期刊文献+
共找到6,976篇文章
< 1 2 250 >
每页显示 20 50 100
Structural properties of residual carbon in coal gasification fine slag and their influence on flotation separation and resource utilization:A review 被引量:5
1
作者 Rui Han Anning Zhou +4 位作者 Ningning Zhang Kaiqiang Guo Mengyan Cheng Heng Chen Cuicui Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期217-230,共14页
Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery a... Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC. 展开更多
关键词 coal gasification fine slag residual carbon pore structure surface functional groups microcrystalline structure flotation sep-aration resource utilization
下载PDF
Incorporating empirical knowledge into data-driven variable selection for quantitative analysis of coal ash content by laser-induced breakdown spectroscopy 被引量:1
2
作者 吕一涵 宋惟然 +1 位作者 侯宗余 王哲 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第7期148-156,共9页
Laser-induced breakdown spectroscopy(LIBS)has become a widely used atomic spectroscopic technique for rapid coal analysis.However,the vast amount of spectral information in LIBS contains signal uncertainty,which can a... Laser-induced breakdown spectroscopy(LIBS)has become a widely used atomic spectroscopic technique for rapid coal analysis.However,the vast amount of spectral information in LIBS contains signal uncertainty,which can affect its quantification performance.In this work,we propose a hybrid variable selection method to improve the performance of LIBS quantification.Important variables are first identified using Pearson's correlation coefficient,mutual information,least absolute shrinkage and selection operator(LASSO)and random forest,and then filtered and combined with empirical variables related to fingerprint elements of coal ash content.Subsequently,these variables are fed into a partial least squares regression(PLSR).Additionally,in some models,certain variables unrelated to ash content are removed manually to study the impact of variable deselection on model performance.The proposed hybrid strategy was tested on three LIBS datasets for quantitative analysis of coal ash content and compared with the corresponding data-driven baseline method.It is significantly better than the variable selection only method based on empirical knowledge and in most cases outperforms the baseline method.The results showed that on all three datasets the hybrid strategy for variable selection combining empirical knowledge and data-driven algorithms achieved the lowest root mean square error of prediction(RMSEP)values of 1.605,3.478 and 1.647,respectively,which were significantly lower than those obtained from multiple linear regression using only 12 empirical variables,which are 1.959,3.718 and 2.181,respectively.The LASSO-PLSR model with empirical support and 20 selected variables exhibited a significantly improved performance after variable deselection,with RMSEP values dropping from 1.635,3.962 and 1.647 to 1.483,3.086 and 1.567,respectively.Such results demonstrate that using empirical knowledge as a support for datadriven variable selection can be a viable approach to improve the accuracy and reliability of LIBS quantification. 展开更多
关键词 laser-induced breakdown spectroscopy(LIBS) coal ash content quantitative analysis variable selection empirical knowledge partial least squares regression(PLSR)
下载PDF
Lowering ash slagging and fouling tendency of high-alkali coal by hydrothermal pretreatment 被引量:5
3
作者 Mingshun Yang Qiang Xie +3 位作者 Xin Wang He Dong Hao Zhang Chunqi Li 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第3期521-525,共5页
High-alkali species in coal are notorious for causing ash slagging and fouling incidents.In this paper,four high-alkali coals were individually subject to hydrothermal pretreatment(HTP),within a batch-type autoclave a... High-alkali species in coal are notorious for causing ash slagging and fouling incidents.In this paper,four high-alkali coals were individually subject to hydrothermal pretreatment(HTP),within a batch-type autoclave at 300 -C for 1 h,and the treated coals were analyzed,along with the oxygen-containing functional groups determined by Fourier transform infrared spectrometer(FT-IR).Then the alkali species and other components in the coal ash were quantified by X-ray fluorescence(XRF)for evaluating the ash slagging and fouling tendency.Apart from this,FactSage was adopted to simulate the occurrence and transformation of alkali species during coal thermal conversion ending at various temperatures.The findings indicate that the treated coals are superior to the parent ones in terms of certain remarkable changes via HTP.The moisture,oxygen and sulfur of the hydrothermally treated coals decline obviously,while the calorific value rises sharply.HTP could reduce the alkali species to less than 2%(%,by weight,equivalent to Na2O in dry ash),with a maximum removal ratio of 88.9%,lowering the ash slagging and fouling tendency.The proposed mechanism of HTP was that the alkali species in coal matrix became released due to the breakage of the coal functional groups and micropores during HTP. 展开更多
关键词 HYDROTHERMAL PRETREATMENT High-alkali coal ash slagGING and fouling tendency Lowering FactSage
下载PDF
Flux mechanism of compound flux on ash and slag of coal with high ash melting temperature 被引量:3
4
作者 Chengli Wu Beibei Wang +1 位作者 Jiuqiang Zheng Hanxu Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第5期1200-1206,共7页
The melting temperature of Z coal ash was reduced by adding calcium–magnesium compound flux(WCaO/WMgO=1). In the process of simulated coal gasification, the coal ash and slag were prepared. The transformation of mine... The melting temperature of Z coal ash was reduced by adding calcium–magnesium compound flux(WCaO/WMgO=1). In the process of simulated coal gasification, the coal ash and slag were prepared. The transformation of minerals in coal ash and slag upon the change of temperature was studied by using X-ray diffraction(XRD). With the increase of temperatures, forsterite in the ash disappears, while the diffraction peak strength of magnesium spinel increases,and the content of the calcium feldspar increases, then the content of the amorphous phase in the ash increases obviously. The species and evolution process of oxygen, silicon, aluminum, calcium, magnesium at different temperatures were analyzed by X-ray photoelectron spectroscopy(XPS). The decrease of the ash melting point mainly affects the structural changes of silicon, aluminum and oxygen. The coordination of aluminum and oxygen in the aluminum element structure, e.g., tetracoordinated aluminum oxide, was changed. Tetrahedral [AlO4] and hexacoordinated aluminoxy octahedral [AlO6] change with the temperature changing. The addition of Ca2+ and Mg2+ destroys silica chain, making bridge oxide silicon change into non-bridge oxysilicon;and bridge oxygen bond was broken and non-bridge oxygen bond was produced in the oxygen element structure. The addition of calcium and magnesium compound flux reacts with aluminum oxide tetrahedron, aluminum oxide octahedron and silicon tetrahedron to promote the breakage of the bridge oxygen bond. Ca2+ and Mg2+ are easily combined with silicon oxide and aluminum oxide tetrahedron and aluminum. Oxygen octahedrons combine with non-oxygen bonds to generate low-melting temperature feldspars and magnesite minerals, thereby reducing the coal ash melting temperatures. The structure of kaolinite and mullite was simulated by quantum chemistry calculation, and kaolinite molecule has a stable structure. 展开更多
关键词 coal ash and slag COMPOUND FLUX X-ray photoelectron spectroscopy Transformation of mineral STRUCTURE STRUCTURE of kaolinite and mullite
下载PDF
Multiscale analysis of fine slag from pulverized coal gasification in entrained-flow bed
5
作者 Lirui Mao Mingdong Zheng +5 位作者 Baoliang Xia Facun Jiao Tao Liu Yuanchun Zhang Shengtao Gao Hanxu Li 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期119-132,共14页
Fine slag(FS)is an unavoidable by-product of coal gasification.FS,which is a simple heap of solid waste left in the open air,easily causes environmental pollution and has a low resource utilization rate,thereby restri... Fine slag(FS)is an unavoidable by-product of coal gasification.FS,which is a simple heap of solid waste left in the open air,easily causes environmental pollution and has a low resource utilization rate,thereby restricting the development of energy-saving coal gasification technologies.The multiscale analysis of FS performed in this study indicates typical grain size distribution,composition,crystalline structure,and chemical bonding characteristics.The FS primarily contained inorganic and carbon components(dry bases)and exhibited a"three-peak distribution"of the grain size and regular spheroidal as well as irregular shapes.The irregular particles were mainly adsorbed onto the structure and had a dense distribution and multiple pores and folds.The carbon constituents were primarily amorphous in structure,with a certain degree of order and active sites.C 1s XPS spectrum indicated the presence of C–C and C–H bonds and numerous aromatic structures.The inorganic components,constituting 90%of the total sample,were primarily silicon,aluminum,iron,and calcium.The inorganic components contained Si–O-Si,Si–O–Al,Si–O,SO_(4)^(2−),and Fe–O bonds.Fe 2p XPS spectrum could be deconvoluted into Fe 2p_(1/2) and Fe 2p_(3/2) peaks and satellite peaks,while Fe existed mainly in the form of Fe(III).The findings of this study will be beneficial in resource utilization and formation mechanism of fine slag in future. 展开更多
关键词 coal gasification Fine slag Multiscale analysis Carbon components Inorganic components
下载PDF
Effective separation of coal gasification fine slag: Role of classification and ultrasonication in enhancing flotation
6
作者 Rui Han Anning Zhou +4 位作者 Ningning Zhang Zhen Li Mengyan Cheng Xiaoyi Chen Tianhao Nan 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第6期867-880,共14页
Effective separation of residual carbon and ash is the basis for the resource utilization of coal gasification fine slag(CGFS).The conventional flotation process of CGFS has the bottlenecks of low carbon recovery and ... Effective separation of residual carbon and ash is the basis for the resource utilization of coal gasification fine slag(CGFS).The conventional flotation process of CGFS has the bottlenecks of low carbon recovery and high collector dosage.In order to address these issues,CGFS sample taken from Shaanxi,China was used as the study object in this paper.A new process of size classification-fine grain ultrasonic pretreatment flotation(SC-FGUF)was proposed and its separation effect was compared with that of wholegrain flotation(WGF)as well as size classification-fine grain flotation(SC-FGF).The mechanism of its enhanced separation effect was revealed through flotation kinetic fitting,flotation flow foam layer stability,particle size composition,surface morphology,pore structure,and surface chemical property analysis.The results showed that compared with WGF,pre-classification could reduce the collector dosage by 84.09%and the combination of pre-classification and ultrasonic pretreatment could increase the combustible recovery by 17.29%and up to 93.46%.The SC-FGUF process allows the ineffective adsorption of coarse residual carbon to collector during flotation stage to be reduced by pre-classification,and the tightly embedded state of fine CGFS particles is disrupted and surface oxidizing functional group occupancy was reduced by ultrasonic pretreatment,thus carbon and ash is easier to be separated in the flotation process.In addition,some of the residual carbon particles were broken down to smaller sizes in the ultrasonic pretreatment,which led to an increase in the stability of flotation flow foam layer and a decrease in the probability of detachment of residual carbon particles from the bubbles.Therefore,SCFGUF could increase the residual carbon recovery and reduce the flotation collector dosage,which is an innovative method for carbon-ash separation of CGFS with good application prospect. 展开更多
关键词 coal gasification fine slag Size classification Ultrasonic pretreatment FLOTATION Carbon recovery
下载PDF
A mini review on the separation of Al,Fe and Ti elements from coal fly ash leachate
7
作者 Yuan Shi Fengqi Jiang +3 位作者 Rongjiao Wang Sasha Yang Xiaofeng Zhu Yingying Shen 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期1-15,共15页
The electricity demand is increasing rapidly with the development of society and technology.Coal-fired thermal power plants have become one of the primary sources of electricity generation for urbanization.However,coa... The electricity demand is increasing rapidly with the development of society and technology.Coal-fired thermal power plants have become one of the primary sources of electricity generation for urbanization.However,coal-fired thermal power plants produce a great amount of by-product coal fly ash every year.Coal fly ash disposal in landfills requires a sizable space and has negative environmental impacts.Therefore,it is crucial to develop new technologies and methods to utilize this enormous volume of solid waste in order to protect the environment.In this review,the fundamental physical and chemical character-istics of coal fly ash are introduced,and afterward the disposal policies and utilization ways of coal fly ash are discussed to gain a comprehensive understanding of the various ways this waste.The leaching of valuable metals in coal fly ash and the extraction of metal elements in leachate under different conditions are also summarized.Furthermore,the possibility of coal fly ash to serve as a supplementary source for mineral resources is analyzed,providing a basis for its extensive use as a raw material in the metal industry in China and worldwide. 展开更多
关键词 coal fly ash Waste utilization Metals extraction
下载PDF
Synergistic CO_(2) mineralization using coal fly ash and red mud as a composite system
8
作者 Zhenchao Yao Yugao Wang +3 位作者 Jun Shen Yanxia Niu Jiang Feng Yang Xianyong Wei 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期149-158,共10页
CO_(2) mineralization plays a critical role in the storage and utilization of CO_(2).Coal fly ash(CFA)and red mud(RM)are widely utilized as CO_(2) mineralizers.However,the inert calcium species in CFA limit its carbon... CO_(2) mineralization plays a critical role in the storage and utilization of CO_(2).Coal fly ash(CFA)and red mud(RM)are widely utilized as CO_(2) mineralizers.However,the inert calcium species in CFA limit its carbonation capacity,meanwhile the substantial Ca^(2+)releasing of RM is hindered by a covering layer of calcium carbonate.In this study,CO_(2) mineralization in a composite system of CFA and RM was investigated to enhance the carbonation capacity.Multiple analyzers were employed to characterize the raw materials and resulting mineralization products.The results demonstrated that a synergistic effect existed in the composite system of CFA and RM,resulting in improving CO_(2) mineralization rate and efficiency.The produced calcium carbonate was ectopically attached the surface of CFA in the composite system,thus slowing down its coverage on the surface of RM.This phenomenon facilitated further releasing Ca^(2+)from the internal RM,thereby enhancing CO_(2) mineralization efficiency.Meanwhile,the inclusion of RM significantly improved the alkalinity of the composite system,which not only promoted the dissolution of Ca^(2+)of the inert CaSO_(4)(H_(2)O)_(2) in CFA,but also accelerated CO_(2) mineralization rate.The investigation would be beneficial to CO_(2) mineralization using industrial solid wastes. 展开更多
关键词 CO_(2)mineralization coal fly ash Red mud Synergistic effect
下载PDF
Experimental study on the activation of coal gasification fly ash from industrial CFB gasifiers
9
作者 Qiyao Yang Xiaobin Qi +1 位作者 Qinggang Lyu Zhiping Zhu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期8-18,共11页
Coal gasification fly ash(CGFA)is an industrial solid waste from the coal circulating fluidized bed(CFB)gasification process,and it needs to be effectively disposed to achieve sustainable development of the environmen... Coal gasification fly ash(CGFA)is an industrial solid waste from the coal circulating fluidized bed(CFB)gasification process,and it needs to be effectively disposed to achieve sustainable development of the environment.To realize the application of CGFA as a precursor of porous carbon materials,the physicochemical properties of three kinds of CGFA from industrial CFB gasifiers are analyzed.Then,the activation potential of CGFA is acquired via steam activation experiments in a tube furnace reactor.Finally,the fluidization activation technology of CGFA is practiced in a bench-scale CFB test rig,and its advantages are highlighted.The results show that CGFA is characterized by a high carbon content in the range of 54.06%–74.09%,an ultrafine particle size(d50:16.3–26.1 μm),and a relatively developed pore structure(specific surface area SSA:139.29–551.97 m^(2)·g^(-1)).The proportion of micropores in CGFA increases gradually with the coal rank.Steam activation experiments show that the pore development of CGFA mainly includes three stages:initial pore development,dynamic equilibrium between micropores and mesopores and pore collapse.The SSA of lignite fly ash(LFA),subbituminous fly ash(SBFA)and anthracite fly ash(AFA)is maximally increased by 105%,13%and 72%after steam activation;the order of the largest carbon reaction rate and decomposition ratio of steam among the three kinds of CGFA is SBFA>LFA>AFA.As the ratio of oxygen to carbon during the fluidization activation of LFA is from 0.09 to 0.19,the carbon conversion ratio increases from 14.4%to 26.8%and the cold gas efficiency increases from 6.8%to 10.2%.The SSA of LFA increases by up to 53.9%during the fluidization activation process,which is mainly due to the mesoporous development.Relative to steam activation in a tube furnace reactor,fluidization activation takes an extremely short time(seconds)to achieve the same activation effect.It is expected to further improve the activation effect of LFA by regulating the carbon conversion ratio range of 27%–35%to create pores in the initial development stage. 展开更多
关键词 Circulating fluidized bed coal gasification fly ash Steam activation Pore structure evolution Fluidization activation
下载PDF
Coal Ash Slag Penetration Behavior on Cr_2O_3-Al_2O_3-ZrO_2 Bricks
10
作者 TANG Lihua GAO Ling +5 位作者 WANG Qiong CHEN Dongxia ZHOU Yarning WANG Wenmei WU Yongqiang ZHU Zibin 《China's Refractories》 CAS 2010年第4期5-11,共7页
The penetration behavior of different kinds of coal ash slags into chrome corundum bricks was studied by cup test. As a preliminary attempt,the oxides of Fe2O3 and MgO were added into coal ash to reduce the erosion of... The penetration behavior of different kinds of coal ash slags into chrome corundum bricks was studied by cup test. As a preliminary attempt,the oxides of Fe2O3 and MgO were added into coal ash to reduce the erosion of refractories. Different cup tests were carried out to study coal slag erosion to the refractories. FactSage was used to simulate the phase diagram of the main chemical compositions in coal ash and in the refractories. Both results agreed with each other. The results show that the elements in coal slag can penetrate into bricks and the penetration deepens with the duration increasing; it is difficult for Fe but easier for Ca and Si to penetrate into bricks; different kinds of melting coal ashes penetrate into refractories differently and the penetration depth of silicon and calcium can be significantly reduced by adding oxides into coal ash. 展开更多
关键词 coal ash slag Chrome oxide- aluminazirconia brick Penetrate FactSage
下载PDF
Slagging characteristics of molten coal ash on silicon-aluminum combustion liners of boiler
11
作者 何金桥 时章明 +2 位作者 陈冬林 蒋显亮 鄢晓忠 《Journal of Central South University of Technology》 EI 2008年第6期840-844,共5页
In order to study the slagging characteristics of boiler combustion liners during pulverized coal stream combustion, the slag samples on the surface of combustion liner were investigated by X-ray diffractometry, scan ... In order to study the slagging characteristics of boiler combustion liners during pulverized coal stream combustion, the slag samples on the surface of combustion liner were investigated by X-ray diffractometry, scan electron microscopy and energy dispersive X-ray analysis, and the transformation characteristics of the compositions and crystal phases were studied. The results show that the size of slag granules decreases as the slagging temperature increases; the crystallinity of coal ash I reduces to about 48.6% when the temperature is increased up to 1 350 ℃, and that of the coal ash II reduces to about 65% when the temperature is increased up to 1 500 ℃; the encroachment of molten coal ash to the combustion liner is strengthened. At the same time, the diffusion and the segregation of the compositions in combustion liners have selectivity, which is in favor of enhancing the content of crystal phases, weakening the conglutination among molten slag compositions and combustion liner, and avoiding yielding big clinkers. But the diffusion of the compositions in combustion liners increases the porosity and decreases the mechanical intensity of combustion liner, and makes the slag encroachment to the liner become more serious. 展开更多
关键词 pulverous coal ash slagging characteristics CRYSTALLINITY combustion liner
下载PDF
Dry Mix Slag—High-Calcium Fly Ash Binder. Part Two: Durability
12
作者 Alexey Brykov Mikhail Voronkov 《Materials Sciences and Applications》 2024年第3期37-51,共15页
This work investigates durability of cement-free mortars with a binder comprised of ground granulated blast furnace slag (GGBFS) activated by high-calcium fly ash (HCFA) and sodium carbonate (Na<sub>2</sub>... This work investigates durability of cement-free mortars with a binder comprised of ground granulated blast furnace slag (GGBFS) activated by high-calcium fly ash (HCFA) and sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>): the soundness, sulfate resistance, alkali-silica reactivity and efflorescence factors are considered. Results of tests show that such mortars are resistant to alkali-silica expansion. Mortars are also sulfate-resistant when the amount of HCFA in the complex binder is within a limit of 10 wt%. The fineness of fly ash determines its’ ability to activate GGBFS hydration, and influence soundness of the binder, early strength development, sulfate resistance and efflorescence behavior. The present article is a continuation of authors’ work, previously published in MSA, Vol. 14, 240-254. 展开更多
关键词 Ground Granulated Blast-Furnace slag High-Calcium Fly-ash Sodium Car-bonate Blast-Furnace slag Binder DURABILITY ASR Sulfate Attack SOUNDNESS EFFLORESCENCE
下载PDF
Extraction of aluminum by pressure acid-leaching method from coal fly ash 被引量:43
13
作者 吴成友 余红发 张慧芳 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第9期2282-2288,共7页
Aluminum was leached out from coal fly ash by pressure acid-leaching method. The effects of coal fly ash size, sulfuric acid concentration, reaction time and reaction temperature on extraction efficiency of aluminum w... Aluminum was leached out from coal fly ash by pressure acid-leaching method. The effects of coal fly ash size, sulfuric acid concentration, reaction time and reaction temperature on extraction efficiency of aluminum were investigated comprehensively. The phase and morphology of coal fly ash and solid residues after reaction were analyzed by XRD, SEM and IR. The optimal technological conditions for extracting aluminum from coal fly ash were eventually confirmed that coal fly ash with size of 74 μm and sulfuric acid with concentration of 50% are mixed in pressure reaction kettle to react for 4 h at 180 ℃. Under the optimal conditions, the extraction efficiency of aluminum can reach 82.4%. 展开更多
关键词 coal fly ash ALUMINUM pressure acid-leaching extraction efficiency
下载PDF
Reaction behaviour of Al_2O_3 and SiO_2 in high alumina coal fly ash during alkali hydrothermal process 被引量:19
14
作者 蒋周青 杨静 +2 位作者 马鸿文 王乐 马玺 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第6期2065-2072,共8页
The reaction behaviours of A1203 and SiO2 in high alumina coal fly ash under various alkali hydrothermal conditions were studied. The means of XRD, XRF, FTIR and SEM were used to measure the mineral phase and morpholo... The reaction behaviours of A1203 and SiO2 in high alumina coal fly ash under various alkali hydrothermal conditions were studied. The means of XRD, XRF, FTIR and SEM were used to measure the mineral phase and morphology of the solid samples obtained by different alkali hydrothermal treatments as well as the leaching ratio of SiO2 to A1203 in alkali solution. The results showed that with the increase of the hydrothermal treating temperature from 75 to 160 ~C, phillipsite-Na, zeolite A, zeolite P, and hydroxysodalite were produced sequentially while the mullite and corundum phase still remained. Zeolite P was massively formed at low-alkali concentration and the hydroxysodalite was predominantly obtained at high-alkali concentration. By the dissolution of aluminosilicate glass and the formation of zeolites together, the leaching efficiency of SiO2 can reach 42.13% with the mass ratio of A1203/SIO2 up to 2.19:1. 展开更多
关键词 high alumina coal fly ash A1203 SIO2 alkali hydrothermal treatment reaction behaviour
下载PDF
Alkali desilicated coal fly ash as substitute of bauxite in lime-soda sintering process for aluminum production 被引量:14
15
作者 白光辉 滕玮 +2 位作者 王香港 秦晋国 徐鹏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第S1期169-175,共7页
By desilication treatment,the Al2O3/SiO2 molar ratio of coal fly ash could be improved to the range of 1.63-2.0.The desilicated coal fly ash(DSCFA)was enriched in alumina extraction.A processing technology was develop... By desilication treatment,the Al2O3/SiO2 molar ratio of coal fly ash could be improved to the range of 1.63-2.0.The desilicated coal fly ash(DSCFA)was enriched in alumina extraction.A processing technology was developed for alumina extraction from the DSCFA with the lime sintering process.Ca/(SiO2+TiO2)molar ratio,and NaO/Al2O3 molar ratio,sintering time,and temperature were the most significant parameters impacting on the aluminum extraction efficiency.The optima aluminum extraction efficiency was obtained under conditions of Ca/(SiO2+TiO2)molar ratio of 2.0,NaO/Al2O3 molar ratio of 0.98,and sintering at 1 200 ℃for 60 min.Astandard industrial dissolution method was used under conditions of caustic ratio(αk=n(NaO)/n(Al2O3)of 2.0,Al2O3 concentration of 50 g/L,sodium hydroxide concentration(Nk)of 60.78 g/L,Na2CO3 concentration of 10 g/L,temperature of 85℃, and dissolution duration of 10 min.The final aluminum extraction efficiency was 90%. 展开更多
关键词 coal fly ash alumina DESILICATION lime-soda sintering DISSOLUTION
下载PDF
Surface Modification of Fly Ashes with Carbide Slag and Its Effect on Compressive Strength and Autogenous Shrinkage of Blended Cement Pastes 被引量:16
16
作者 郝成伟 邓敏 +1 位作者 MO Liwu LIU Kaiwei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第6期1149-1153,共5页
Surfaces of grade III fly ashes were modified through mixing with carbide slag and calcining at 850 ℃ for 1 h. Mineralogical compositions and surface morphology of fly ashes before and after modification were charact... Surfaces of grade III fly ashes were modified through mixing with carbide slag and calcining at 850 ℃ for 1 h. Mineralogical compositions and surface morphology of fly ashes before and after modification were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Effect of surface-modified fly ashes on compressive strength and autogenous shrinkage of blended cement pastes was investigated. Microstructures of cement pastes were examined by backscattered electron (BSE) imaging and mercury intrusion porosimetry (MIP). The experimental results showed that β-C2S was formed on the surfaces of fly ashes after modification. Hydration ofβ-C2S on the surface-modified fly ashes densified interface zone and enhanced bond strength between particles of fly ashes and hydrated clinkers. In addition, surface modification of fly ashes tended to decrease total porosity and 10-50 nm pores of cement pastes. Surface modification of fly ashes increased compressive strength and reduced autogenous shrinkage of cement pastes. 展开更多
关键词 surface modification fly ash carbide slag autogenous shrinkage compressive strength
下载PDF
Review of the characteristics and graded utilisation of coal gasification slag 被引量:45
17
作者 Xiaodong Liu Zhengwei Jin +7 位作者 Yunhuan Jing Panpan Fan Zhili Qi Weiren Bao Jiancheng Wang Xiaohui Yan Peng Lv Lianping Dong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第7期92-106,共15页
The characteristics of the energy structure of rich coal,less oil and less gas,coupling with a high external dependence on oil and natural gas and the emphasis on the efficient and clean utilisation of coal,have broug... The characteristics of the energy structure of rich coal,less oil and less gas,coupling with a high external dependence on oil and natural gas and the emphasis on the efficient and clean utilisation of coal,have brought opportunities for coal chemical industry.However,with the large-scale popularisation of coal gasification technology,the production and resulting storage of coal gasification slag continue to increase,which not only result in serious environmental pollution and a waste of terrestrial resources,but also seriously affect the sustainable development of coal chemical enterprises.Hence,the treatment of coal gasification slag is extremely important.In this paper,the production,composition,morphology,particle size structure and water holding characteristics of coal gasification slag are introduced,and the methods of carbon ash separation of gasification slag,both domestically and abroad,are summarised.In addition,the paper also summarises the research progress on gasification slag in building materials,ecological restoration,residual carbon utilisation and other high-value utilisation,and ultimately puts forward the idea of the comprehensive utilisation of gasification slag.For large-scale consumption to solve the environmental problems of enterprises and achieve high-value utilisation to increase the economic benefits of enterprises,it is urgent to zealously design a reasonable and comprehensive utilisation technologies with simple operational processes,strong adaptability and economic benefits. 展开更多
关键词 coal gasification slag Morphological characteristics DEHYDRATION SEPARATION Comprehensive utilisation
下载PDF
Fly Ash-based Geopolymers:Effect of Slag Addition on Efflorescence 被引量:7
18
作者 姚晓 YANG Tao ZHANG Zhuhua 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第3期689-694,共6页
Blended fly ash/blast-furnace slag geopolymers are focused on due to their excellent mechanical and chemical resistant properties. We investigated the effect of slag partial substitution for fly ash on the efflorescen... Blended fly ash/blast-furnace slag geopolymers are focused on due to their excellent mechanical and chemical resistant properties. We investigated the effect of slag partial substitution for fly ash on the efflorescence of the resulting geopolymers. The efflorescence of geopolymer binders was inspected and evaluated through leaching tests. The efflorescence deposits on surface of the geopolymer binders were analyzed using XRD and SEM-EDS. The results showed that sodium and calcium cations leached from geopolymer binders reacted with the atmospheric CO2 and formed the crystal deposits, gaylussite and calcite, in the forms of granular and angular crystal particles. The slag addition led to a refinement of the pore structure of fly ash-based geopolymers, but an increment in the concentration of alkali leaching. The crystal deposits gradually developed in the pore volume of the binders, and finally exceeded the capacity of pore volume. The extent of efflorescence on the surface of specimens increased with the slag substitution. The visible efflorescence is therefore a result of available alkalis and pore sizes and volumes. Higher concentration of available alkalis and smaller pores (and volume) will lead to more intensive efflorescence. 展开更多
关键词 GEOPOLYMER EFFLORESCENCE pore structure fly ash slag
下载PDF
Microstructure and properties of mullite-based porous ceramics produced from coal fly ash with added Al_2O_3 被引量:12
19
作者 Jian-bin Zhu Hong Yan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第3期309-315,共7页
Using coal fly ash slurry samples supplemented with different amounts of Al2O3, we fabricated mullite-based porous ceramics via a dipping-polymer-replica approach, which is a popular method suitable for industrial app... Using coal fly ash slurry samples supplemented with different amounts of Al2O3, we fabricated mullite-based porous ceramics via a dipping-polymer-replica approach, which is a popular method suitable for industrial application. The microstructure, phase composition, and compressive strength of the sintered samples were investigated. Mullite was identified in all of the prepared materials by X-ray diffraction analysis. The microstructure and compressive strength were strongly influenced by the content of Al2O3. As the Al/Si mole ratio in the starting materials was increased from 0.84 to 2.40, the amount of amorphous phases in the sintered microstructure decreased and the compressive strength of the sintered samples increased. A further increase in the Al2O3content resulted in a decrease in the compressive strength of the sintered samples. The mullite-based porous ceramic with an Al/Si molar ratio of 2.40 exhibited the highest compressive strength and the greatest shrinkage among the investigated samples prepared using coal fly ash as the main starting material. © 2017, University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg. 展开更多
关键词 Aluminum Amorphous materials Ceramic materials coal coal ash Fly ash Microstructure MULLITE Porous materials Silicate minerals SINTERING Strength of materials X ray diffraction analysis
下载PDF
Effect of Temperature on Phase and Alumina Extraction Efficiency of the Product from Sintering Coal Fly Ash with Ammonium Sulfate 被引量:5
20
作者 吴玉胜 徐萍 +2 位作者 陈娇 李来时 李明春 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第Z1期1363-1367,共5页
A new developed technology for extracting alumina from coal fly ash was studied in this paper. In this technology, coal fly ash is first sintered with ammonium sulfate, forming ammonium aluminum sulfate in the resulta... A new developed technology for extracting alumina from coal fly ash was studied in this paper. In this technology, coal fly ash is first sintered with ammonium sulfate, forming ammonium aluminum sulfate in the resultant product, where alumina can be easily leached without using any strong acid or alkali. The products obtained under different sintering conditions were characterized by X-ray diffractometry. Alumina extraction efficiency of these products was also investigated. The results show that the sintering temperature and time substantially influence the phase composition and alumina extraction efficiency of sintered products, while the heating rate has little influence. The optimal sintering condition is 400 °C for 3 h in air with a heating rate of 6 °C·min-1.Under the optimal sintering condition, the alumina extraction efficiency from as-sintered coal fly ash can reach 85% or more. 展开更多
关键词 coal FLY ash AMMONIUM SULFATE SINTERING temperature PHASE ALUMINA extraction efficiency
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部