This study investigates the paleodepositional conditions of the No.6 Seam of the Madzaringwe Formation in Makhado and Voorburg south area of the Soutpansberg Coalfield(Limpopo Province,South Africa)utilizing organic p...This study investigates the paleodepositional conditions of the No.6 Seam of the Madzaringwe Formation in Makhado and Voorburg south area of the Soutpansberg Coalfield(Limpopo Province,South Africa)utilizing organic petrography and inorganic geochemical proxies.The coals are predominantly high-volatile bituminous B-A rank with high ash yields(avg.36.1 wt%),characterized by high-vitrinite(~41.5 vol%),moderate-to-high inertinite(9.8 vol%–33.7 vol%)and low liptinite(~2.3 vol%).The distribution of inertinite varies among different coal horizons(from bottom-lower to middle-upper),suggesting differential oxidation conditions and/or paleofire occurrence.Vitrinite-to-inertinite(V/I)ratio,tissue preservation–gelification index(TPI–GI),and groundwater–vegetation index(GWI–VI)plots,indicate that the peat-forming forest-swamp vegetation accumulated under mesotrophic-to-rheotrophic hydrological conditions.The presence of structured macerals(i.e.,telinite,collotelinite,fusinite,and semifusinite)suggests well-preserved plant tissues,whereas framboidal pyrite and sulphur content(0.24 wt%–2.16 wt%)point to brackish-water influence at the peat stage.The coals contain quartz,kaolinite,siderite,muscovite,dolomite,calcite,and pyrite minerals,most of which were likely sourced from felsic igneous rocks.The Al/(Al+Fe+Mn)and(Fe+Mn)/Ti ratios for the studied samples range between 0.24–0.97 and 0.57–70.10,respectively.The ratios,Al–Fe–Mn plot,and presence of massive botryoidal-type pyrite imply some influence of meteoric waters or fluids from hydrothermal activity post-deposition.Moreover,the chemical index of alteration(CIA:98.25–99.67),chemical index of weathering(CIW:92.04–97.66),and A–CN–K ternary diagram suggest inorganic matter suffered strong chemical weathering,indicating warm paleoclimatic conditions during the coal formation.展开更多
As one of the most important source rocks and reservoirs of unconventional natural gas, the sedimentary environment and mode of peat swamp(the predecessor of coal seam) is important to the coal seam's spatial distr...As one of the most important source rocks and reservoirs of unconventional natural gas, the sedimentary environment and mode of peat swamp(the predecessor of coal seam) is important to the coal seam's spatial distribution, material composition, hydrocarbon generation potential, reservoir physical properties, etc. To reveal the depositional characteristics and history of environmental change in a terrestrial basin during a period of peat accumulation, the Middle Jurassic aged #7 coal from Gaoquan in the Qaidam Basin(NW China) was investigated using sedimentology, maceral composition, geochemistry and sequence stratigraphy. Based on identification of the sedimentary shoreline break belt, wave energy depletion point and position of wave base, the peat swamp system can be subdivided into(1) lakeside plain,(2) low energy lakeshore,(3) high energy lakeshore, and(4) shallow lake subfacies. A new method for determining coal facies is proposed based on the combination of environmental parameters including oxidation-reduction levels, energy conditions and the influence of terrigneous sediments. The evolution of the coal seam shows that peat was deposited mainly in the low energy lakeshore and lakeside plain subfacies. Five types of sequence stratigrpahic surface and two types of parasequence were identified. Forced lake regressions and normal lake regressions are attributed as the causes of sequence boundaries. The sequence stratigraphic framework comprises six sequences and corresponding system tracts, and the curve of base-level for each demonstrates a characteristic initial period of slow rising followed by fast rising and then returning to slow rising. A model indicating the relationship among base-level changes, coal facies evolution, and the environmental features in the swamp is proposed that shows the environmental features of the swamp were controlled by both base-level changes and coal facies. Accompanying depositional environment changes from a lakeside plain to lakeshore and shallow lake caused by increasing rate of base-level rise, water paleosalinity, acidity and the percentage of woody plants decrease, and the bog type alters from the low marsh to raised bog.展开更多
This paper discussed the petrological characteristics and coal facies of No.6 coal seam from the Haerwusu Mine, Jungar Coalfield, Inner Mongolia by using of coal petrology and geochemistry. No.6 coal facies can be div...This paper discussed the petrological characteristics and coal facies of No.6 coal seam from the Haerwusu Mine, Jungar Coalfield, Inner Mongolia by using of coal petrology and geochemistry. No.6 coal facies can be divided into 3 types, arid forest peat swamp (including two subfacies) and reed peat swamp, respectively. From bottom to top, the development of peat swamps present wavy changes, and three coal facies types appear alternately, with obvious thyme. According to the parameters, 11 secondary sequences were identified of the peat swamps of No.6 coal seam. The results indicate that the mire formed in brackish water-fresh water weak regression environment, changed in excess oxygen and poor oxygen, and reflected the characteristics of transition phase.展开更多
Peat forming environment strongly influences the economic value of any coal seam and coal-bearing strata.Hence,pal-aeoenvironmental studies provide important information for coal resource exploration.In this context,d...Peat forming environment strongly influences the economic value of any coal seam and coal-bearing strata.Hence,pal-aeoenvironmental studies provide important information for coal resource exploration.In this context,detailed studies on selected coals from the Parvadeh Area,Iran,were conducted using sedimentology,coal petrology,X-ray diffraction(XRD),scanning electron microscopy-energy dispersive X-ray analyzer(SEM-EDX),and proximate analysis.The sedi-mentary facies above and below the coal seams are mainly marine or marine-influenced facies,supporting that the coal-forming mires in the Parvadeh Area developed in a paralic environment,where the base level must be closely related to sea level.Sulfur contents are moderate to high and mark the influence of brackish/marine water,especially during transgres-sion after peat growth in a lower delta plain environment.The peat-forming mires extended on coastal/delta plain lobes.The lower delta plain/coastal plain coals are characterized by lateral continuity and substantial thickness,whereas few coals possibly representing the upper delta plain are thin and more discontinuous.The detrital nature and composition of the numerous partings and the overall high ash yield in the coal seams indicate an active tectonic area with high rates of creation of accommodation space over peat growth.Coal petrology and coal facies analysis exhibits a permanently high water table within a forest swamp and mostly rheotrophic conditions,sometimes with connection to the seawater.Accord-ing to paleoenvironmental reconstructions,it seems that coal layers may be thicker,with less sulfur(pyrite),but more clastic minerals and partings toward the western part of the area.Although these coal seams presently have low economic potential for the mining operation,partly due to great depth,this humic,high-volatile to medium-volatile bituminous coal may be suitable for exploration of coal bed methane resources.展开更多
For unveiling coal-bearing source rocks in terrestrial-marine transitional sequences, the sequence stratigraphic framework and sedimentary facies of Lower Oligocene Yacheng Formation of Qiongdongnan Basin were investi...For unveiling coal-bearing source rocks in terrestrial-marine transitional sequences, the sequence stratigraphic framework and sedimentary facies of Lower Oligocene Yacheng Formation of Qiongdongnan Basin were investigated using seismic profiles, complemented by well bores and cores. Three third-order sequences are identified on the basis of unconformities on basin margins and correlative conformities in the basin center, namely SQYC3, SQYC2 and SQYC1 from bottom to top. Coal measure in Yacheng Formation of Qiongdongnan Basin were deposited within a range of facies associations from delta plain/tidal zone to neritic sea, and three types of favourable sedimentary facies associations for coal measure were established within the sequence stratigraphic framework, including braided delta plain and alluvial fan, lagoon and tidal flat, and fan delta and coastal plain facies associations. Results shown that, in the third-order sequences, coal accumulation in landward areas(such as delta plain) of the study area predominantly correlates with the early transgressive systems tract(TST) to middle highstand systems tract(HST), while in seaward areas(such as tidal flat-lagoon) it correlates with the early TST and middle HST. The most potential coal-bearing source rocks formed where the accommodation creation rate(Ra) and the peat-accumulation rate(Rp) could reach a state of balance, which varied among different sedimentary settings. Furthermore, intense tectonic subsidence and frequent alternative marine-continental changes of Yacheng Formation during the middle rift stage were the main reasons why the coal beds shown the characteristics of multi-beds, thin single-bed, and rapidly lateral changes. The proposed sedimentary facies associations may aid in predicting distribution of coal-bearing source rocks. This study also demonstrates that controlling factors analysis using sequence stratigraphy and sedimentology may serve as an effective approach for coal-bearing characteristics in the lower exploration deepwater area of South China Sea.展开更多
The genetic relationships between microenvironment of the Late Paleozoic peat-forming swamp and the sulfur contents of coal in North China have been studied by using coal-facies parameters involving gelification degre...The genetic relationships between microenvironment of the Late Paleozoic peat-forming swamp and the sulfur contents of coal in North China have been studied by using coal-facies parameters involving gelification degree, tissue preservation index, vegetation index, transportation index, groundwater influence index, water medium indicator and swamp type index, etc. Among the various controlling factors of swamp microenvironment, swamp water medium elaborates a dominant action to sulfur accumulation in the marine-influenced coals; while coal-forming plant type, hydrodynamic state and water covering depth are more important to sulfur accumulation in the fresh water-influenced coals. Geological fractionation of sulfur isotopes reflects that sulfur accumulation experienced multi-stages evolution. Pyrite sulfurs formed earlier than organic sulfur and the sulfur isotopic δ34Sp shows lower values than organic sulfur isotopic δ34So. In the brine-influenced coals, sulfur accumulation processed relatively a long time span, the distribution of sulfur isotopes dispersed, and the coals are provided with high sulfur contents. In the fresh-water-influenced coals, sulfur accumulation occurred mainly at the syngenetic-penesyngenetic stage and the early diagenetic stage, and the total sulfur is lower and mainly composed of organic sulfur.展开更多
文摘This study investigates the paleodepositional conditions of the No.6 Seam of the Madzaringwe Formation in Makhado and Voorburg south area of the Soutpansberg Coalfield(Limpopo Province,South Africa)utilizing organic petrography and inorganic geochemical proxies.The coals are predominantly high-volatile bituminous B-A rank with high ash yields(avg.36.1 wt%),characterized by high-vitrinite(~41.5 vol%),moderate-to-high inertinite(9.8 vol%–33.7 vol%)and low liptinite(~2.3 vol%).The distribution of inertinite varies among different coal horizons(from bottom-lower to middle-upper),suggesting differential oxidation conditions and/or paleofire occurrence.Vitrinite-to-inertinite(V/I)ratio,tissue preservation–gelification index(TPI–GI),and groundwater–vegetation index(GWI–VI)plots,indicate that the peat-forming forest-swamp vegetation accumulated under mesotrophic-to-rheotrophic hydrological conditions.The presence of structured macerals(i.e.,telinite,collotelinite,fusinite,and semifusinite)suggests well-preserved plant tissues,whereas framboidal pyrite and sulphur content(0.24 wt%–2.16 wt%)point to brackish-water influence at the peat stage.The coals contain quartz,kaolinite,siderite,muscovite,dolomite,calcite,and pyrite minerals,most of which were likely sourced from felsic igneous rocks.The Al/(Al+Fe+Mn)and(Fe+Mn)/Ti ratios for the studied samples range between 0.24–0.97 and 0.57–70.10,respectively.The ratios,Al–Fe–Mn plot,and presence of massive botryoidal-type pyrite imply some influence of meteoric waters or fluids from hydrothermal activity post-deposition.Moreover,the chemical index of alteration(CIA:98.25–99.67),chemical index of weathering(CIW:92.04–97.66),and A–CN–K ternary diagram suggest inorganic matter suffered strong chemical weathering,indicating warm paleoclimatic conditions during the coal formation.
基金the National Natural Science Foundation of China (Nos. 41472131, 41772161)New Century Excellent Talents Fund of Chinese Ministry of Education (No. 2013102050020)
文摘As one of the most important source rocks and reservoirs of unconventional natural gas, the sedimentary environment and mode of peat swamp(the predecessor of coal seam) is important to the coal seam's spatial distribution, material composition, hydrocarbon generation potential, reservoir physical properties, etc. To reveal the depositional characteristics and history of environmental change in a terrestrial basin during a period of peat accumulation, the Middle Jurassic aged #7 coal from Gaoquan in the Qaidam Basin(NW China) was investigated using sedimentology, maceral composition, geochemistry and sequence stratigraphy. Based on identification of the sedimentary shoreline break belt, wave energy depletion point and position of wave base, the peat swamp system can be subdivided into(1) lakeside plain,(2) low energy lakeshore,(3) high energy lakeshore, and(4) shallow lake subfacies. A new method for determining coal facies is proposed based on the combination of environmental parameters including oxidation-reduction levels, energy conditions and the influence of terrigneous sediments. The evolution of the coal seam shows that peat was deposited mainly in the low energy lakeshore and lakeside plain subfacies. Five types of sequence stratigrpahic surface and two types of parasequence were identified. Forced lake regressions and normal lake regressions are attributed as the causes of sequence boundaries. The sequence stratigraphic framework comprises six sequences and corresponding system tracts, and the curve of base-level for each demonstrates a characteristic initial period of slow rising followed by fast rising and then returning to slow rising. A model indicating the relationship among base-level changes, coal facies evolution, and the environmental features in the swamp is proposed that shows the environmental features of the swamp were controlled by both base-level changes and coal facies. Accompanying depositional environment changes from a lakeside plain to lakeshore and shallow lake caused by increasing rate of base-level rise, water paleosalinity, acidity and the percentage of woody plants decrease, and the bog type alters from the low marsh to raised bog.
基金Supported by the Natural Science Foundation of Hebei Province (D2012402025, D2009000832)
文摘This paper discussed the petrological characteristics and coal facies of No.6 coal seam from the Haerwusu Mine, Jungar Coalfield, Inner Mongolia by using of coal petrology and geochemistry. No.6 coal facies can be divided into 3 types, arid forest peat swamp (including two subfacies) and reed peat swamp, respectively. From bottom to top, the development of peat swamps present wavy changes, and three coal facies types appear alternately, with obvious thyme. According to the parameters, 11 secondary sequences were identified of the peat swamps of No.6 coal seam. The results indicate that the mire formed in brackish water-fresh water weak regression environment, changed in excess oxygen and poor oxygen, and reflected the characteristics of transition phase.
文摘Peat forming environment strongly influences the economic value of any coal seam and coal-bearing strata.Hence,pal-aeoenvironmental studies provide important information for coal resource exploration.In this context,detailed studies on selected coals from the Parvadeh Area,Iran,were conducted using sedimentology,coal petrology,X-ray diffraction(XRD),scanning electron microscopy-energy dispersive X-ray analyzer(SEM-EDX),and proximate analysis.The sedi-mentary facies above and below the coal seams are mainly marine or marine-influenced facies,supporting that the coal-forming mires in the Parvadeh Area developed in a paralic environment,where the base level must be closely related to sea level.Sulfur contents are moderate to high and mark the influence of brackish/marine water,especially during transgres-sion after peat growth in a lower delta plain environment.The peat-forming mires extended on coastal/delta plain lobes.The lower delta plain/coastal plain coals are characterized by lateral continuity and substantial thickness,whereas few coals possibly representing the upper delta plain are thin and more discontinuous.The detrital nature and composition of the numerous partings and the overall high ash yield in the coal seams indicate an active tectonic area with high rates of creation of accommodation space over peat growth.Coal petrology and coal facies analysis exhibits a permanently high water table within a forest swamp and mostly rheotrophic conditions,sometimes with connection to the seawater.Accord-ing to paleoenvironmental reconstructions,it seems that coal layers may be thicker,with less sulfur(pyrite),but more clastic minerals and partings toward the western part of the area.Although these coal seams presently have low economic potential for the mining operation,partly due to great depth,this humic,high-volatile to medium-volatile bituminous coal may be suitable for exploration of coal bed methane resources.
基金supported by the Zhanjiang Branch of CNOOC Ltd.the National Science and Technology Projects (No. 2011ZX05025-002-02-02)+1 种基金Natural Science Foundation of China (NSFC) (Nos. 41202074 and 41272122)the Key Laboratory of Tectonics and Petroleum Resources (CUG) of Ministry of Education Open Issue (No. TPR-2013-13)
文摘For unveiling coal-bearing source rocks in terrestrial-marine transitional sequences, the sequence stratigraphic framework and sedimentary facies of Lower Oligocene Yacheng Formation of Qiongdongnan Basin were investigated using seismic profiles, complemented by well bores and cores. Three third-order sequences are identified on the basis of unconformities on basin margins and correlative conformities in the basin center, namely SQYC3, SQYC2 and SQYC1 from bottom to top. Coal measure in Yacheng Formation of Qiongdongnan Basin were deposited within a range of facies associations from delta plain/tidal zone to neritic sea, and three types of favourable sedimentary facies associations for coal measure were established within the sequence stratigraphic framework, including braided delta plain and alluvial fan, lagoon and tidal flat, and fan delta and coastal plain facies associations. Results shown that, in the third-order sequences, coal accumulation in landward areas(such as delta plain) of the study area predominantly correlates with the early transgressive systems tract(TST) to middle highstand systems tract(HST), while in seaward areas(such as tidal flat-lagoon) it correlates with the early TST and middle HST. The most potential coal-bearing source rocks formed where the accommodation creation rate(Ra) and the peat-accumulation rate(Rp) could reach a state of balance, which varied among different sedimentary settings. Furthermore, intense tectonic subsidence and frequent alternative marine-continental changes of Yacheng Formation during the middle rift stage were the main reasons why the coal beds shown the characteristics of multi-beds, thin single-bed, and rapidly lateral changes. The proposed sedimentary facies associations may aid in predicting distribution of coal-bearing source rocks. This study also demonstrates that controlling factors analysis using sequence stratigraphy and sedimentology may serve as an effective approach for coal-bearing characteristics in the lower exploration deepwater area of South China Sea.
基金NSFC Key Project (Grant Nos. 49632090 and 49572129).
文摘The genetic relationships between microenvironment of the Late Paleozoic peat-forming swamp and the sulfur contents of coal in North China have been studied by using coal-facies parameters involving gelification degree, tissue preservation index, vegetation index, transportation index, groundwater influence index, water medium indicator and swamp type index, etc. Among the various controlling factors of swamp microenvironment, swamp water medium elaborates a dominant action to sulfur accumulation in the marine-influenced coals; while coal-forming plant type, hydrodynamic state and water covering depth are more important to sulfur accumulation in the fresh water-influenced coals. Geological fractionation of sulfur isotopes reflects that sulfur accumulation experienced multi-stages evolution. Pyrite sulfurs formed earlier than organic sulfur and the sulfur isotopic δ34Sp shows lower values than organic sulfur isotopic δ34So. In the brine-influenced coals, sulfur accumulation processed relatively a long time span, the distribution of sulfur isotopes dispersed, and the coals are provided with high sulfur contents. In the fresh-water-influenced coals, sulfur accumulation occurred mainly at the syngenetic-penesyngenetic stage and the early diagenetic stage, and the total sulfur is lower and mainly composed of organic sulfur.