A laboratory scale up-flow biological activated carbon(BAC) reactor was constructed for the advanced treatment of synthetic flotation wastewater. Biodegradation of a common collector(i.e., ethyl xanthate) for non-ferr...A laboratory scale up-flow biological activated carbon(BAC) reactor was constructed for the advanced treatment of synthetic flotation wastewater. Biodegradation of a common collector(i.e., ethyl xanthate) for non-ferrous metallic ore flotation was evaluated. The results show that the two stages of domestication can improve microbial degradation ability. The BAC reactor obtains a chemical oxygen demand(COD) reduction rate of 82.5% for ethyl xanthate and its effluent COD concentration lowers to below 20 mg/L. The kinetics equation of the BAC reactor proves that the activated carbon layers at the height of 0 mm to 70 mm play a key role in the removal of flotation reagents. Ultraviolet spectral analysis indicates that most of the ethyl xanthate are degraded by microorganisms after advanced treatment by the BAC reactor.展开更多
The influence of a pre-oxidation process on the chemical properties of crushed bituminous coal and on adsorption properties of the subsequently formed char and activated carbon is discussed in this paper. Datong bitum...The influence of a pre-oxidation process on the chemical properties of crushed bituminous coal and on adsorption properties of the subsequently formed char and activated carbon is discussed in this paper. Datong bituminous coal samples sized 6 mm were oxidized at different temperatures and for different times and then carbonized and activated by steam to obtain activated carbons. A Uniform Design method was used to arrange the experiments,IR and adsorption experiments were used to characterize these oxidized coals,chars and activated carbon samples. The results show that the carboxyl group disappeared and α-CH2 groups joined to alkenes decreased dramatically but the carbonyl group clearly increased in the coal sample oxidized at 543 K; The chemical composition of coal samples oxidized at lower temperature is different from that of coal oxidized at 543 K. Oxidizing coal samples at higher temperatures for a short time or at lower temperatures for a longer time resulted in activated carbon samples that tended toward the same adsorption properties: Iodine number 1100 mg/g and Methylene blue value 252 mg/g. The yield of activated carbon obtained from the pre-oxidized coal is 10% higher than the yield from parent coal but the activated carbons have the same adsorption properties.展开更多
A system combining granular activated carbon and powdered activated carbon technologies along with shortcut biological nitrogen removal (GAC-PACT-SBNR) was developed to enhance total nitrogen (TN) removal for anae...A system combining granular activated carbon and powdered activated carbon technologies along with shortcut biological nitrogen removal (GAC-PACT-SBNR) was developed to enhance total nitrogen (TN) removal for anaerobically treated coal gasification wastewater with less need for external carbon resources. The TN removal efficiency in SBNR was significantly improved by introducing the effluent from the GAC process into SBNR during the anoxic stage, with removal percentage increasing from 43.8%49.6% to 68.8%-75.8%. However, the TN removal rate decreased with the progressive deterioration of GAC adsorption. After adding activated sludge to the GAG compartment, the granular carbon had a longer service-life and the demand for external carbon resources became lower. Eventually, the TN removal rate in SBNR was almost constant at approx. 43.3%, as compared to approx. 20.0% before seeding with sludge. In addition, the production of some alkalinity during the denitrification resulted in a net savings in alkalinity requirements for the nitrification reaction and refractory chemical oxygen demand (COD) degradation by autotrophic bacteria in SBNR under oxic conditions. PACT showed excellent resilience to increasing organic loadings. The microbial community analysis revealed that the PACT had a greater variety of bacterial taxons and the dominant species associated with the three compartments were in good agreement with the removal of typical pollutants. The study demonstrated that pre-adsorption by the GAC-sludge process could be a technically and economically feasible method to enhance TN removal in coal gasification wastewater (CGW).展开更多
Zero liquid discharge(ZLD)treatment and reuse equipment of high salinity wastewater in coal-chemical industry often occur in various types of blockage problems because of high salt content,affecting the long-term stab...Zero liquid discharge(ZLD)treatment and reuse equipment of high salinity wastewater in coal-chemical industry often occur in various types of blockage problems because of high salt content,affecting the long-term stability of the device.In this study,the effects of solution temperature,steel,reaction time and wall roughness on fouling were investigated.The changes in the contents of fouling and fouling substances were qualitatively and quantitatively analyzed by XRD and EDS respectively,and the formation of scale was observed by SEM.The results show that with temperature increasing,Q235 steel is the most difficult to scale.Scaling rate of all salt scales reaches a maximum after 12 h,and the fouling rate decreases significantly from 12 to 48 h.It gradually stabilizes at 48 to 96 h.With the roughness increasing,the thickness of fouling layer increases,and a linear relationship is presented for 1 to 10 h.By comparing actual and simulated wastewater scaling rates,the relationship between actual and simulated wastewater scaling rates is y=ax-0.494.The composition of the scale was analyzed,calcium carbonate is the main product and increases with fouling time.Based on the above-mentioned results combining literatures,the hybrid prediction model with calcium carbonate as the main product is put forward.It is discussed microscopically that calcium carbonate is converted from aragonite and vaterite in a thermodynamically metastable state to calcite in a thermodynamically stable state.展开更多
基金Project(201209013)supported by Special Fund for Environmental Scientific Research in the Public Interest,China
文摘A laboratory scale up-flow biological activated carbon(BAC) reactor was constructed for the advanced treatment of synthetic flotation wastewater. Biodegradation of a common collector(i.e., ethyl xanthate) for non-ferrous metallic ore flotation was evaluated. The results show that the two stages of domestication can improve microbial degradation ability. The BAC reactor obtains a chemical oxygen demand(COD) reduction rate of 82.5% for ethyl xanthate and its effluent COD concentration lowers to below 20 mg/L. The kinetics equation of the BAC reactor proves that the activated carbon layers at the height of 0 mm to 70 mm play a key role in the removal of flotation reagents. Ultraviolet spectral analysis indicates that most of the ethyl xanthate are degraded by microorganisms after advanced treatment by the BAC reactor.
基金Project 50204011 supported by the National Natural Science Foundation of China
文摘The influence of a pre-oxidation process on the chemical properties of crushed bituminous coal and on adsorption properties of the subsequently formed char and activated carbon is discussed in this paper. Datong bituminous coal samples sized 6 mm were oxidized at different temperatures and for different times and then carbonized and activated by steam to obtain activated carbons. A Uniform Design method was used to arrange the experiments,IR and adsorption experiments were used to characterize these oxidized coals,chars and activated carbon samples. The results show that the carboxyl group disappeared and α-CH2 groups joined to alkenes decreased dramatically but the carbonyl group clearly increased in the coal sample oxidized at 543 K; The chemical composition of coal samples oxidized at lower temperature is different from that of coal oxidized at 543 K. Oxidizing coal samples at higher temperatures for a short time or at lower temperatures for a longer time resulted in activated carbon samples that tended toward the same adsorption properties: Iodine number 1100 mg/g and Methylene blue value 252 mg/g. The yield of activated carbon obtained from the pre-oxidized coal is 10% higher than the yield from parent coal but the activated carbons have the same adsorption properties.
基金supported by Sino-Dutch Research Program (SDRP2011-2015)the independent subject sponsored by State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (No. 2013DX10)
文摘A system combining granular activated carbon and powdered activated carbon technologies along with shortcut biological nitrogen removal (GAC-PACT-SBNR) was developed to enhance total nitrogen (TN) removal for anaerobically treated coal gasification wastewater with less need for external carbon resources. The TN removal efficiency in SBNR was significantly improved by introducing the effluent from the GAC process into SBNR during the anoxic stage, with removal percentage increasing from 43.8%49.6% to 68.8%-75.8%. However, the TN removal rate decreased with the progressive deterioration of GAC adsorption. After adding activated sludge to the GAG compartment, the granular carbon had a longer service-life and the demand for external carbon resources became lower. Eventually, the TN removal rate in SBNR was almost constant at approx. 43.3%, as compared to approx. 20.0% before seeding with sludge. In addition, the production of some alkalinity during the denitrification resulted in a net savings in alkalinity requirements for the nitrification reaction and refractory chemical oxygen demand (COD) degradation by autotrophic bacteria in SBNR under oxic conditions. PACT showed excellent resilience to increasing organic loadings. The microbial community analysis revealed that the PACT had a greater variety of bacterial taxons and the dominant species associated with the three compartments were in good agreement with the removal of typical pollutants. The study demonstrated that pre-adsorption by the GAC-sludge process could be a technically and economically feasible method to enhance TN removal in coal gasification wastewater (CGW).
基金financially supported by East-West Cooperation Project of Ningxia Key R&D Plan(2017BY064)National First-rate Discipline Construction Project of Ningxia(NXYLXK2017A04)。
文摘Zero liquid discharge(ZLD)treatment and reuse equipment of high salinity wastewater in coal-chemical industry often occur in various types of blockage problems because of high salt content,affecting the long-term stability of the device.In this study,the effects of solution temperature,steel,reaction time and wall roughness on fouling were investigated.The changes in the contents of fouling and fouling substances were qualitatively and quantitatively analyzed by XRD and EDS respectively,and the formation of scale was observed by SEM.The results show that with temperature increasing,Q235 steel is the most difficult to scale.Scaling rate of all salt scales reaches a maximum after 12 h,and the fouling rate decreases significantly from 12 to 48 h.It gradually stabilizes at 48 to 96 h.With the roughness increasing,the thickness of fouling layer increases,and a linear relationship is presented for 1 to 10 h.By comparing actual and simulated wastewater scaling rates,the relationship between actual and simulated wastewater scaling rates is y=ax-0.494.The composition of the scale was analyzed,calcium carbonate is the main product and increases with fouling time.Based on the above-mentioned results combining literatures,the hybrid prediction model with calcium carbonate as the main product is put forward.It is discussed microscopically that calcium carbonate is converted from aragonite and vaterite in a thermodynamically metastable state to calcite in a thermodynamically stable state.