期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
A continuous and high-efficiency process to separate coal bed methane with porous ZIF-8 slurry:Experimental study and mathematical modelling 被引量:7
1
作者 Wan Chen Xiaonan Guo +10 位作者 Enbao Zou Mengling Luo Mengzijing Chen Mingke Yang Hai Li Chongzhi Jia Chun Deng Changyu Sun Bei Liu Lanying Yang Guangjin Chen 《Green Energy & Environment》 SCIE CSCD 2020年第3期347-363,共17页
Coal bed methane has been considered as an important energy resource.One major difficulty of purifying coal bed methane comes from the similar physical properties of CH_4 and N_2.The ZIF-8/water-glycol slurry was used... Coal bed methane has been considered as an important energy resource.One major difficulty of purifying coal bed methane comes from the similar physical properties of CH_4 and N_2.The ZIF-8/water-glycol slurry was used as a medium to separate coal bed methane by fluidifying the solid adsorbent material.The sorption equilibrium experiment of binary mixture(CH_4/N_2)and slurry was conducted.The selectivity of CH_4 to N_2 is within the range of 2-6,which proved the feasibility of the slurry separation method.The modified Langmuir equation was used to describe the gas-slurry phase equilibrium behavior,and the calculated results were in good agreement with the experimental data.A continuous absorption-adsorption and desorption process on the separation of CH_4/N_2 in slurry is proposed and its mathematical model is also developed.Sensitivity analysis is conducted to determine the operation conditions and the energy performance of the proposed process was also evaluated.Feed gas contains 30 mol%of methane and the methane concentration in product gas is 95.46 mol%with the methane recovery ratio of 90.74%.The total energy consumption for per unit volume of product gas is determined as 1.846 kWh Nm^(-3).Experimental results and process simulation provide basic data for the design and operation of pilot and industrial plant. 展开更多
关键词 coal bed methane Gas separation Phase equilibrium experiment Mathematical model Process simulation
下载PDF
Optimization strategy and procedure for coal bed methane separation 被引量:3
2
作者 Gaobo Zhang Shuanshi Fan +3 位作者 Ben Hua Yanhong Wang Tianxu Huang Yuhang Xie 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第3期533-541,共9页
Coal bed methane (CBM) has a huge potential to be purified to relieve the shortage of natural gas meanwhile to weaken the greenhouse effect. This paper proposed an optimal design strategy for CBM to obtain an integr... Coal bed methane (CBM) has a huge potential to be purified to relieve the shortage of natural gas meanwhile to weaken the greenhouse effect. This paper proposed an optimal design strategy for CBM to obtain an integrated process configuration consisting of three each single separation units, membrane, pressure swing absorption, and cryogenics. A superstructure model was established including all possible network configurations which were solved by MINLP. The design strategy optimized the separation unit configuration and operating conditions to satisfy the target of minimum total annual process cost. An example was presented for the separation of CH4/N2 mixtures in coal bed methane (CBM) treatment. The key operation parameters were also studied and they showed the influence to process configurations. 展开更多
关键词 coal bed methane gas separation DESIGN MODULES OPTIMIZATION
下载PDF
The control of coal mine gas and coordinated exploitation of coal bed methane in China 被引量:4
3
作者 LIU Jian-zhong 《Journal of Coal Science & Engineering(China)》 2009年第3期267-272,共6页
Based on the characteristics of the coalfield geology and the distribution of coalbed methane (CBM) in China,the geological conditions for exploiting the CBM and drainingthe coal mine gas were analyzed,as well as the ... Based on the characteristics of the coalfield geology and the distribution of coalbed methane (CBM) in China,the geological conditions for exploiting the CBM and drainingthe coal mine gas were analyzed,as well as the characteristics of CBM production.Bycomparing the current situation of CBM exploitation in China with that in the United States,the current technology and characteristics of the CBM exploitation in China were summarizedand the major technical problems of coal mine gas control and CBM exploitationanalyzed.It was emphasized that the CBM exploitation in China should adopt the coalmine gas drainage method coordinated with coal mine exploitation as the main model.Itwas proposed that coal mine gas control should be coordinated with coal mine gas exploitation.The technical countermeasure should be integrating the exploitation of coal andCBM and draining gas before coal mining. 展开更多
关键词 control of coal mine gas coordinated exploitation coal bed methane technical countermeasures
下载PDF
Seismic studies of coal bed methane content in the west coal mining area of Qinshui Basin 被引量:2
4
作者 Zou Guangui Peng Suping +3 位作者 Yin Caiyun Xu Yanyong Chen Fengying Liu Jinkai 《International Journal of Mining Science and Technology》 SCIE EI 2013年第6期795-803,共9页
The coal bed methane content(CBMC)in the west mining area of Jincheng coalfield,southeastern Qjnshui Basin,is studied based on seismic data and well-logs together with laboratory measurements.The results show that the... The coal bed methane content(CBMC)in the west mining area of Jincheng coalfield,southeastern Qjnshui Basin,is studied based on seismic data and well-logs together with laboratory measurements.The results show that the Shuey approximation has better adaptability according to the Zoeppritz equation result;the designed fold number for an ordinary seismic data is sufficient for post-stack data but insufficient for pre-stack data regarding the signal to noise ratio(SNR).Therefore a larger grid analysis was created in order to improve the SNR.The velocity field created by logging is better than that created by stack velocity in both accuracy and effectiveness.A reasonable distribution of the amplitude versus offset(AVO)attributes can be facilitated by taking the AVO response from logging as a standard for calibrating the amplitude distribution.Some AVO attributes have a close relationship with CBMC.The worst attribute is polarization magnitude,for which the correlation coefficient is 0.308;and the best attribute is the polarization product from intercept,of which the correlation coefficient is-0.8136.CBMC predicted by AVO attributes is better overall than that predicted by direct interpolation of CBMC;the validation error of the former is 14.47%,which is lower than that of the latter 23.30%.CBMC of this area ranges from2.5 m^3/t to 22 m^3/t.Most CBMC in the syncline is over 10m^3/t,but it is below 10m^3/t in the anticline;on the whole,CBMC in the syncline is higher than that in anticline. 展开更多
关键词 coal bed methane content Amplitude versus offset AVO attribute Correlation coefficient
下载PDF
Theories and techniques of coal bed methane control in China 被引量:1
5
作者 Liang Yuan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第4期343-351,共9页
Coal bed methane control with low permeability is a hot issue at present. The current status of coal bed methane control in China is introduced. The government-support policies on coal bed methane control are presente... Coal bed methane control with low permeability is a hot issue at present. The current status of coal bed methane control in China is introduced. The government-support policies on coal bed methane control are presented. This paper proposes the theories of methane control in depressurized mining, including methane extraction in depressurized mining, simultaneous mining technique of coal and methane without coal pillar, and circular overlying zone for high-efficiency methane extraction in coal seams with low permeability. The techniques of methane control and related instruments and equipments in China are introduced. On this basis, the problems related to coal bed methane control are addressed and further studies are pointed out. 展开更多
关键词 coal bed methane control depressurized mining low permeability coal seams simultaneous mining technique ofcoal and methane without coal pillar circular overlying zone
下载PDF
Some parameters of coal methane system that cause very slow release of methane from virgin coal beds(CBM) 被引量:3
6
作者 Andrzej Olajossy 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第2期321-326,共6页
In some worldwide hard coal basins recovery of methane from virgin coal beds is difficult. In general,mentioned difficulties are related to geo-mechanical, petrographical and physical-chemical properties of coals in q... In some worldwide hard coal basins recovery of methane from virgin coal beds is difficult. In general,mentioned difficulties are related to geo-mechanical, petrographical and physical-chemical properties of coals in question, occurring for example in the Bowen Basin(Australia) or the Upper Silesian Coal Basin(Poland). Among numerous properties and parameters, the following are very essential: susceptibility of coal beds to deformation connected with coal stress state change and contemporary shrinkage of the coal matrix during methane desorption. Those adverse geo-mechanical and physical-chemical effects are accompanied by essential change of the porous coal structure, which under these disadvantageous conditions is very complex. This study aims to show difficulties, which occur in phase of recognition of the methane-reach coal deposit. Volume absorbed methane(not surface adsorbed) in sub-micropores having minimal size comparable with gas molecule diameter must possess energy allowing separation of the nodes and methane release to micropores. 展开更多
关键词 coal bed methane Porosity Slow desorption Diffusion Virgin bed
下载PDF
Evaluation of coal bed methane content using BET adsorption isotherm equation 被引量:1
7
作者 ZHANG Yi FAN Xiaomin HAN Xue NAN Zeyu XU Jun 《Global Geology》 2012年第1期74-77,共4页
Coal bed methane is unconventional raw natural gas stored in coal seam with considerable reserves in China.In recent years,as the coal bed methane production,the safety and the use of resources have been paid more att... Coal bed methane is unconventional raw natural gas stored in coal seam with considerable reserves in China.In recent years,as the coal bed methane production,the safety and the use of resources have been paid more attentions.Evaluating coal bed methane content is an urgent problem.A BET adsorption isotherm equation is used to process the experimental data.The various parameters of BET equation under different temperatures are obtained;a theoretical gas content correction factor is proposed,and an evaluation method of actual coal bed methane is established. 展开更多
关键词 BET adsorption isotherm coal bed methane geophysical well logging gas content evaluationmethod
下载PDF
Research on management of coal bed methane warehousing and transportation based on GIS
8
作者 LI Yong-feng ZHANG Ming-hui +1 位作者 WANG Yun-jia ZHANG Hua 《Journal of Energy and Power Engineering》 2009年第12期39-45,共7页
At present Coal Bed Methane (CBM) has become the important part of clean energy in China. and will optimize the energy structure in China unceasingly. However, warehousing and transportation of CBM become one of the... At present Coal Bed Methane (CBM) has become the important part of clean energy in China. and will optimize the energy structure in China unceasingly. However, warehousing and transportation of CBM become one of the core factors that restrain its exploitation and utilization at present, due to the space-time character of natural deposit and modem utilization of CBM. In this paper, according to the character of CBM and the expanding trend of its utilization, the necessity of constructing the CBM's warehousing and transportation management system demonstrated. Index system that influence CBM's warehousing and transportation is established. And CBM's warehousing and transportation model is established by Voronoi diagram. In light of above research, CBM's warehousing and transportation management system based on Geography Information System (GIS) is designed, Using this system, CBM's warehousing and allocation center in one mining area is optimized. Research shows that to reinforce CBM's warehousing and transportation management is one of the key factors for coordinating the development of its development and utilization, thereby ensuring its sustainable development and utilization. 展开更多
关键词 coal bed methane warehousing and transportation: Voronoi diagram: GIS
下载PDF
A phase inversion polymer coating to prevent swelling and spalling of clay fines in coal seam gas wells 被引量:3
9
作者 Lei Ge Christopher Hamilton +2 位作者 Rahmah Tasha Febrina Victor Rudolph Thomas E. Rufford 《International Journal of Coal Science & Technology》 EI 2018年第2期179-190,共12页
We report a phase inversion polymer coating as a novel concept with potential to prevent clay swelling and fines generation in coal seam gas, or other petroleum, wellbores. Our approach uses polyethersulfone (PES) w... We report a phase inversion polymer coating as a novel concept with potential to prevent clay swelling and fines generation in coal seam gas, or other petroleum, wellbores. Our approach uses polyethersulfone (PES) with N-methyl-2- pyrrolidone (NMP) as a water-soluble solvent to form a dense, low-porosity film across the clay-rich interburden layers, but a porous and permeable membrane on coal seams. This contrasting behaviour occurs because the coal contains much more free water than the clay-rich interburden layers. We demonstrate the efficacy of the method to prevent clay spalling in immersion tests and under a flow of fresh water in a visual swell test apparatus. The clay-rich rocks studied were mudstone and siltstone, and these were dip coated in the PES/NMP solution. The uncoated mudstone swelled and broke apart quickly in the immersion test and visual flow test, but the PES coated rock samples were stable for 30 days. The coated rock and coal samples were characterised by X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. The morphology of coated mudstone and coated coal samples showed that the polymer formed a dense layer across the low-permeability mudstone, but an open porous structure on the coal surface. The effect of the coating on the permeability of KCl brine through coal was measured in a core-flood apparatus. Although the permeability of the coal showed some deterioration after coating, from (0.58 ± 0.12) mD to (0.3 ±0.03) mD, these results demonstrate the potential of a smart polymer coating to prevent clay swelling while remaining permeable to gas and water on coal layers. 展开更多
关键词 coal bed methane Formation damage SMECTITE wellbore stability
下载PDF
Adsorption behavior of carbon dioxide and methane in bituminous coal:A molecular simulation study 被引量:10
10
作者 Jing You Li Tian +4 位作者 Chao Zhang Hongxing Yao Wu Dou Bin Fan Songqing Hu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第9期1275-1282,共8页
The adsorption behavior of CO_2, CH_4 and their mixtures in bituminous coal was investigated in this study. First, a bituminous coal model was built through molecular dynamic(MD) simulations, and it was confirmed to b... The adsorption behavior of CO_2, CH_4 and their mixtures in bituminous coal was investigated in this study. First, a bituminous coal model was built through molecular dynamic(MD) simulations, and it was confirmed to be reasonable by comparing the simulated results with the experimental data. Grand Canonical Monte Carlo(GCMC)simulations were then carried out to investigate the single and binary component adsorption of CO_2 and CH_4with the built bituminous coal model. For the single component adsorption, the isosteric heat of CO_2 adsorption is greater than that of CH_4 adsorption. CO_2 also exhibits stronger electrostatic interactions with the heteroatom groups in the bituminous coal model compared with CH_4, which can account for the larger adsorption capacity of CO_2 in the bituminous coal model. In the case of binary adsorption of CO_2 and CH_4mixtures, CO_2 exhibits the preferential adsorption compared with CH_4 under the studied conditions. The adsorption selectivity of CO_2 exhibited obvious change with increasing pressure. At lower pressure, the adsorption selectivity of CO_2 shows a rapid decrease with increasing the temperature, whereas it becomes insensitive to temperature at higher pressure. Additionally, the adsorption selectivity of CO_2 decreases gradually with the increase of the bulk CO_2 mole fraction and the depth of CO_2 injection site. 展开更多
关键词 Bituminous coal model Adsorption selectivity Enhanced coal bed methane recovery Carbon dioxide sequestration Molecular simulation
下载PDF
Micro-structural evolution and their effects on physical properties in different types of tectonically deformed coals 被引量:45
11
作者 Yiwen Ju Kray Luxbacher +4 位作者 Xiaoshi Li Guochang Wang Zhifeng Yan Mingming Wei Liye Yu 《International Journal of Coal Science & Technology》 EI CAS 2014年第3期364-375,共12页
The macromolecular structure of tectonically deformed coals(TDC)may be determined by the deformation mechanisms of coal.Alterations of the macromolecular structure change the pore structure of TDC and thereby impact p... The macromolecular structure of tectonically deformed coals(TDC)may be determined by the deformation mechanisms of coal.Alterations of the macromolecular structure change the pore structure of TDC and thereby impact physical properties such as porosity and permeability.This study focuses on structure and properties of TDC from the Huaibei and Huainan coal mining areas of southern North China.Relationships between the macromolecular structure and the pore structure of TDC were analyzed using techniques such as X-ray diffraction,high-resolution transmission electron microcopy,and the low-temperature nitrogen adsorption.The results indicated that the directional stress condition can cause the arrangement of basic structural units(BSU)more serious and closer.And,the orientation is stronger in ductile deformed coal than in brittle deformed coal.Tectonic deformation directly influences the macromolecular structure of coal and consequently results in dynamic metamorphism.Because the size of BSU in brittle deformed coal increases more slowly than in ductile deformed coal,frictional heating and stress-chemistry of shearing areas might play a more important role,locally altering coal structure under stress,in brittle deformed coal.Strain energy is more significant in increasing the ductile deformation of coal.Furthermore,mesopores account for larger percentage of the nano-scale pore volume in brittle deformed coals,while mesopores volume in ductile deformed coal diminishes rapidly along with an increase in the proportion of micropores and sub-micropores.This research also approved that the deformations of macromolecular structures change nano-scale pore structures,which are very important for gas adsorption and pervasion space for gas.Therefore,the exploration and development potential of coal bed methane is promising for reservoirs that are subjected to a certain degree of brittle deformation(such as schistose structure coal,mortar structure coal and cataclastic structure coal).It also holds promise for TDC resulting from wrinkle structure coal of low ductile deformation and later superimposed by brittle deformation.Other kinds of TDC suffering from strong brittle-ductile and ductile deformation,such as scale structure coal and mylonitic structure coal,are difficult problems to resolve. 展开更多
关键词 Tectonically deformed coals Formation mechanisms Macromolecular structure Pore structure Micro-structured evolution coal bed methane
下载PDF
Theoretical insight into the enhanced CH_4 desorption via H_2O adsorption on different rank coal surfaces 被引量:8
12
作者 Yanan Zhou Wenjing Sun +3 位作者 Wei Chu Xiaoqiang Liu Fangli Jing Ying Xue 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第4期677-682,共6页
The density functional theory was used to investigate the adsorption of CH4and H2O on different rank coal surfaces. The coal rank is the dominant factor in affecting the adsorption capacity of coal. In order to better... The density functional theory was used to investigate the adsorption of CH4and H2O on different rank coal surfaces. The coal rank is the dominant factor in affecting the adsorption capacity of coal. In order to better understand gas and water interaction with coal of different maturity, we developed fourteen coal models to represent the different rank coal. The interactions of CH4and H2O with coal surfaces were studied and characterized by their adsorption energies, Mulliken charges and electrostatic potential surfaces. The results revealed that the interaction between coal and CH4was weak physical adsorption, and that the interaction between coal and H2O consisted of physical and chemical adsorption. Adsorption energy of coal–H2O system was larger than that of coal–CH4on all rank coals, suggesting that the adsorption priority in the coal models is H2O > CH4. Consequently, the injection of H2O into the different rank coal could effectively enhance the coal bed methane (CBM) recovery. © 2016 Science Press 展开更多
关键词 ADSORPTION coal coal bed methane coal deposits Density functional theory methane
下载PDF
Upper Paleozoic coal measures and unconventional natural gas systems of the Ordos Basin,China 被引量:8
13
作者 Xuan Tang Jinchuan Zhang +1 位作者 Yansheng Shan Jinyu Xiong 《Geoscience Frontiers》 CAS 2012年第6期863-873,共11页
Upper Paleozoic coal measures in the Ordos Basin consist of dark mudstone and coal beds and are important source rocks for gas generation. Gas accumulations include coal-bed methane (CBM), tight gas and conventional... Upper Paleozoic coal measures in the Ordos Basin consist of dark mudstone and coal beds and are important source rocks for gas generation. Gas accumulations include coal-bed methane (CBM), tight gas and conventional gas in different structural areas. CBM accumulations are mainly distributed in the marginal area of the Ordos Basin, and are estimated at 3.5 × 1012 m3. Tight gas accumulations exist in the middle part of the Yishan Slope area, previously regarded as the basin-centered gas system and now considered as stratigraphic lithologic gas reservoirs. This paper reviews the characteristics of tight gas accumulations: poor physical properties (porosity 〈 8%, permeability 〈 0.85 × 10 3 μm2), abnormal pressure and the absence of well-defined gas water contacts. CBM is a self-generation and self- reservoir, while gas derived from coal measures migrates only for a short distance to accumulate in a tight reservoir and is termed near-generation and near-reservoir. Both CBM and tight gas systems require source rocks with a strong gas generation ability that extends together over wide area. However, the producing area of the two systems may be significantly different. 展开更多
关键词 Ordos Basin Upper Paleozoic coal measures coal bed methane Tight gas
下载PDF
Advances of nanotechnologies for hydraulic fracturing of coal seam gas reservoirs:potential applications and some limitations in Australia 被引量:4
14
作者 Hannah Marsden Sudeshna Basu +1 位作者 Alberto Striolo Melanie MacGregor 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第2期1-18,共18页
Some of the most promising potential applications of nanotechnology to hydraulic fracturing of coal seam gas(CSG)are reviewed with a focus on Australian CSG wells.Three propitious applications were identifed:(1)Nanopa... Some of the most promising potential applications of nanotechnology to hydraulic fracturing of coal seam gas(CSG)are reviewed with a focus on Australian CSG wells.Three propitious applications were identifed:(1)Nanoparticle enhanced viscoelastic surfactants(VES)fracturing fuids to prevent fuid loss by up to 30%,made possible by the formation of pseudo-flter cakes and reducing the viscosity of the VES fuids.Besides,there is no requirement of clay control additives or biocides.(2)Nano-proppants to extend fracture networks and reduce proppant embedment by introducing them prior to the emplacement of larger proppants.Fly Ash nanoparticles can be particularly efective because of their high sphericity and mechanical strength.(3)Nanoparticle-coated proppants,to mitigate the migration of particle fnes by restricting them close to their source by adsorption,with MgO being the most efective.The use of nanotechnology in hydraulic fracturing applications is currently hindered due to a discordant regulatory environment compounded by the cost of the nanoparticles themselves,as well as,a lack of feld data to validate the technology under real downhole conditions.Although the necessary feld tests are unlikely to be conducted for as long as abundant natural gas is available,exploratory studies could pave the way for future applications. 展开更多
关键词 coal bed methane Nanoparticles Fracturing fuids PROPPANT Natural gas
下载PDF
Accumulation conditions and key technologies for exploration and development of Qinshui coalbed methane field 被引量:2
15
作者 Yan Song Xingzhi Ma +3 位作者 Shaobo Liu Lin Jiang Feng Hong Yi Qin 《Petroleum Research》 2018年第4期320-335,共16页
The Qinshui Basin has been explored for more than 60 years through two stages of oil and gas reconnaissance survey and exploration&development of coalbed methane(CBM),it has become the largest CBM industrializatio... The Qinshui Basin has been explored for more than 60 years through two stages of oil and gas reconnaissance survey and exploration&development of coalbed methane(CBM),it has become the largest CBM industrialization base in China and also is a model which successfully realize commercialization of CBM of high rank coal-bearing basin in the world.Although the high-rank coal field is characterized by low pressure,low permeability,low saturation and strong heterogeneity,the exploration practice and research show that the accumulation conditions of CBM reservoir in the Qinshui Basin are superior.As main productive intervals,No.15 coal seam of Taiyuan Formation and No.3 coal seam of Shanxi Formation respectively belong to the epicontinental-sea carbonate platform sedimentary system and the epicontinental-sea shallow-water delta sedimentary system.The coal seam has large thickness,and is mostly composed of humic coal and mainly contains vitrinite.Affected by tectonic thermal events in the Yanshanian period,the coal rank is high,the adsorption capacity is strong,and the gas content is large.Formation of the CBM reservoir goes through three stages including two stages of hydrocarbon generation,gas phase transformation and sealing of hydrodynamics and roof and floor.In view of the characteristics of the Qinshui Basin topography and the high rank coal,a series of key technologies for exploration and development are developed,including mountainous region seismic acquisition,processing and interpretation technology,drilling and completion technology of multiple wells,drilling and completion technology of multiple horizontal wells dominated by compound V type,deplugging secondary fracturing stimulation technology,control technology of high rank CBM drainage,and CBM gathering and transportation technology,which effectively supports the scale and industrialization development of high rank CBM in the Qinshui Basin. 展开更多
关键词 coal bed methane High rank Accumulation condition Exploration and development technology Qinshui Basin
原文传递
Assessment of parameters effectiveness in the reserve estimation methods applicable to coal bed methane reservoirs
16
作者 Farzain Ud Din Kirmani Arshad Raza +1 位作者 Muhammad Sarfraz Akram Raoof Gholami 《Petroleum Research》 EI 2023年第1期44-53,共10页
The reserve estimation of coal bed methane(CBM)reservoirs is ascertained through the analytical methods(volumetric method,material balance equation and decline curve analysis).However,the adoption of reserve estimatio... The reserve estimation of coal bed methane(CBM)reservoirs is ascertained through the analytical methods(volumetric method,material balance equation and decline curve analysis).However,the adoption of reserve estimation methods depends on exploration stage and availability of the required parameters.This study deals with the analytical assessment of parameters that participate in effecting the reserve estimation of CBM reservoirs through the analytical techniques.The accurate measurement challenges always exist for the parameters which participate in the reserve estimation of the conventional and unconventional reservoirs because of the inclusion of limitations while measurement.Therefore,the impact of that measurement challenge must be assessed.The study specifies the impact of parametric change on the reserve estimation of CBM reservoirs so that the degree of parametric effectiveness is analyzed.Uncertain values are adopted which are associated during the evaluation of input parameters for each method to determine the overall impact on potential of CBM reserves.Results reveal that change in specific parameters considering each method provide relatively more effect on estimation of reserves.Thus,the measurement of parameters must be done accurately for assessing reserves of CBM reservoirs based on available methods. 展开更多
关键词 Reserve estimation coal bed methane Parameters effectiveness Analytical methods Numerical simulation
原文传递
Influence of abrasive hardness on erosion wear of abrasive air jets 被引量:7
17
作者 LIU Yong CHEN Chang-jiang +2 位作者 WEI Jian-ping LIU Xiao-tian WANG Xiang-dong 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第2期356-371,共16页
To make clear the influence of abrasive hardness on the erosion effect,the erosion experiments of abrasive air jet with the same impact energy were carried out.The influence of abrasive hardness on the erosion effect ... To make clear the influence of abrasive hardness on the erosion effect,the erosion experiments of abrasive air jet with the same impact energy were carried out.The influence of abrasive hardness on the erosion effect is clarified by comparing the different erosion depths.The main conclusions are as follows.Under the same mass flow rate and mesh number,the abrasive with a higher density needs greater pressure irrespective of hardness.After erosion damage,the abrasive size exhibits a Weibull distribution.The shape parameterβand Weibull distribution function of four types of abrasives are derived by the least squares method;moreover,βis found to have a quadratic relation with abrasive hardness.The results of the erosion experiments show that abrasive hardness and erosion depth are quadratically related.By calculating the increase in surface energy after abrasive erosion crushing,it is found that abrasive hardness has a quadratic relation with surface energy and that the increases in erosion depth and surface energy consumption are basically identical.In conclusion,the effect is a soft abrasive impact when the ratio of abrasive hardness(Ha)to the material hardness(Hm)is<2.6,and it is a hard abrasive impact when Ha/Hm>3. 展开更多
关键词 abrasive air jet abrasive hardness rock erosion abrasive size distribution coal bed methane
下载PDF
Recovery of greenhouse gas as cleaner fossil fuel contributes to carbon neutrality 被引量:1
18
作者 Xin Zhang Jian-Rong Li 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期351-353,共3页
Under the context of carbon neutrality of China,it is urgent to shift our energy supply towards cleaner fuels as well as to reduce the greenhouse gas emission.Currently,coal is the main fossil fuel energy source of Ch... Under the context of carbon neutrality of China,it is urgent to shift our energy supply towards cleaner fuels as well as to reduce the greenhouse gas emission.Currently,coal is the main fossil fuel energy source of China.The country is striving hard to replace it with methane,a cleaner fossil fuel.Although China has rich geological resources of methane as coal bed methane(CBM)reserves,it is quite challenging to utilize them due to low concentration.The CBM is however mainly emitted directly to atmosphere during coal mining,causing waste of the resource and huge contribution to greenhouse effect.The recent work by Yang et al.demonstrated a potential solution to extract low concentration methane selectively from CBM through using MOF materials as sorbents.Such kind of materials and associated separation technology are promising to reduce greenhouse gas emission and promote the methane production capability,which would contribute to carbon neutrality in dual pathways. 展开更多
关键词 Carbon neutrality coal bed methane Metal–organic frameworks Greenhouse gas Fossil fuel
下载PDF
Seed-aided green synthesis of metal-organic frameworks in water
19
作者 Hao-Tian An Xin Zhang +5 位作者 Chen Dong Mu-Yao Lu Rui Li Yabo Xie Lin-Hua Xie Jian-Rong Li 《Green Chemical Engineering》 CSCD 2023年第1期64-72,共9页
Green synthesis of metal-organic frameworks(MOFs)in water with alleviated environmental influence and reduced cost is an essential step to transfer laboratory MOFs research to industrial application.Switching from the... Green synthesis of metal-organic frameworks(MOFs)in water with alleviated environmental influence and reduced cost is an essential step to transfer laboratory MOFs research to industrial application.Switching from the commonly used organic solvents to pure water encounters challenges of the poor solubility of organic linkers,slow reaction kinetics,and the formation of polymorphic products.So far,a universal MOFs synthetic strategy in water system has yet to be developed.This study reports the seed-aided synthesis of eleven MOFs with diverse compositions and structures while pure water serving as solvent.The corresponding reaction temperature and time of using this new strategy were reduced compared with original synthetic approaches,while the products maintain porous structure and high crystallinity.The success of this strategy relies on the addition of parent MOFs as seeds which could promote crystallization process by skipping the time-consuming induction period and avoiding the formation of polymorphic impurities. 展开更多
关键词 Metal-organic frameworks Carbon neutrality coal bed methane Greenhouse gas Fossil fuel
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部