Coal is the dominant primary energy source in China and the major source of greenhouse gases and air pollutants. To facilitate the use of coal in an environmentally satisfactory and economically viable way, clean coal...Coal is the dominant primary energy source in China and the major source of greenhouse gases and air pollutants. To facilitate the use of coal in an environmentally satisfactory and economically viable way, clean coal technologies (CCTs) are necessary. This paper presents a review of recent research and development of four kinds of CCTs: coal power generation; coal conversion; pollution control; and carbon capture, utilization, and storage. It also outlines future perspectives on directions for technology re search and development (R&D). This review shows that China has made remarkable progress in the R&D of CCTs, and that a number of CCTs have now entered into the commercialization stage.展开更多
Coal accounts for about 70% of the primary energy sources in China. The environmental pollution and resources waste involved with coal processing and utilization are serious. It is therefore urgent to develop highly-e...Coal accounts for about 70% of the primary energy sources in China. The environmental pollution and resources waste involved with coal processing and utilization are serious. It is therefore urgent to develop highly-efficient coal resources utilization theory and methods with low-carbon discharge. Based on our long-term basic research and technology development, the progress in beneficiation, cleaning, and trans- formation of coal, which includes dense phase fluidized bed dry beneficiation, deep screening of wet fine coal, micro-bubble flotation column separation, molecular coal chemistry, and transformation and sepa- ration of coal and its derivatives into value-added chemicals under mild conditions, is discussed.展开更多
The combustion characteristics of biomass, anthracite coal and their blends were investigated using thermogravimetry, and the kinetic parameters and combustion reaction mechanisms were tested by combining the iso-conv...The combustion characteristics of biomass, anthracite coal and their blends were investigated using thermogravimetry, and the kinetic parameters and combustion reaction mechanisms were tested by combining the iso-conversional method and Avrami method in order to find out the kinetics characteristics responsible for the combustion of samples. In biomass combustion, two peaks were observed at 332.3 and 472.3℃, but the reactive rate curve of coal showed one peak with maximum mass loss rate at 552.8℃. The ignition temperature and burnout temperature of blends decreased, and the ignition index and combustibility index increased with the increase in biomass content. Calculation of kinetic parameters showed that the values of activation energy of blends increased with increasing biomass content from 150.77 to 215.93 kJ/mol. The reaction orders of blends lay in the range of 0.44 and 0.78.展开更多
基金Acknowledgements The authors gratefully acknowledge the funding support from the National Key Basic Research Program of China (2013CB228500), the National Natural Science Foundation of Chi- na (71203119), and the Advanced Coal Technology Consortium of CERC (2016YFE0102500).
文摘Coal is the dominant primary energy source in China and the major source of greenhouse gases and air pollutants. To facilitate the use of coal in an environmentally satisfactory and economically viable way, clean coal technologies (CCTs) are necessary. This paper presents a review of recent research and development of four kinds of CCTs: coal power generation; coal conversion; pollution control; and carbon capture, utilization, and storage. It also outlines future perspectives on directions for technology re search and development (R&D). This review shows that China has made remarkable progress in the R&D of CCTs, and that a number of CCTs have now entered into the commercialization stage.
基金support from the National Natural Science Foundation of China(No. 50921002)
文摘Coal accounts for about 70% of the primary energy sources in China. The environmental pollution and resources waste involved with coal processing and utilization are serious. It is therefore urgent to develop highly-efficient coal resources utilization theory and methods with low-carbon discharge. Based on our long-term basic research and technology development, the progress in beneficiation, cleaning, and trans- formation of coal, which includes dense phase fluidized bed dry beneficiation, deep screening of wet fine coal, micro-bubble flotation column separation, molecular coal chemistry, and transformation and sepa- ration of coal and its derivatives into value-added chemicals under mild conditions, is discussed.
文摘The combustion characteristics of biomass, anthracite coal and their blends were investigated using thermogravimetry, and the kinetic parameters and combustion reaction mechanisms were tested by combining the iso-conversional method and Avrami method in order to find out the kinetics characteristics responsible for the combustion of samples. In biomass combustion, two peaks were observed at 332.3 and 472.3℃, but the reactive rate curve of coal showed one peak with maximum mass loss rate at 552.8℃. The ignition temperature and burnout temperature of blends decreased, and the ignition index and combustibility index increased with the increase in biomass content. Calculation of kinetic parameters showed that the values of activation energy of blends increased with increasing biomass content from 150.77 to 215.93 kJ/mol. The reaction orders of blends lay in the range of 0.44 and 0.78.