The incidence of dynamic coal or rock disasters is closely related to the distribution of stress in the surrounding rock. Our experiments show that electromagnetic radiation (EMR) signals are related to the state of...The incidence of dynamic coal or rock disasters is closely related to the distribution of stress in the surrounding rock. Our experiments show that electromagnetic radiation (EMR) signals are related to the state of stress of a coal body. The higher the stress, the more intense the deformation and fractures of a coal body and the stronger the EMR signals. EMR signals reflect the degrees of concentrated stress of a coal body and danger of a rock burst. We selected EMR intensity as the test index of the No.237 gob-surrounded coal face in the Nanshan coal mine. We tested the EMR characteristics of the stress distribution on the strike, on the incline and in the interior of the coal body. The EMR rule of rock bursts, caused by sudden changes in stress, is analyzed. Our research shows that EMR technology can be not only used to test qualitatively the stress distribution of the surrounding rock, but also to predict a possible occurrence of rock burst. Based on this, effective distress measures are used to eliminate or at least weaken the incidence of rock bursts. We hooe that safetv in coalmines will be enhanced.展开更多
According to the theory of ventilation network, a model for a filtration flow field in goaf was built and simulation soft- ware for determining the three zones in goaf has been developed. This software uses no-gap-con...According to the theory of ventilation network, a model for a filtration flow field in goaf was built and simulation soft- ware for determining the three zones in goaf has been developed. This software uses no-gap-connection between Visual Basic (VB) and Excel to exchange data, uses Component Object Model (COM) component of MATLAB to plot charts of the three zones and to export the corresponding coordinates of the isolines. An example shows that this software is convenient and simple. By using it, the three zones can be easily determined. The software is convenient in studies and analyses of the three zones in goaf.展开更多
In allusion to the problems of complex stress distribution in the surrounding rock and deformation failure laws, as well as the difficulty in roadway supporting of the gob-side entry driving in the island coal face, 2...In allusion to the problems of complex stress distribution in the surrounding rock and deformation failure laws, as well as the difficulty in roadway supporting of the gob-side entry driving in the island coal face, 2107 face in Chengjiao Colliery is researched as an engineering case. Through physical mechanical test of rock, theoretical and numerical simulation analyses of rock, the analysis model of the roadway overlying strata structure was established, and its parameters quantified. To reveal the deformation law of the surrounding rock, the stability of the overlying strata structure was studied before, during and after the roadway driving. According to the field conditions, the stress distribution in coal pillar was quantified, and the surrounding rock deformation feature studied with different widths of the pillars in gob-side entry driving. Finally, the pillar width of 4 m was considered as the most reasonable. The research results show that there is great difference in support conditions among roadway roof, entity coal side and narrow pillar side. Besides, the asymmetric control technique for support of the surrounding rock was proposed. The asymmetric control technique was proved to be reasonable by field monitoring, support by bolt-net, steel ladder and steel wire truss used in narrow pillar side.展开更多
Under the action of abutment pressure in front of fully mechanized coal face with sublevel caving(CFSC),top-coal over CFSC deformed.In the process of whole de- formation of top-coal,it changed from continuum elastic m...Under the action of abutment pressure in front of fully mechanized coal face with sublevel caving(CFSC),top-coal over CFSC deformed.In the process of whole de- formation of top-coal,it changed from continuum elastic mass to non-continuum plastic mass contained fissures,become a loose body.According to its bearing characteristics and mechanical properties,top-coal mass can be divided into four deformation zones along the winning direction of CFSC,i.e.initial stress zone,elastic zone,plastic zone and loose zone.Top-coal in plastic zone located in the post-peak zone of the stress-strain curve for top-coal.With equivalent strain principle of damage mechanics and mathemati- cal theory of statistic,combining the movement law of top-coal,set up a constitutive equa- tion with damage statistics for top-coal in different position in CFSC.The equation illus- trated the mathematical relationship among top-coal bearing capacity,horizontal confining pressure along the winning direction of CFSC and mechanical properties of top-coal mate- rial.The conclusions not only provide a basis for numerical computer simulations on damage deformation and failure mechanism for top-coal,but also further promote the ap- plication of damage mechanics in CFSC.展开更多
The principles, methods, technologies and application effects of several electromagnetic methods for the detection of the hidden danger of water gushing at the coal face were introduced. Also, emphasis was laid on exp...The principles, methods, technologies and application effects of several electromagnetic methods for the detection of the hidden danger of water gushing at the coal face were introduced. Also, emphasis was laid on expounding the methods, principles and effects of down-hole detections by electric transmission tomography and transient electromagnetic method. The potential of point power supplied in the underground homogeneous semi-space, as well as the response to a low-resistivity abnormal body in the homogeneous semi-space, was simulated by adopting 3-D finite element method to interpret the basic theory of the electric transmission tomography. The results of actual measurement show that the mine electromagnetic method is sensitive to water-bearing low-resistivity bodies and can play a unique role in detecting the hidden danger of water gushing at the coal face.展开更多
All the underground coal mines in China are gassy mines. The gas emission at coal face increasingly grows with the increase of working depth and coal output, for example, the gas emission at a full mechanized coal fac...All the underground coal mines in China are gassy mines. The gas emission at coal face increasingly grows with the increase of working depth and coal output, for example, the gas emission at a full mechanized coal face of mine No. 2 at Yongquan with a daily output of 2. 000t/d is up to 66-72m2/min. Special gas emission phenomena such as gas blowout, gas and coal outburst etc. have occurred at some faces, which threatens the safe production of face. obstructs the growth of productivity and limits the full play of mechanized equipment.In this paper, gas at face is divided, according to its origin, into three constituents, namely , coming from the coal wall, mined coal and goaf;and a formula for calculation is given. Also , the characteristics of the variation of gas emission at coal face, and the influence of mining sequence of a group of seams and supplied air quantity on the gas emission are discussed. Furthermore . based on the regularity of gas emission at coal face from the above three sources, and on the experiences of years, three principles on controlling gas emission at coal face are presented, that are managing the gas on classification basis, harnessing each source separately and comprehensive prevention and control. Finally, technical measures for prevention and treatment of the accumulation of gas in the upper corner of face, at the working place of coal-winning machine and in the bottom trough of conveyor are introduced.展开更多
A new method using high water content material to mechanically fill cross roadways to form artificial bottom for coal faces was introduced. The reasonable determination of filling range, the optimization of the compou...A new method using high water content material to mechanically fill cross roadways to form artificial bottom for coal faces was introduced. The reasonable determination of filling range, the optimization of the compounding ratio of high water content material, and the filling technique were discussed in detail. This new method has been spread after industrial testing in Baodian Colliery. Compared with the traditional method, the manual wooden chock method, the new one decreases about 40% of the filling range and cost in dealing every one set of cross roadway in the testing condition.展开更多
The noise level of coal face by full-mechanized coal winning technology was measured in a coal mine. And then it was analyzed and evaluated using environment science, ergonomics and fussy mathematics analysis. Basis o...The noise level of coal face by full-mechanized coal winning technology was measured in a coal mine. And then it was analyzed and evaluated using environment science, ergonomics and fussy mathematics analysis. Basis of the statistics and analysis of the measured noise level some measures, such as applying the new materials and improving the construction of the equipment, were carried out. The resuts show that they can reduce the noise level, improve the working environment and enhance the work efficiency.展开更多
The island coal face arises in coal mines with the purpose of preventing gas explosion or maintaining the balance between mining and tunneling. However, its particular stress conditions in the surrounding rock may inc...The island coal face arises in coal mines with the purpose of preventing gas explosion or maintaining the balance between mining and tunneling. However, its particular stress conditions in the surrounding rock may increase the difficulty of stress control in the coal face and in its mining roadways, especially when the coal seam, the roof, and the floor have rock-burst propensities, The high energy accumulated in the island coal face and in its roof and floor will intensify rock-burst propensity or even induce rock burst, which further result in great casualties and financial losses. Taking island coal face 2321 in Jinqiao coal mine as a case, we propose a method for the prediction of rock-burst-threatened areas in an island coal face with weak rock-burst propensity. Based on the anaHysis of the movement of the overlying roof and characteristics of stress distribution, this method combined numerical simulation with drilling bits to ensure the prediction accuracy. The effects of coal pillars with different widths on the mitigation of stress concentration in the coal face and on the prevention of rock burst are analyzed together with the mech- anism behind. Finally, corresponding measures against the rock burst in the island coal face are proposed.展开更多
This paper took the abnormal geological objects with high or low resistivity in the coal face as the background to establish the physical model. 2D forward numerical simulation for electromagnetic wave equation was im...This paper took the abnormal geological objects with high or low resistivity in the coal face as the background to establish the physical model. 2D forward numerical simulation for electromagnetic wave equation was implemented by the finite-difference scheme. According to the simulative results, the attenuation-absorption coefficient were calculated respectively based on field intensity and frequency shift parameter. Research result indicates, when coal-bed contains high electric resistivity geological abnormal object or low electric resistivity geological abnormal object, absorption attenuation function researched by frequency shift parameter of electromagnetic wave signal is more sensitive than by electromagnetic field intensity parameter.展开更多
The control system, which includes structure, the composition of software and hardware, the form of PID control system and its systematic closed-loop, was used in No.4236 full-mechanized coal face of Xinlongzhuang min...The control system, which includes structure, the composition of software and hardware, the form of PID control system and its systematic closed-loop, was used in No.4236 full-mechanized coal face of Xinlongzhuang mine. The typical fuzzy PID control system structure was investigated, and a simplified fuzzy PID control system was taken the place of the complex three-dimension fuzzy controller. Based on the parameter relation between fuzzy controller and normal PID controller, a common method of parameter adjustment of PID controller was summed up and the computer simulation was realized. This system can overcome the problems of large delay, nonlinear, poor running en- vironment and great load change in the full-mechanized coal face. The simulating investigation indicates that the de- signing method of fuzzy controller is simple and feasible.展开更多
With ever-increasing depth of coal mine and the continuous improvement of mechanization, heat damage has become one of the major disasters in coal mine exploitation. Established the temperature prediction models suita...With ever-increasing depth of coal mine and the continuous improvement of mechanization, heat damage has become one of the major disasters in coal mine exploitation. Established the temperature prediction models suitable for different kinds of tunnels through analysis of the heat of shafts, roadways and working faces. The average annual air temperature prediction equation from the inlets of shafts to the working faces was derived. The formula was deduced using combine method of iteration and direct calculation. The method can improve the precision of air temperature prediction, so we could establish the whole pathway air temperature prediction model with high precision. Emphasizing on the effects of leakage air to air temperature of working face and using the ideology of the finite difference method and considering the differential equation of inlet and outlet at different stages, this method can significantly improve the accuracy of temperature prediction. Program development uses Visual Basic 6.0 Language, and the Origin software was used to fit the relevant data. The predicted results shows that the air temperature generally tends to rapidly increase in the air inlet, then changes slowly on working face, and finally increases sharply in air outlet in the condition of goaf air leakage. The condition is in general consistent with the air temperature change tendency of working face with U-type ventilation system. The software can provide reliable scientific basis for reasonable ventilation, cooling measures and management of coal mine thermal hazards.展开更多
Taking the return air roadway of Tashan 8204 isolated island working face as the background, the evolution law of the stress field in the surrounding rock of the widened coal pillar area roadway during the mining peri...Taking the return air roadway of Tashan 8204 isolated island working face as the background, the evolution law of the stress field in the surrounding rock of the widened coal pillar area roadway during the mining period of the isolated island working face is obtained through numerical simulation. The hazardous area of strong mine pressure under different coal pillar widths is determined. Through simulation, it is known that when the width of the coal pillar is less than 20 m, there is large bearing capacity on the coal side of the roadway entity. The force on the side of the coal pillar is relatively small. When the width of the coal pillar ranges from 25 m to 45 m, the vertical stress on the roadway and surrounding areas is relatively high. Pressure relief measures need to be taken during mining to reduce surrounding rock stress. When the width of the coal pillar is greater than 45 m, the peak stress of the coal pillar is located in the deep part of the surrounding rock, but it still has a certain impact on the roadway. It is necessary to take pressure relief measures to transfer the stress to a deeper depth to ensure the stability of the triangular coal pillar during the safe mining period of the working face. This provides guidance for ensuring the stability of the triangular coal pillar during the safe mining period of the working face.展开更多
In this paper, the fully\|mechanized coal face system is thought of as a fuzzy controller, the various factors that have effect on the controller are found and analysis has been made as to how they effect the fully\|m...In this paper, the fully\|mechanized coal face system is thought of as a fuzzy controller, the various factors that have effect on the controller are found and analysis has been made as to how they effect the fully\|mechanized coal face′s production capacity. Based on the above analysis, this paper establishs a series of data analysis models describing the quantitative characteristics of the fully\|mechanized coal face production system. With this series of data models, 90 fully\|mechanized coal faces are processed and the fuzzy control forecasting model of the fully\|mechanized coal faces production capacity is established. This model is accurate and reliable and has achieved good results in practical applicaton.展开更多
The variation of the stress in the bolted surrounding rocks structure of the roadway driven along goaf in a fully mechanized top coal caving face with moderate stable conditions are studied by using numerical calculat...The variation of the stress in the bolted surrounding rocks structure of the roadway driven along goaf in a fully mechanized top coal caving face with moderate stable conditions are studied by using numerical calculation. The essential deformation characteristics of the surrounding rocks in this kind of roadway are obtained and the key technology of bolting support used under these conditions is put forward.展开更多
Characteristics of gas emission at the K8206 working face in the Third mine of the Yangquan Coal Group were investigated. The effects of strata movement,advancing velocity of working face,production capacity of workin...Characteristics of gas emission at the K8206 working face in the Third mine of the Yangquan Coal Group were investigated. The effects of strata movement,advancing velocity of working face,production capacity of working face and gas extraction capability of strike high-level entry on gas emission at K8206 working face were analyzed. A regression equation,reflecting the relationship between relative gas emission rate and the production capacity of work-ing faces,was established. Another regression equation showing the relationship between the gas emission rate from adjacent layers when the working face was advancing for one metre and advancing velocity was derived. It can be con-cluded that,1) the amount of gas emitted at the K8206 working face is far greater than that of ordinary top coal caving faces with a dip length of 180-190 m; 2) the dynamic process of gas emission from adjacent layers during the initial mining stage is controlled by the movement of key strata; 3) the amount of gas emitted that needs to be forced out by air is greatly affected by the capability of gas extraction; 4) when the advancing velocity is between 3.5-5.5 m/d or when the output is up to 8-12 kt/d,the gas emission from adjacent layers is almost constant.展开更多
Gateways at faces of great mining heights are mostly driven along the roof of coal seams.For gateway height restrictions,a 1-3 m floor coal is retained,leaving a triangular floor coal at the face ends,causing a loss o...Gateways at faces of great mining heights are mostly driven along the roof of coal seams.For gateway height restrictions,a 1-3 m floor coal is retained,leaving a triangular floor coal at the face ends,causing a loss of coal.In order to improve coal recovery rates and to ensure efficiency of equipment at coal mining faces,we investigated suitable retention methods and recovery technology of floor coal at face ends.The upper floor coal can directly be recovered by a shearer with floor dinting.The lower floor coal is recovered by shearer with floor dinting after advanced floor dinting and retaining a step for protecting coal sides in a haulage gateway.Field practice shows that this method can improve the coal recovery rates at fully mechanized working faces with great mining heights.展开更多
Against the background of analyzing coal wall stability in 14101 fully mechanized longwall top coal caving face in Majialiang coal mine,based on the torque equilibrium of the coal wall,shield support and the roof stra...Against the background of analyzing coal wall stability in 14101 fully mechanized longwall top coal caving face in Majialiang coal mine,based on the torque equilibrium of the coal wall,shield support and the roof strata,an elastic mechanics model was established to calculate the stress applied on the coal wall.The displacement method was used to obtain the stress and deformation distributions of the coal wall.This study also researched the influence of support resistance,protective pressure to the coal wall,fracture position of the main roof and mining height on the coal wall deformation.The following conclusions are drawn:(1) The shorter the distance from the longwall face,the greater the vertical compressive stress and horizontal tensile stress borne by the coal wall.The coal wall is prone to failure in the form of compressive-shear and tension;(2) With increasing support resistance,the revolution angle of the main roof decreases linearly.As the support resistance and protective force supplied by the face guard increases,the maximum deformation of the coal wall decreases linearly;(3) As the face approaches the fracture position of the main roof,coal wall horizontal deformation increases significantly,and the coal wall is prone to instability;and(4) The best mining height of 14101 longwall face is 3.0 m.展开更多
The caving of thick and strong roof stratum causes tremendous rock pressure in mine.The results of the analysis on dynamic natures of actual measurements of some fields,of which the roof pressure can be caused by thic...The caving of thick and strong roof stratum causes tremendous rock pressure in mine.The results of the analysis on dynamic natures of actual measurements of some fields,of which the roof pressure can be caused by thick and strong stratum in long wall thick coal caving face,could present the relation between the collapse and movement of thick and strong roof strata and surrounding rock pressure.In order to control the roof pressure effectively,the thick and strong roof strata,can be fractured and softened previ- ously by hydraulic fracturing and low-high pressure water infusion,fracturing and softening method.The results of study can provide basis for strata control and safe management in long wall thick coal caving face.展开更多
Since the coal mine in-pit personnel positioning system neither can effectively achieve the function to detect the uniqueness of in-pit coal-mine personnel nor can identify and eliminate violations in attendance manag...Since the coal mine in-pit personnel positioning system neither can effectively achieve the function to detect the uniqueness of in-pit coal-mine personnel nor can identify and eliminate violations in attendance management such as multiple cards for one person, and swiping one's cards by others in China at present. Therefore, the research introduces a uniqueness detection system and method for in-pit coal-mine personnel integrated into the in-pit coal mine personnel positioning system, establishing a system mode based on face recognition + recognition of personnel positioning card + release by automatic detection. Aiming at the facts that the in-pit personnel are wearing helmets and faces are prone to be stained during the face recognition, the study proposes the ideas that pre-process face images using the 2D-wavelet-transformation-based Mallat algorithm and extracts three face features: miner light, eyes and mouths, using the generalized symmetry transformation-based algorithm. This research carried out test with 40 clean face images with no helmets and 40 lightly-stained face images, and then compared with results with the one using the face feature extraction method based on grey-scale transformation and edge detection. The results show that the method described in the paper can detect accurately face features in the above-mentioned two cases, and the accuracy to detect face features is 97.5% in the case of wearing helmets and lightly-stained faces.展开更多
基金Projects 50204010 and 50427401 supported by the National Natural Science Foundation of China2005CB221505 by the National Basic Research Programof China2005BA813B-3-09 by the National "Tenth Five" Scientific and Technology Key Projects of China
文摘The incidence of dynamic coal or rock disasters is closely related to the distribution of stress in the surrounding rock. Our experiments show that electromagnetic radiation (EMR) signals are related to the state of stress of a coal body. The higher the stress, the more intense the deformation and fractures of a coal body and the stronger the EMR signals. EMR signals reflect the degrees of concentrated stress of a coal body and danger of a rock burst. We selected EMR intensity as the test index of the No.237 gob-surrounded coal face in the Nanshan coal mine. We tested the EMR characteristics of the stress distribution on the strike, on the incline and in the interior of the coal body. The EMR rule of rock bursts, caused by sudden changes in stress, is analyzed. Our research shows that EMR technology can be not only used to test qualitatively the stress distribution of the surrounding rock, but also to predict a possible occurrence of rock burst. Based on this, effective distress measures are used to eliminate or at least weaken the incidence of rock bursts. We hooe that safetv in coalmines will be enhanced.
文摘According to the theory of ventilation network, a model for a filtration flow field in goaf was built and simulation soft- ware for determining the three zones in goaf has been developed. This software uses no-gap-connection between Visual Basic (VB) and Excel to exchange data, uses Component Object Model (COM) component of MATLAB to plot charts of the three zones and to export the corresponding coordinates of the isolines. An example shows that this software is convenient and simple. By using it, the three zones can be easily determined. The software is convenient in studies and analyses of the three zones in goaf.
文摘In allusion to the problems of complex stress distribution in the surrounding rock and deformation failure laws, as well as the difficulty in roadway supporting of the gob-side entry driving in the island coal face, 2107 face in Chengjiao Colliery is researched as an engineering case. Through physical mechanical test of rock, theoretical and numerical simulation analyses of rock, the analysis model of the roadway overlying strata structure was established, and its parameters quantified. To reveal the deformation law of the surrounding rock, the stability of the overlying strata structure was studied before, during and after the roadway driving. According to the field conditions, the stress distribution in coal pillar was quantified, and the surrounding rock deformation feature studied with different widths of the pillars in gob-side entry driving. Finally, the pillar width of 4 m was considered as the most reasonable. The research results show that there is great difference in support conditions among roadway roof, entity coal side and narrow pillar side. Besides, the asymmetric control technique for support of the surrounding rock was proposed. The asymmetric control technique was proved to be reasonable by field monitoring, support by bolt-net, steel ladder and steel wire truss used in narrow pillar side.
基金the National Natural Science Foundation of China(40638040/D0214,50534070/E04)
文摘Under the action of abutment pressure in front of fully mechanized coal face with sublevel caving(CFSC),top-coal over CFSC deformed.In the process of whole de- formation of top-coal,it changed from continuum elastic mass to non-continuum plastic mass contained fissures,become a loose body.According to its bearing characteristics and mechanical properties,top-coal mass can be divided into four deformation zones along the winning direction of CFSC,i.e.initial stress zone,elastic zone,plastic zone and loose zone.Top-coal in plastic zone located in the post-peak zone of the stress-strain curve for top-coal.With equivalent strain principle of damage mechanics and mathemati- cal theory of statistic,combining the movement law of top-coal,set up a constitutive equa- tion with damage statistics for top-coal in different position in CFSC.The equation illus- trated the mathematical relationship among top-coal bearing capacity,horizontal confining pressure along the winning direction of CFSC and mechanical properties of top-coal mate- rial.The conclusions not only provide a basis for numerical computer simulations on damage deformation and failure mechanism for top-coal,but also further promote the ap- plication of damage mechanics in CFSC.
基金Supported by the National Basic Research of China(2006CB202207)the National Natural Science Foundation of China(40674060)
文摘The principles, methods, technologies and application effects of several electromagnetic methods for the detection of the hidden danger of water gushing at the coal face were introduced. Also, emphasis was laid on expounding the methods, principles and effects of down-hole detections by electric transmission tomography and transient electromagnetic method. The potential of point power supplied in the underground homogeneous semi-space, as well as the response to a low-resistivity abnormal body in the homogeneous semi-space, was simulated by adopting 3-D finite element method to interpret the basic theory of the electric transmission tomography. The results of actual measurement show that the mine electromagnetic method is sensitive to water-bearing low-resistivity bodies and can play a unique role in detecting the hidden danger of water gushing at the coal face.
文摘All the underground coal mines in China are gassy mines. The gas emission at coal face increasingly grows with the increase of working depth and coal output, for example, the gas emission at a full mechanized coal face of mine No. 2 at Yongquan with a daily output of 2. 000t/d is up to 66-72m2/min. Special gas emission phenomena such as gas blowout, gas and coal outburst etc. have occurred at some faces, which threatens the safe production of face. obstructs the growth of productivity and limits the full play of mechanized equipment.In this paper, gas at face is divided, according to its origin, into three constituents, namely , coming from the coal wall, mined coal and goaf;and a formula for calculation is given. Also , the characteristics of the variation of gas emission at coal face, and the influence of mining sequence of a group of seams and supplied air quantity on the gas emission are discussed. Furthermore . based on the regularity of gas emission at coal face from the above three sources, and on the experiences of years, three principles on controlling gas emission at coal face are presented, that are managing the gas on classification basis, harnessing each source separately and comprehensive prevention and control. Finally, technical measures for prevention and treatment of the accumulation of gas in the upper corner of face, at the working place of coal-winning machine and in the bottom trough of conveyor are introduced.
文摘A new method using high water content material to mechanically fill cross roadways to form artificial bottom for coal faces was introduced. The reasonable determination of filling range, the optimization of the compounding ratio of high water content material, and the filling technique were discussed in detail. This new method has been spread after industrial testing in Baodian Colliery. Compared with the traditional method, the manual wooden chock method, the new one decreases about 40% of the filling range and cost in dealing every one set of cross roadway in the testing condition.
文摘The noise level of coal face by full-mechanized coal winning technology was measured in a coal mine. And then it was analyzed and evaluated using environment science, ergonomics and fussy mathematics analysis. Basis of the statistics and analysis of the measured noise level some measures, such as applying the new materials and improving the construction of the equipment, were carried out. The resuts show that they can reduce the noise level, improve the working environment and enhance the work efficiency.
基金provided by the National Natural Science Foundation of China (Nos.51304208 and 51474208)
文摘The island coal face arises in coal mines with the purpose of preventing gas explosion or maintaining the balance between mining and tunneling. However, its particular stress conditions in the surrounding rock may increase the difficulty of stress control in the coal face and in its mining roadways, especially when the coal seam, the roof, and the floor have rock-burst propensities, The high energy accumulated in the island coal face and in its roof and floor will intensify rock-burst propensity or even induce rock burst, which further result in great casualties and financial losses. Taking island coal face 2321 in Jinqiao coal mine as a case, we propose a method for the prediction of rock-burst-threatened areas in an island coal face with weak rock-burst propensity. Based on the anaHysis of the movement of the overlying roof and characteristics of stress distribution, this method combined numerical simulation with drilling bits to ensure the prediction accuracy. The effects of coal pillars with different widths on the mitigation of stress concentration in the coal face and on the prevention of rock burst are analyzed together with the mech- anism behind. Finally, corresponding measures against the rock burst in the island coal face are proposed.
基金Supported by the Program for the National Natural Science Foundation of China (50534080) the New Century Excellent Talents in University of China (NCET-05-0602)+1 种基金 the Research Fund for the Doctoral Program of Higher Education of China (20060424001) the Research Award Fund for the Excellent Youth Scientist of Shandong Province(2006BS08006).
文摘This paper took the abnormal geological objects with high or low resistivity in the coal face as the background to establish the physical model. 2D forward numerical simulation for electromagnetic wave equation was implemented by the finite-difference scheme. According to the simulative results, the attenuation-absorption coefficient were calculated respectively based on field intensity and frequency shift parameter. Research result indicates, when coal-bed contains high electric resistivity geological abnormal object or low electric resistivity geological abnormal object, absorption attenuation function researched by frequency shift parameter of electromagnetic wave signal is more sensitive than by electromagnetic field intensity parameter.
文摘The control system, which includes structure, the composition of software and hardware, the form of PID control system and its systematic closed-loop, was used in No.4236 full-mechanized coal face of Xinlongzhuang mine. The typical fuzzy PID control system structure was investigated, and a simplified fuzzy PID control system was taken the place of the complex three-dimension fuzzy controller. Based on the parameter relation between fuzzy controller and normal PID controller, a common method of parameter adjustment of PID controller was summed up and the computer simulation was realized. This system can overcome the problems of large delay, nonlinear, poor running en- vironment and great load change in the full-mechanized coal face. The simulating investigation indicates that the de- signing method of fuzzy controller is simple and feasible.
基金Supported by the National Natural Science Foundation of China (50674091) Fundamental Research Funds for the Central Universities (2010YZ01 ) The authors gratefully acknowledge the contributions of The National Natural Science Foundation and Fundamental Research Funds for the Central Universities for funding this study.
文摘With ever-increasing depth of coal mine and the continuous improvement of mechanization, heat damage has become one of the major disasters in coal mine exploitation. Established the temperature prediction models suitable for different kinds of tunnels through analysis of the heat of shafts, roadways and working faces. The average annual air temperature prediction equation from the inlets of shafts to the working faces was derived. The formula was deduced using combine method of iteration and direct calculation. The method can improve the precision of air temperature prediction, so we could establish the whole pathway air temperature prediction model with high precision. Emphasizing on the effects of leakage air to air temperature of working face and using the ideology of the finite difference method and considering the differential equation of inlet and outlet at different stages, this method can significantly improve the accuracy of temperature prediction. Program development uses Visual Basic 6.0 Language, and the Origin software was used to fit the relevant data. The predicted results shows that the air temperature generally tends to rapidly increase in the air inlet, then changes slowly on working face, and finally increases sharply in air outlet in the condition of goaf air leakage. The condition is in general consistent with the air temperature change tendency of working face with U-type ventilation system. The software can provide reliable scientific basis for reasonable ventilation, cooling measures and management of coal mine thermal hazards.
文摘Taking the return air roadway of Tashan 8204 isolated island working face as the background, the evolution law of the stress field in the surrounding rock of the widened coal pillar area roadway during the mining period of the isolated island working face is obtained through numerical simulation. The hazardous area of strong mine pressure under different coal pillar widths is determined. Through simulation, it is known that when the width of the coal pillar is less than 20 m, there is large bearing capacity on the coal side of the roadway entity. The force on the side of the coal pillar is relatively small. When the width of the coal pillar ranges from 25 m to 45 m, the vertical stress on the roadway and surrounding areas is relatively high. Pressure relief measures need to be taken during mining to reduce surrounding rock stress. When the width of the coal pillar is greater than 45 m, the peak stress of the coal pillar is located in the deep part of the surrounding rock, but it still has a certain impact on the roadway. It is necessary to take pressure relief measures to transfer the stress to a deeper depth to ensure the stability of the triangular coal pillar during the safe mining period of the working face. This provides guidance for ensuring the stability of the triangular coal pillar during the safe mining period of the working face.
文摘In this paper, the fully\|mechanized coal face system is thought of as a fuzzy controller, the various factors that have effect on the controller are found and analysis has been made as to how they effect the fully\|mechanized coal face′s production capacity. Based on the above analysis, this paper establishs a series of data analysis models describing the quantitative characteristics of the fully\|mechanized coal face production system. With this series of data models, 90 fully\|mechanized coal faces are processed and the fuzzy control forecasting model of the fully\|mechanized coal faces production capacity is established. This model is accurate and reliable and has achieved good results in practical applicaton.
文摘The variation of the stress in the bolted surrounding rocks structure of the roadway driven along goaf in a fully mechanized top coal caving face with moderate stable conditions are studied by using numerical calculation. The essential deformation characteristics of the surrounding rocks in this kind of roadway are obtained and the key technology of bolting support used under these conditions is put forward.
基金Projects 50374066 supported by the National Natural Science Foundation of ChinaNCET-05-0478 by the Program for New Century Excellent Talents in University
文摘Characteristics of gas emission at the K8206 working face in the Third mine of the Yangquan Coal Group were investigated. The effects of strata movement,advancing velocity of working face,production capacity of working face and gas extraction capability of strike high-level entry on gas emission at K8206 working face were analyzed. A regression equation,reflecting the relationship between relative gas emission rate and the production capacity of work-ing faces,was established. Another regression equation showing the relationship between the gas emission rate from adjacent layers when the working face was advancing for one metre and advancing velocity was derived. It can be con-cluded that,1) the amount of gas emitted at the K8206 working face is far greater than that of ordinary top coal caving faces with a dip length of 180-190 m; 2) the dynamic process of gas emission from adjacent layers during the initial mining stage is controlled by the movement of key strata; 3) the amount of gas emitted that needs to be forced out by air is greatly affected by the capability of gas extraction; 4) when the advancing velocity is between 3.5-5.5 m/d or when the output is up to 8-12 kt/d,the gas emission from adjacent layers is almost constant.
基金the Independent Research of the State Key Laboratory of Coal Resources and Mine Safety(No. SKLCRSM09X02)the Open Research Fund of the State Key Laboratory of Coal Resources and Mine Safety(No.08KF12)the Graduate Students of Jiangsu Province Innovation Program Funded Projects(No.CX09B_120Z) for their financial support
文摘Gateways at faces of great mining heights are mostly driven along the roof of coal seams.For gateway height restrictions,a 1-3 m floor coal is retained,leaving a triangular floor coal at the face ends,causing a loss of coal.In order to improve coal recovery rates and to ensure efficiency of equipment at coal mining faces,we investigated suitable retention methods and recovery technology of floor coal at face ends.The upper floor coal can directly be recovered by a shearer with floor dinting.The lower floor coal is recovered by shearer with floor dinting after advanced floor dinting and retaining a step for protecting coal sides in a haulage gateway.Field practice shows that this method can improve the coal recovery rates at fully mechanized working faces with great mining heights.
基金provided by the Priority Academic Program Development of Jiangsu Higher Education Institutions,the Graduate Students of Jiangsu Province Innovation Program (No.CXZZ13_0948)the National Natural Science Foundation of China (No.51304202)the Natural Science Foundation of Jiangsu Province (No.BK20130190)
文摘Against the background of analyzing coal wall stability in 14101 fully mechanized longwall top coal caving face in Majialiang coal mine,based on the torque equilibrium of the coal wall,shield support and the roof strata,an elastic mechanics model was established to calculate the stress applied on the coal wall.The displacement method was used to obtain the stress and deformation distributions of the coal wall.This study also researched the influence of support resistance,protective pressure to the coal wall,fracture position of the main roof and mining height on the coal wall deformation.The following conclusions are drawn:(1) The shorter the distance from the longwall face,the greater the vertical compressive stress and horizontal tensile stress borne by the coal wall.The coal wall is prone to failure in the form of compressive-shear and tension;(2) With increasing support resistance,the revolution angle of the main roof decreases linearly.As the support resistance and protective force supplied by the face guard increases,the maximum deformation of the coal wall decreases linearly;(3) As the face approaches the fracture position of the main roof,coal wall horizontal deformation increases significantly,and the coal wall is prone to instability;and(4) The best mining height of 14101 longwall face is 3.0 m.
文摘The caving of thick and strong roof stratum causes tremendous rock pressure in mine.The results of the analysis on dynamic natures of actual measurements of some fields,of which the roof pressure can be caused by thick and strong stratum in long wall thick coal caving face,could present the relation between the collapse and movement of thick and strong roof strata and surrounding rock pressure.In order to control the roof pressure effectively,the thick and strong roof strata,can be fractured and softened previ- ously by hydraulic fracturing and low-high pressure water infusion,fracturing and softening method.The results of study can provide basis for strata control and safe management in long wall thick coal caving face.
基金financial supports from the National Natural Science Foundation of China (No. 51134024)the National High Technology Research and Development Program of China (No. 2012AA062203)are gratefully acknowledged
文摘Since the coal mine in-pit personnel positioning system neither can effectively achieve the function to detect the uniqueness of in-pit coal-mine personnel nor can identify and eliminate violations in attendance management such as multiple cards for one person, and swiping one's cards by others in China at present. Therefore, the research introduces a uniqueness detection system and method for in-pit coal-mine personnel integrated into the in-pit coal mine personnel positioning system, establishing a system mode based on face recognition + recognition of personnel positioning card + release by automatic detection. Aiming at the facts that the in-pit personnel are wearing helmets and faces are prone to be stained during the face recognition, the study proposes the ideas that pre-process face images using the 2D-wavelet-transformation-based Mallat algorithm and extracts three face features: miner light, eyes and mouths, using the generalized symmetry transformation-based algorithm. This research carried out test with 40 clean face images with no helmets and 40 lightly-stained face images, and then compared with results with the one using the face feature extraction method based on grey-scale transformation and edge detection. The results show that the method described in the paper can detect accurately face features in the above-mentioned two cases, and the accuracy to detect face features is 97.5% in the case of wearing helmets and lightly-stained faces.