded by the State Key Development Program for Basic Research of China(No.2013CB227900)the National High Technology Joint Research Program of China(No.2012BAB13B00)
文摘To solve the problem of water seepage of vertical feeding borehole for solid materials,we established the fluid-solid coupling dynamic model of groundwater flowing in rock mass adjacent to the vertical feeding borehole.Combining with the engineering geological conditions,we built a numeral model to study the influence rule of the aquifer hydraulic pressure and seepage location of feeding borehole on the amount of seepage with fnite element numerical method.The results show that the nonlinear relationship is presented among the amount of seepage,the seepage location and aquifer hydraulic pressure.The higher the aquifer hydraulic pressure is,the closer the distance between seepage location and aquifer is,and the faster the harmful levels of aquifer will grow.In practice,we calculated the allowable seepage of feeding borehole by the optimum moisture content and natural moisture content of backflling materials,and then determined the protection zone of feeding borehole,so the moisture content of backflling materials can be controlled within the scope of optimum moisture content.
文摘Yushenfu mining area is located in an ecological fragile area in western China, the coal seam of which is the Jurassic Ysn'an Foirnalion. The Jurassic Yan'an Formation con tains five minable coal seams, the top layer of which is thick, covered by shallow overburden and located under aquifers. Therefore, the mining induced water flowing fractured zone can easily extend to the aquifers of both the Quaternary Sarahu and Jurassic Zhiluo Formation. This would result in a series of negative hydrological and ecological effects, including groundwater leakage, groundwater lowering, furtherly causing surface vegetation withering and dying, surface water body reduction, spring drying out, and water flow of river being decreased substantially. To solve these environmental problems, several technologies have been carried out by Chinese scientists, one of which is water-preserved coal mining. This paper presents a review of the origin, definition and development of water-preserved coal mining, and its applications in Yushenfu mining area. The applicable conditions, research contents, research methodology, and technical foundation of water-preserved coal mining are addressed in this paper. The future research focuses regarding water-preserved coal mining in China are also discussed in this paper. Its results serve as a guide for selecting the methods to be preferred for mining in case the geological conditions, roof overburden structure and coal mining process are similar to Yushenfu mining area.
基金Project 2007CB209400 supported by the National Basic Research Program of China
文摘Xin’an coal mine, Henan Province, faces the risk of water inrush because 40% of the area of the coal mine is under the surface water of the Xiaolangdi reservoir. To forecast water disaster, an effective aquifuge and a limit of water infiltration were determined by rock-phase analysis and long term observations of surface water and groundwater. By field monitoring, as well as physical and numerical simulation experiments, we obtained data reflecting different heights of a water flow fractured zone (WFFZ) under different mining conditions, derived a formula to calculate this height and built a forecasting model with the aid of GIS. On the basis of these activities, the coal mine area was classified into three sub-areas with different potential of water inrush. In the end, our research results have been applied in and verified by industrial mining experiments at three working faces and we were able to present a successful example of coal mining under a large reservoir.
基金Key Laboratory of Water Resource Protection and Utilization in Coal Mining(Grant No.SHJT-17-42.17)Fundamental Research Funds for the Central Universities of China(Grant Nos.3142018009,3142017100)Key Laboratory of Mine Geological Hazards Mechanism and Control Project(KF2017-13).Figure 7 PCA plot of hydro-chemistry of Ordovician limestone karst(OL)water samples from different years.
文摘This research aimed to investigate the changing mechanism of hydro-geochemistry in Ordovician limestone karst(OL) water induced by mountainous coal mining activities. Thus, the hydrogeochemistry evolution of OL water over 40 years within a typical northern mountainous coal mine named Fengfeng Mine was studied by using Piper diagram, Gibbs scheme, ions correlation and Principal component analysis(PCA) methods. Results showed that, except for HCO3^-, the ions of Ca^2+, Mg^2+, SO4^2-,Na^++K^+, Cl^- and total dissolution solids(TDS) values all increased by years as mining continues. Different hydro-geochemical characteristics in different periods can reflect different water-rock interactions.Accordingly, sulfates dissolution gradually took place of carbonates in water-rock interaction. Especially,OL water-rock interactions in different periods were all affected by rock weathering and evaporationconcentration together. At last, evaporationconcentration co-effect dominated the hydrogeochemistry evolution slowly, along with significant cations exchange over years.
基金the National Basic Research Program of China(No.2007CB209401) for its financial support
文摘It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failure and the development of the fractured zone while coal mining in Xin'an Coal Mine.The risk of water inrush in this mine is great because 40%of the mining area is under the Xiaolangdi reservoir.Numerical simulations combined with geophysical methods were used in this paper to obtain the development law of the fractured zone under different mining conditions.The comprehensive geophysical method described in this paper has been demonstrated to accurately predict the height of the water-flow fractured zone.Results from the new model, which created from the results of numerical simulations and field measurements,were successfully used for making decisions in the Xin'an Coal Mine when mining under the Xiaolangdi Reservoir.Industrial scale experiments at the number 11201,14141 and 14191 working faces were safely carried out.These achievements provide a successful background for the evaluation and application of coal mining under large reservoirs.
文摘Accumulation of float coal dust(FCD)in underground mines is an explosion hazard that affects all underground coal mine workers.While this hazard is addressed by the application of rock dust,inadequate rock dusting practices can leave miners exposed to an explosion risk.Researchers at the National Institute for Occupational Safety and Health(NIOSH)have focused on developing a water curtain that removes FCD from the airstream,thereby reducing the buildup of FCD in mine airways.In this study,the number and spacing of the active sprays in the water curtain were varied to determine the optimal configuration to obtain peak knockdown efficiency(KE)while minimizing water consumption.
文摘The paper reports the effects of surface fractal structures on the rheological behavior and combustion kinetics of raw brown coal and three modified coal water slurries (CWSs). The results show that the fractal structures and physicochemical properties of samples are dependent on various modification processes. The apparent viscosities of the coal water slurries increase with increasing surface fractal dimensions (D), especially with decreasing shear rates. Fur- thermore, it has been proved that the ignition temperatures and apparent activation energies of modified CWSs are lower than that of raw coal water slurry. Compared with the traditional qualitative analysis of the effect of pore structures on CWSs properties, D can more efficiently indicate the quantificational effect of pore structures on the rheological behavior and combustion kinetics of CWSs.
基金supported by the National Science Foundation for Excellent Young researchers of China(52122404)the National Natural Science Foundation of China(41977238)the Fundamental Research Funds for the Central Universities(2021GJZPY14 and 2021YCPY0101).
文摘Water inrush is one of the most dangerous disasters in coal mining.Due to the large-scale mining and complicated hydrogeological conditions,thousands of deaths and huge economic losses have been caused by water inrush disasters in China.There are two main factors determining the occurrence of water inrush:water source and water-conducting pathway.Research on the formation mechanism of the water-conducting pathway is the main direction to prevent and control the water inrush,and the seepage mechanism of rock mass during the formation of the water-conducting pathway is the key for the research on the water inrush mechanism.This paper provides a state-of-the-art review of seepage mechanisms during water inrush from three aspects,i.e.,mechanisms of stress-seepage coupling,fow regime transformation and rock erosion.Through numerical methods and experimental analysis,the evolution law of stress and seepage felds in the process of water inrush is fully studied;the fuid movement characteristics under diferent fow regimes are clearly summarized;the law of particle initiation and migration in the process of water inrush is explored,and the efect of rock erosion on hydraulic and mechanical properties of the rock media is also studied.Finally,some limitations of current research are analyzed,and the suggestions for future research on water inrush are proposed in this review.
基金Supported by the Natural Science Foundation of China(50274061,50476033)The Outstanding Talents Innovative Foundation of Henan Province of China(421000800)the Natural Science Foundation of HPU(646102)
文摘The main objective of the present study was introduced water mist suppressiontechnology to prevent and control gas burning which occurred during drilling at Wu20160working-face in No.10 coal mine of Pingdingshan Ltd..Based on the self-developed ex-periment platform,a series of fire suppression tests to evaluate the performance of a watermist system were conducted.The detailed measurements of the spray characteristics,i.e.,the Sauter Mean Diameter(SMD),the velocity and spray angle which are the main pa-rameters considered in the Study,were obtained by using LS-2000 Sizer.The amount ofwater consumed and the water flux density distribution over the cross section downstreamthe nozzle exit were measured by cup collector method.The operating pressure of thewater mist nozzle is set to 0.5 MPa,the droplet SMD of 104 pm,the water flux density dis-tribution from 0.71 to 8.47 L/(m^2.min),the average velocity of 2.14 m/s.The experimentalresults show that the averaged time required for extinguishment is 3.14 s,and the corre-sponding amount of water used during fire test is about 0.11 kg.The gas fire suppressionsystem reduces the temperature in combustion chamber of the experimental apparatusbelow the ignition point of the gas,which can effectively avoid the occurrence of the gasfire in coal mine.
基金supported by a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Fundamental Research Funds for the Central Universities 2014QNA88the National Natural Science Foundation(No.41674133)
文摘Water flooding disasters are one of the five natural coal-mining disasters that threaten the lives of coal miners. The main causes of this flooding are water-conducting fractured zones within coal seams. However, when resistivity methods are used to detect water-conducting fractured zones in coal seams, incorrect conclusions can be drawn because of electrical anisotropy within the water-conducting fractured zones. We present, in this paper, a new geo-electrical model based on the geology of water-conducting fractured zones in coal seams. Factors that influence electrical anisotropy were analyzed, including formation water resistivity, porosity, fracture density, and fracture surface roughness, pressure, and dip angle. Numerical simulation was used to evaluate the proposed electrical method. The results demonstrate a closed relationship between the shape of apparent resistivity and the strike and dip of a fracture. Hence, the findings of this paper provide a practical resistivity method for coal-mining production.
基金Our study was funded by the National Natural Science Foundation of China (Nos.40572095, 40730422 and 40772102)the Six Projects Sponsoring Talent Summits of Jiangsu Province and the Jiangsu Province Plan of Post-Graduate Student Inno-vation (No.CX07B-050z)
文摘In order to investigate chromium contamination of coal mine water, to analyze chromium leaching mechanism and to evaluate environment pollution potential of coal mine water, we perform site investigations, physical and computer modeling in the Xuzhou-Datun coal mine district. The result of our test samples shows that chromium concentration was 9 μg/L in roof leachate and 3 μg/L in coal leachate. The host rock has a higher pollution potential than that of coal seams. Leaching experiments and XRD test results indicate that chromium is released from the process of transforming illite to kaolinite. The pH, pe and temperature of coal mine water affect the chromium leaching behavior. Modeling results suggest that the adsorption of adsorbents controls chromium concentration in coal mine water. The chromium adsorption ratio is quite low in both an acid and in an alkaline environment. Therefore, coal mine water has a high pollution potential. Under other conditions, chromium adsorption is stronger in a neutral water environment, so that chromium concentrations may be very low.
基金This paper was supported by Natural Science Basic Research Program of Shaanxi Province,China(2019JLZ-03).
文摘Groundwater of Luohe Formation is the main water source for industrial and agricultural and residential use in Binchang mining area,which is one of the key elements to water conservation coal mining.However,few studies are available to document the enrichment characteristics and influence of underground coal mining on groundwater for the Luohe Formation.This study evaluates the changes of groundwater levels and spring flow caused by mining activities to explore the influence mechanism of coal mining on groundwater by comparatively analysing existing mining data and survey data combined with a series of mapping methods.The results show that the aquifer of Luohe Formation are gradually thinning south-eastwards,disappeared at the mining boundary.In the vertical direction,the lithological structure is distinct,due to alternative sedimentation of meandering river facies and braided river facies.According to the yielding property,the aquifer is divided into three sections,namely,strong water-rich section,medium water-rich section,and weak water-rich section,which are located in northwest and central part,southwest,and the rest part of the mining area,respectively.Mining of Tingnan Coal Mine since 2004 has caused a 3.16 to 194.87 meters drop in groundwater level of Luohe Formation.Until 2015,70.10%of the mining area undergoes a groundwater level drop larger than 10.00 meters.Another influence of underground mining is that the total flow from 34 springs in 8 southern coal mines of the area has decreased by 286.48 L/s with a rate of decrease at 46.95%from 2007 to 2017.The areas that groundwater level falls or spring flow declines are manly located in the mine gob areas.Results also indicate that the ratio of the height of water conducted fracture zone to the mining height in Binchang mining area is between 16.85 and 27.92.This may increase ground water flow in vertical direction,causing a water level in the aquifer system to drop and ultimately decreasing the flow from the springs.The research results will provide data and theoretical support for the protection of groundwater resources and water conservation coal mining of Luohe Formation in Binchang mining area.
基金Supported by the National Basic Research Program of China(973 Program)(2005CB221504)the National Natural Science Foundation of China(50534080)the National Science and Technology Supporting Program of China(the 11th Five-Year Program)(2006BAK03B03)
文摘Based on the theory of nonlinear dynamic finite element,the control equation ofcoal and water jet was acquired in the coal breaking process under a water jet.The calculationmodel of coal breaking under a water jet was established;the fluid-structure couplingof water jet and coal was implemented by penalty function and convection calculation.The dynamic process of coal breaking under a water jet was simulated and analyzed bycombining the united fracture criteria of the maximum tensile strain and the maximal shearstrain in the two cases of damage to coal and damage failure to coal.
基金the Science and Technology Fund of China University of Mining & Technology (No.2006A019)the National Natural Science Foundation of China (No.50974119) for their support of this project
文摘The work described here was focused on exploring the potential application of coal to purification of oily waste water.Coal was added to oily waste water as an adsorbent and then removed through a flotation process.This allowed economical and highly efficient separation of oil from the waste water.The absorption time,coal type,coal particle size distribution,pH value and oil concentration were investigated.The results indicate that oil absorption by a coal increases for a period of 1.5 h and then gradually tends toward an equilibrium value.It appears that the absorption capacity of anthracite is more than that of lean coal or lignite,given the same coal particle size distribution.The absorption capacity of a coarse coal fraction is less than that of finer coal,given the same of coal type.The absorption capacity of anthracite decreases slightly as the pH increases from 4 to 9.The adsorption of oil on anthracite follows the Freundlich isothermal adsorption law:given initial oil concentrations of 160.5 or 1023.6 mg/L the absorption capacity was 23.8 or 840.0 mg/g.The absorption mechanism consists of two kinds of absorption,a physical process assisted by a chemical one.
文摘The co-liquefaction of lignite coal and used tire was performed in a 250-ml batch reactor, in supercritical water under a nitrogen atmosphere to investigate the effects of temperature (380-440℃), water/feedstock ratio (4/1-10/1 (wt./wt.)) and the % used tire content in the feedstock (0-100 wt.%) on the conversion efficiency, liquid yield and oil composition attained. The maximum conversion and oil yield were 67 and 50%, respectively, obtained at 400℃ at 1 min, with water/feedstock ratio of 10/1 and 80% used tire content. The distillation characteristics of the oil products, analyzed by simulated distillation gas chromatography, revealed that the oil composition depended significantly on the reaction temperature. The co-liquefaction of coal and used tire yielded a synergistically increased level of oil production. Moreover, the total conversion level obtained with co-liquefaction alone was almost equal to those obtained in the presence of either Fe2O3 or NiMo as catalysts, under the same conditions. Therefore, supercritical water is a good medium for the dissolution of the volatile matter from a coal and used tire matrix.