Simultaneous extraction of the coal and gas is an effective method of eliminating coal mine gas disasters while safely exploiting the coal and achieving efficient gas drainage in China, which is widely accepted by the...Simultaneous extraction of the coal and gas is an effective method of eliminating coal mine gas disasters while safely exploiting the coal and achieving efficient gas drainage in China, which is widely accepted by the main coal-producing countries around the world. However, the concrete definition of simultaneous extraction is vague and there is little accurate theoretical support for the simultaneous extraction of coal and gas, which makes it difficult to determine an efficient gas drainage method appropriate to the features of coal seams. Based on theoretical analysis, laboratory tests and field observations, a specific definition of simultaneous extraction of coal and gas is proposed after analyzing the characteristics of coal seam occurrences in China, and we developed the mechanism of mining-enhanced permeability and established the corresponding theoretical model. This comprises a process of fracture network formation, in which the original fractures are opened and new fractures are produced by unloading damage. According to the theoretical model, the engineering approaches and their quantitative parameters of 'unloading by borehole drilling' for single coal seams and 'unloading by protective seam mining' for groups of coal seams are proposed, and the construction principles for coal exploitation and gas-drainage systems for different conditions are given. These methods were applied successfully in the Tunlan Coal Mine in Shanxi Province and the Panyi Coal Mine in Anhui Province and could assure safe and efficient simultaneous extraction of coal and gas in these outburst coal mines.展开更多
According to the deficiency of experiment system for gas adsorption and desorption in coal mass, a large scale experiment system is developed independently by researchers. This experiment system is composed of primary...According to the deficiency of experiment system for gas adsorption and desorption in coal mass, a large scale experiment system is developed independently by researchers. This experiment system is composed of primary and auxiliary boxes, power transmission system, mining system, loading system, gas charging system, data monitoring and intelligent acquisition system. The maximum experiment coal consumption is 1200 kg, the mining system is developed to conduct experiment for gas desorption under excavating disturbance, and the plane-charging cribriform ventilation device is developed to realize uniform ventilation for experiment coal sample, which is accord with the actual gas source situation of coal bed. The desorption characteristics of gas in coal are experimentally studied under the conditions of nature and mining using the experiment system. The results show that, compare with nature condition, the permeability of coal and the velocity of gas desorption could significantly increase under the influence of coal pressure relief and destruction caused by mining, and the degree of gas desorption could somewhat increase too. Finally, pressure relief gas extraction of current seam and adjacent seams after mining in a certain coal mine of Yangquan mining area are introduced, and the gas desorption experiment results is verified by analyzing the effect of gas extraction.展开更多
Aimed at the low mining efficiency in deep multi-seams because of high crustalstress,high gas content,low permeability,the compound 'three soft' roof and the trouble-somesafety situation encountered in deep le...Aimed at the low mining efficiency in deep multi-seams because of high crustalstress,high gas content,low permeability,the compound 'three soft' roof and the trouble-somesafety situation encountered in deep level coal exploitation,proposed a new idea ofgob-side retaining without a coal-pillar and Y-style ventilation in the first-mined key pressure-relieved coal seam and a new method of coal mining and gas extraction.The followingwere discovered:the dynamic evolution law of the crannies in the roof is influenced bymining,the formative rule of 'the vertical cranny-abundant area' along the gob-side,thedistribution of air pressure field in the gob,and the flowing rule of pressure-relieved gas ina Y-style ventilation system.The study also established a theoretic basis for a new miningmethod of coal mining and gas extraction which is used to extract the pressure-relievedgas by roadway retaining boreholes instead of roadway boreholes.Studied and resolvedmany difficult key problems,such as,fast roadway retaining at the gob-side without a coalpillar,Y-style ventilation and extraction of pressure-relieved gas by roadway retainingboreholes,and so on.The study innovated and integrated a whole set of technical systemsfor coal and pressure relief gas extraction.The method of the pressure-relieved gasextraction by roadway retaining had been successfully applied in 6 typical working faces inthe Huainan and Huaibei mining areas.The research can provide a scientific and reliabletechnical support and a demonstration for coal mining and gas extraction in gaseous deepmulti-seams with low permeability.展开更多
This paper reviews underground mining methods for total thickness of a thick coal seam in single lift (TI'rCSSL). Review shows the required engineering for extraction of thick seams needs to be fitted with thicknes...This paper reviews underground mining methods for total thickness of a thick coal seam in single lift (TI'rCSSL). Review shows the required engineering for extraction of thick seams needs to be fitted with thickness of the seam, behavior of rock-mass and surrounding stress conditions for efficient mining. Variants of TI'rCSSL are able to extract a maximum 10-12 m thickness only. An improvement in bending moment of the overlying coal band in longwall top coal caving (LTCC) provides better under-winning opportunity for the roof coal band. An acceptable limit of 25 MPa compressive strength of coal for the success of LTCC may be increased under favorable geo-technical conditions. Bord and pillar in India adopted induced caving of roof coal band for single lift depillaring of total thickness (SLDTr) of a compe- tent thick coal seam developed along floor. Case studies are given to arrest the adverse effects of extrac- tion height on pillars.展开更多
The origins and main control methods of gas in coal seams were introduced cursorily, and the processes that need to be done in controlling gas, which includes prediction of gas emissions, drainage systems, the means o...The origins and main control methods of gas in coal seams were introduced cursorily, and the processes that need to be done in controlling gas, which includes prediction of gas emissions, drainage systems, the means of prevention of gas outbursts, and some suggestions were put forward. The characteristic of different gas emissions and the corresponding counter measures were presented, and & case study of simultaneous extraction of coal and gas in Xieyi Coal Mine was carried out by coal mining and gas extraction without coal-pillar. The field application shows that gas drainage ratio in panel 5121(0) averages about 90% and reaches as high as 95~/0, which will give beneficial references to gas control in coal mines.展开更多
Several industrial coal processes are largely determined by the distribution of particle sizes in their feed.Currently these parameters are measured by manual sampling,which is time consuming and cannot provide real t...Several industrial coal processes are largely determined by the distribution of particle sizes in their feed.Currently these parameters are measured by manual sampling,which is time consuming and cannot provide real time feedback for automatic control purposes.In this paper,an approach using image segmentation on images of overlapped coal particles is described.The estimation of the particle size distribution by number is also described.The particle overlap problem was solved using image enhancement algorithms that converted those image parts representing material in lower layers to black.Exponential high-pass filter(EHPF) algorithms were used to remove the texture from particles on the surface.Finally,the edges of the surface particles were identified by morphological edge detection.These algorithms are described in detail as is the method of extracting the coal particle size.Tests indicate that using more coal images gives a higher accuracy estimate.The positive absolute error of 50 random tests was consistently less than 2.5% and the errors were reduced as the size of the fraction increased.展开更多
Efficiency and selectivity of hydrogenating depolymerization of the coal extract benzene-insoluble part over the heterogeneous Co–Mo/Al2O3 catalyst were assessed using a mathematical model. The analytical equations o...Efficiency and selectivity of hydrogenating depolymerization of the coal extract benzene-insoluble part over the heterogeneous Co–Mo/Al2O3 catalyst were assessed using a mathematical model. The analytical equations of the mathematical model were generated based on material balance incorporating the physico-chemical phenomena(reaction and diffusion) both in the autoclave and the catalyst grain. The equations offer the possibility for predicting changes of the reactants in the autoclave during the process and for determining the distribution of reactant concentrations in the grain as a function of its radius. The analytical equations of the model serve as the basis of the algorithm for assessing the influence of restrictive diffusion on the effectiveness and selectivity of the catalyst, and also for defining the optimal radii of the catalyst's pores to enable free transport of reactants in the grain interior.展开更多
To investigate the structural features and provide an alternative method for high value-added utilization of coal, Lingwu coal was first extracted with organic solvent at room temperature. Then its extraction residue ...To investigate the structural features and provide an alternative method for high value-added utilization of coal, Lingwu coal was first extracted with organic solvent at room temperature. Then its extraction residue was oxidized in aqueous sodium hypochlorite(ASHC) under mild conditions. The effects of oxidation conditions, such as temperature, reaction time, the ratio of Lingwu coal extraction residue(LCER, g) to ASHC(m L) and p H value, on the product distributions and compositions were investigated. The results of gas chromatography/mass spectrometry(GC/MS) suggested that 53 kinds of methyl esterified products were detected in total, and benzene carboxylic acids were the main oxidation products, while chloro-substituted benzene carboxylic acids were the main by-products. Higher yield and fewer kinds of organic acids could be obtained at lower p H value, especially for the main objective product, benzene carboxylic acids.展开更多
The importance of simultaneous coal and methane extraction and its significance on green exploitation is stated, and current research situation of simultaneous coal and methane and faced new problems are introduced. T...The importance of simultaneous coal and methane extraction and its significance on green exploitation is stated, and current research situation of simultaneous coal and methane and faced new problems are introduced. The research progress on movement of overlying strata and stresses change in them, cracks development during mining in overlying strata and meth- ane emission under disturbance of mining as well as the changing rules of permeability and methane flow under the disturbance of mining is analyzed. The progress on practice of simultaneous coal and methane extraction is analyzed. The deficiencies of current research and further researching fields on simultaneous coal and methane extraction are pointed out.展开更多
According to geological conditions of No. 3 and No. 4 coal seams (namely A3 and B4) of the Pan'er coal mine and the parameters of panels 11223, 11224, and 11124 with fully-mechanical coal mining, we built 2D simila...According to geological conditions of No. 3 and No. 4 coal seams (namely A3 and B4) of the Pan'er coal mine and the parameters of panels 11223, 11224, and 11124 with fully-mechanical coal mining, we built 2D similar material simulation and FLAC3D numerical simulation models to investigate the development of mining-induced stress and the extraction effect of pressure-relief gas with large height and upward mining. Based on a comprehensive analysis of experimental data and observations, we obtained the deformation and breakage characteristics of strata overlying the coal seam, the development patterns of the mining-induced stress and fracture, and the size of the stress-relief area. The stress-relief effect was investigated and analyzed in consideration with mining height and three thick hard strata. Because of the group of three hard thick strata located in the main roof and the residual stress of mined panel 11124, the deformation, breakage, mining-induced stress and fracture development, and the stress-relief coefficient were discontinuous and asymmetrical. The breakage angle of the overlying strata, and the compressive and expansive zones of coal deformation were mainly controlled by the number, thickness, and strength of the hard stratum. Compared with the value of breakage angle derived by the traditional empirical method, the experimental value was lower than the traditional results by 3°-4°below the hard thick strata group, and by 13°-19° above the hard thick strata group. The amount of gas extracted from floor drainage roadway of B4 over 17 months was variable and the amount of gas per month differed considerably, being much smaller when panel 11223 influenced the area of the three hard thick strata. Generally, the stress-relief zone of No. 4 coal seam was small under the influence of the hard thick strata located in the main roof, which played an important role in delaying the breakage time and increasing the breakage space. In this study we gained understanding of the stress-relief mechanism influenced by the hard thick roof. The research results and engineering practice show that the main roof of the multiple hard thick strata is a critical factor in the design of panel layout and roadways for integrated coal exploitation and gas extraction, provides a theoretical basis for safe and high-efficient mining of coal resources.展开更多
To achieve safe and highly efficient mining in the gassy, deep mines of the Huainan collieries simultaneous coal and gas extraction, and the corresponding ventilation methods were developed. This includes a set of min...To achieve safe and highly efficient mining in the gassy, deep mines of the Huainan collieries simultaneous coal and gas extraction, and the corresponding ventilation methods were developed. This includes a set of mining procedures and principles which help insure safe and efficient production. Furthermore, green mining, meaning the comprehensive use of emitted gas, proper treatment of the environment and appropriate mine temperature control, is now standard. The concepts of modem mining and the principles of pressure relief are described. Coal-gas simultaneous ex- traction and multi-pressure relief techniques were developed which require a combination of surface and underground gas extraction. The application of Y-ventilation systems, of roadways retained along goafs, of stress control techniques for highly fragile mine roofs and of powerful, automatic and reliable mining equipment contributes to safe operation of modem deep mines. Operating parameters for these techniques are described and the results of their use discussed.展开更多
Aiming to effectively solve the problem of deep mining with safety and high efficiency, according to geological conditions, production and stress analysis in roadway surrounding rock, experimental studies on roadway s...Aiming to effectively solve the problem of deep mining with safety and high efficiency, according to geological conditions, production and stress analysis in roadway surrounding rock, experimental studies on roadway supporting of workface 103 under three types of roof conditions with different supporting technologies and parameters were carried out based on the theory of supporting technology of gob-side entry. The results show the supporting of gob-side entry retaining is successful, and the deep surrounding rock is effectively controlled by field monitoring and drilling-hole photos. After stress in surrounding rock of roadways restores stable, the final roadway deformation of surrounding rock of haulage roadway and air-roadway are both about 300 mm; width of gob-side entry is 3.8-4.0 m and average height is 2.0-2.2 m; roadway section is above 8.0 m^2, which solves the problems of gob-side entry retaining support strength and safe mining; necessary conditions of mining safety in workface 103 are met.展开更多
The radioactivity of uranium in radioactive coal bottom ash(CBA) may be a potential danger to the ambient environment and human health. Concerning the limited research on the distribution and mode of occurrence of u...The radioactivity of uranium in radioactive coal bottom ash(CBA) may be a potential danger to the ambient environment and human health. Concerning the limited research on the distribution and mode of occurrence of uranium in CBA, we herein report our investigations into this topic using a number of techniques including a five-step Tessier sequential extraction, hydrogen fluoride(HF) leaching, Siroquant(Rietveld) quantification, magnetic separation, and electron probe microanalysis(EPMA). The Tessier sequential extraction showed that the uranium in the residual and Fe–Mn oxide fractions was dominant(59.1%and 34.9%, respectively). The former was mainly incorporated into aluminosilicates,retained with glass and cristobalite, whereas the latter was especially enriched in the magnetic fraction, of which about 50% was present with magnetite(Fe_3O_4) and the rest in other iron oxides. In addition, the uranium in the magnetic fraction was 2.6 times that in the non-magnetic fraction. The experimental findings in this work may be important for establishing an effective strategy to reduce radioactivity from CBA for the protection of our local environment.展开更多
基金Acknowledgments This research was supported by the National Program on Key Basic Research Project of China (973 Program) (2011CB201204), the Visitor Foundation of the State Key Laboratory of Coal Mine Disaster Dynamics and Control (Chongqing University) (2011DA105287-FW201405), the National Natural Science Foundation of China (51374204 and 51304204), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Simultaneous extraction of the coal and gas is an effective method of eliminating coal mine gas disasters while safely exploiting the coal and achieving efficient gas drainage in China, which is widely accepted by the main coal-producing countries around the world. However, the concrete definition of simultaneous extraction is vague and there is little accurate theoretical support for the simultaneous extraction of coal and gas, which makes it difficult to determine an efficient gas drainage method appropriate to the features of coal seams. Based on theoretical analysis, laboratory tests and field observations, a specific definition of simultaneous extraction of coal and gas is proposed after analyzing the characteristics of coal seam occurrences in China, and we developed the mechanism of mining-enhanced permeability and established the corresponding theoretical model. This comprises a process of fracture network formation, in which the original fractures are opened and new fractures are produced by unloading damage. According to the theoretical model, the engineering approaches and their quantitative parameters of 'unloading by borehole drilling' for single coal seams and 'unloading by protective seam mining' for groups of coal seams are proposed, and the construction principles for coal exploitation and gas-drainage systems for different conditions are given. These methods were applied successfully in the Tunlan Coal Mine in Shanxi Province and the Panyi Coal Mine in Anhui Province and could assure safe and efficient simultaneous extraction of coal and gas in these outburst coal mines.
基金Acknowledgments This work is supported by the National Key Basic Research Program of China (2013CB227903) and the National Natural Science Foundation of China (U1361209).
文摘According to the deficiency of experiment system for gas adsorption and desorption in coal mass, a large scale experiment system is developed independently by researchers. This experiment system is composed of primary and auxiliary boxes, power transmission system, mining system, loading system, gas charging system, data monitoring and intelligent acquisition system. The maximum experiment coal consumption is 1200 kg, the mining system is developed to conduct experiment for gas desorption under excavating disturbance, and the plane-charging cribriform ventilation device is developed to realize uniform ventilation for experiment coal sample, which is accord with the actual gas source situation of coal bed. The desorption characteristics of gas in coal are experimentally studied under the conditions of nature and mining using the experiment system. The results show that, compare with nature condition, the permeability of coal and the velocity of gas desorption could significantly increase under the influence of coal pressure relief and destruction caused by mining, and the degree of gas desorption could somewhat increase too. Finally, pressure relief gas extraction of current seam and adjacent seams after mining in a certain coal mine of Yangquan mining area are introduced, and the gas desorption experiment results is verified by analyzing the effect of gas extraction.
文摘Aimed at the low mining efficiency in deep multi-seams because of high crustalstress,high gas content,low permeability,the compound 'three soft' roof and the trouble-somesafety situation encountered in deep level coal exploitation,proposed a new idea ofgob-side retaining without a coal-pillar and Y-style ventilation in the first-mined key pressure-relieved coal seam and a new method of coal mining and gas extraction.The followingwere discovered:the dynamic evolution law of the crannies in the roof is influenced bymining,the formative rule of 'the vertical cranny-abundant area' along the gob-side,thedistribution of air pressure field in the gob,and the flowing rule of pressure-relieved gas ina Y-style ventilation system.The study also established a theoretic basis for a new miningmethod of coal mining and gas extraction which is used to extract the pressure-relievedgas by roadway retaining boreholes instead of roadway boreholes.Studied and resolvedmany difficult key problems,such as,fast roadway retaining at the gob-side without a coalpillar,Y-style ventilation and extraction of pressure-relieved gas by roadway retainingboreholes,and so on.The study innovated and integrated a whole set of technical systemsfor coal and pressure relief gas extraction.The method of the pressure-relieved gasextraction by roadway retaining had been successfully applied in 6 typical working faces inthe Huainan and Huaibei mining areas.The research can provide a scientific and reliabletechnical support and a demonstration for coal mining and gas extraction in gaseous deepmulti-seams with low permeability.
基金funded by the Singareni Collieries Company Limited (SCCL)the support of Department of Mining Engineering, ISM for making use of different facilities
文摘This paper reviews underground mining methods for total thickness of a thick coal seam in single lift (TI'rCSSL). Review shows the required engineering for extraction of thick seams needs to be fitted with thickness of the seam, behavior of rock-mass and surrounding stress conditions for efficient mining. Variants of TI'rCSSL are able to extract a maximum 10-12 m thickness only. An improvement in bending moment of the overlying coal band in longwall top coal caving (LTCC) provides better under-winning opportunity for the roof coal band. An acceptable limit of 25 MPa compressive strength of coal for the success of LTCC may be increased under favorable geo-technical conditions. Bord and pillar in India adopted induced caving of roof coal band for single lift depillaring of total thickness (SLDTr) of a compe- tent thick coal seam developed along floor. Case studies are given to arrest the adverse effects of extrac- tion height on pillars.
文摘The origins and main control methods of gas in coal seams were introduced cursorily, and the processes that need to be done in controlling gas, which includes prediction of gas emissions, drainage systems, the means of prevention of gas outbursts, and some suggestions were put forward. The characteristic of different gas emissions and the corresponding counter measures were presented, and & case study of simultaneous extraction of coal and gas in Xieyi Coal Mine was carried out by coal mining and gas extraction without coal-pillar. The field application shows that gas drainage ratio in panel 5121(0) averages about 90% and reaches as high as 95~/0, which will give beneficial references to gas control in coal mines.
基金the Creative Research Groups Science Fund of the National Natural Science Foundation of China(No.50921002)
文摘Several industrial coal processes are largely determined by the distribution of particle sizes in their feed.Currently these parameters are measured by manual sampling,which is time consuming and cannot provide real time feedback for automatic control purposes.In this paper,an approach using image segmentation on images of overlapped coal particles is described.The estimation of the particle size distribution by number is also described.The particle overlap problem was solved using image enhancement algorithms that converted those image parts representing material in lower layers to black.Exponential high-pass filter(EHPF) algorithms were used to remove the texture from particles on the surface.Finally,the edges of the surface particles were identified by morphological edge detection.These algorithms are described in detail as is the method of extracting the coal particle size.Tests indicate that using more coal images gives a higher accuracy estimate.The positive absolute error of 50 random tests was consistently less than 2.5% and the errors were reduced as the size of the fraction increased.
文摘Efficiency and selectivity of hydrogenating depolymerization of the coal extract benzene-insoluble part over the heterogeneous Co–Mo/Al2O3 catalyst were assessed using a mathematical model. The analytical equations of the mathematical model were generated based on material balance incorporating the physico-chemical phenomena(reaction and diffusion) both in the autoclave and the catalyst grain. The equations offer the possibility for predicting changes of the reactants in the autoclave during the process and for determining the distribution of reactant concentrations in the grain as a function of its radius. The analytical equations of the model serve as the basis of the algorithm for assessing the influence of restrictive diffusion on the effectiveness and selectivity of the catalyst, and also for defining the optimal radii of the catalyst's pores to enable free transport of reactants in the grain interior.
基金Supported by the National Basic Research Program of China("973" Program,No.2011CB215302)National Natural Science Foundation of China(No.21206188 and 21106177)+1 种基金China Postdoctoral Science Foundation(No.2012M511339)Fundamental Research Funds for the Central Universities(No.2011QNA23)
文摘To investigate the structural features and provide an alternative method for high value-added utilization of coal, Lingwu coal was first extracted with organic solvent at room temperature. Then its extraction residue was oxidized in aqueous sodium hypochlorite(ASHC) under mild conditions. The effects of oxidation conditions, such as temperature, reaction time, the ratio of Lingwu coal extraction residue(LCER, g) to ASHC(m L) and p H value, on the product distributions and compositions were investigated. The results of gas chromatography/mass spectrometry(GC/MS) suggested that 53 kinds of methyl esterified products were detected in total, and benzene carboxylic acids were the main oxidation products, while chloro-substituted benzene carboxylic acids were the main by-products. Higher yield and fewer kinds of organic acids could be obtained at lower p H value, especially for the main objective product, benzene carboxylic acids.
基金Supported by the National Science Foundation of China (51304006) the Key Project of Anhui Provincial Department of Education (KJ2011A075) the Youth Backbone Training Funds of Anhui University of Science &Technology (20120012)
文摘The importance of simultaneous coal and methane extraction and its significance on green exploitation is stated, and current research situation of simultaneous coal and methane and faced new problems are introduced. The research progress on movement of overlying strata and stresses change in them, cracks development during mining in overlying strata and meth- ane emission under disturbance of mining as well as the changing rules of permeability and methane flow under the disturbance of mining is analyzed. The progress on practice of simultaneous coal and methane extraction is analyzed. The deficiencies of current research and further researching fields on simultaneous coal and methane extraction are pointed out.
基金Acknowledgments This work is supported by the National Nature Science Foundation of China (51374011).
文摘According to geological conditions of No. 3 and No. 4 coal seams (namely A3 and B4) of the Pan'er coal mine and the parameters of panels 11223, 11224, and 11124 with fully-mechanical coal mining, we built 2D similar material simulation and FLAC3D numerical simulation models to investigate the development of mining-induced stress and the extraction effect of pressure-relief gas with large height and upward mining. Based on a comprehensive analysis of experimental data and observations, we obtained the deformation and breakage characteristics of strata overlying the coal seam, the development patterns of the mining-induced stress and fracture, and the size of the stress-relief area. The stress-relief effect was investigated and analyzed in consideration with mining height and three thick hard strata. Because of the group of three hard thick strata located in the main roof and the residual stress of mined panel 11124, the deformation, breakage, mining-induced stress and fracture development, and the stress-relief coefficient were discontinuous and asymmetrical. The breakage angle of the overlying strata, and the compressive and expansive zones of coal deformation were mainly controlled by the number, thickness, and strength of the hard stratum. Compared with the value of breakage angle derived by the traditional empirical method, the experimental value was lower than the traditional results by 3°-4°below the hard thick strata group, and by 13°-19° above the hard thick strata group. The amount of gas extracted from floor drainage roadway of B4 over 17 months was variable and the amount of gas per month differed considerably, being much smaller when panel 11223 influenced the area of the three hard thick strata. Generally, the stress-relief zone of No. 4 coal seam was small under the influence of the hard thick strata located in the main roof, which played an important role in delaying the breakage time and increasing the breakage space. In this study we gained understanding of the stress-relief mechanism influenced by the hard thick roof. The research results and engineering practice show that the main roof of the multiple hard thick strata is a critical factor in the design of panel layout and roadways for integrated coal exploitation and gas extraction, provides a theoretical basis for safe and high-efficient mining of coal resources.
基金Projects 2001BA803B04 and 2004BA803B01 supported by the National Key Projects for Tackling Scientific and Technological Problems during the 10thFive-Year Plan
文摘To achieve safe and highly efficient mining in the gassy, deep mines of the Huainan collieries simultaneous coal and gas extraction, and the corresponding ventilation methods were developed. This includes a set of mining procedures and principles which help insure safe and efficient production. Furthermore, green mining, meaning the comprehensive use of emitted gas, proper treatment of the environment and appropriate mine temperature control, is now standard. The concepts of modem mining and the principles of pressure relief are described. Coal-gas simultaneous ex- traction and multi-pressure relief techniques were developed which require a combination of surface and underground gas extraction. The application of Y-ventilation systems, of roadways retained along goafs, of stress control techniques for highly fragile mine roofs and of powerful, automatic and reliable mining equipment contributes to safe operation of modem deep mines. Operating parameters for these techniques are described and the results of their use discussed.
文摘Aiming to effectively solve the problem of deep mining with safety and high efficiency, according to geological conditions, production and stress analysis in roadway surrounding rock, experimental studies on roadway supporting of workface 103 under three types of roof conditions with different supporting technologies and parameters were carried out based on the theory of supporting technology of gob-side entry. The results show the supporting of gob-side entry retaining is successful, and the deep surrounding rock is effectively controlled by field monitoring and drilling-hole photos. After stress in surrounding rock of roadways restores stable, the final roadway deformation of surrounding rock of haulage roadway and air-roadway are both about 300 mm; width of gob-side entry is 3.8-4.0 m and average height is 2.0-2.2 m; roadway section is above 8.0 m^2, which solves the problems of gob-side entry retaining support strength and safe mining; necessary conditions of mining safety in workface 103 are met.
基金financial support from the Talent Support Fund of Tsinghua University (No. 413405001)
文摘The radioactivity of uranium in radioactive coal bottom ash(CBA) may be a potential danger to the ambient environment and human health. Concerning the limited research on the distribution and mode of occurrence of uranium in CBA, we herein report our investigations into this topic using a number of techniques including a five-step Tessier sequential extraction, hydrogen fluoride(HF) leaching, Siroquant(Rietveld) quantification, magnetic separation, and electron probe microanalysis(EPMA). The Tessier sequential extraction showed that the uranium in the residual and Fe–Mn oxide fractions was dominant(59.1%and 34.9%, respectively). The former was mainly incorporated into aluminosilicates,retained with glass and cristobalite, whereas the latter was especially enriched in the magnetic fraction, of which about 50% was present with magnetite(Fe_3O_4) and the rest in other iron oxides. In addition, the uranium in the magnetic fraction was 2.6 times that in the non-magnetic fraction. The experimental findings in this work may be important for establishing an effective strategy to reduce radioactivity from CBA for the protection of our local environment.