期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Structural properties of residual carbon in coal gasification fine slag and their influence on flotation separation and resource utilization:A review 被引量:3
1
作者 Rui Han Anning Zhou +4 位作者 Ningning Zhang Kaiqiang Guo Mengyan Cheng Heng Chen Cuicui Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期217-230,共14页
Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery a... Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC. 展开更多
关键词 coal gasification fine slag residual carbon pore structure surface functional groups microcrystalline structure flotation sep-aration resource utilization
下载PDF
Effective separation of coal gasification fine slag: Role of classification and ultrasonication in enhancing flotation
2
作者 Rui Han Anning Zhou +4 位作者 Ningning Zhang Zhen Li Mengyan Cheng Xiaoyi Chen Tianhao Nan 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第6期867-880,共14页
Effective separation of residual carbon and ash is the basis for the resource utilization of coal gasification fine slag(CGFS).The conventional flotation process of CGFS has the bottlenecks of low carbon recovery and ... Effective separation of residual carbon and ash is the basis for the resource utilization of coal gasification fine slag(CGFS).The conventional flotation process of CGFS has the bottlenecks of low carbon recovery and high collector dosage.In order to address these issues,CGFS sample taken from Shaanxi,China was used as the study object in this paper.A new process of size classification-fine grain ultrasonic pretreatment flotation(SC-FGUF)was proposed and its separation effect was compared with that of wholegrain flotation(WGF)as well as size classification-fine grain flotation(SC-FGF).The mechanism of its enhanced separation effect was revealed through flotation kinetic fitting,flotation flow foam layer stability,particle size composition,surface morphology,pore structure,and surface chemical property analysis.The results showed that compared with WGF,pre-classification could reduce the collector dosage by 84.09%and the combination of pre-classification and ultrasonic pretreatment could increase the combustible recovery by 17.29%and up to 93.46%.The SC-FGUF process allows the ineffective adsorption of coarse residual carbon to collector during flotation stage to be reduced by pre-classification,and the tightly embedded state of fine CGFS particles is disrupted and surface oxidizing functional group occupancy was reduced by ultrasonic pretreatment,thus carbon and ash is easier to be separated in the flotation process.In addition,some of the residual carbon particles were broken down to smaller sizes in the ultrasonic pretreatment,which led to an increase in the stability of flotation flow foam layer and a decrease in the probability of detachment of residual carbon particles from the bubbles.Therefore,SCFGUF could increase the residual carbon recovery and reduce the flotation collector dosage,which is an innovative method for carbon-ash separation of CGFS with good application prospect. 展开更多
关键词 coal gasification fine slag Size classification Ultrasonic pretreatment FLOTATION Carbon recovery
下载PDF
New Progress on the Coal Fines Affecting the Development of Coalbed Methane 被引量:11
3
作者 WEI Yingchun LI Chao +3 位作者 CAO Daiyong ZHANG Aoxiang WANG Anmin XIANG Xinxuan 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第5期2060-2062,共3页
Objective The production of coal fines is very common in the development of coalbed methane(CBM)in the eastern margin of the Ordos Basin,China.A large amount of produced coal fines seriously affect the productivity ... Objective The production of coal fines is very common in the development of coalbed methane(CBM)in the eastern margin of the Ordos Basin,China.A large amount of produced coal fines seriously affect the productivity of CBM wells(Wei Yingchun et al.,2013).Therefore,the production problems of CBM wells caused by coal fines have attracted extensive attention. 展开更多
关键词 New Progress on the coal Fines Affecting the Development of coalbed Methane GS CBM
下载PDF
Coal waste management practices in the USA:an overview 被引量:7
4
作者 Yoginder P.Chugh Paul T.Behum 《International Journal of Coal Science & Technology》 EI CAS 2014年第2期163-176,共14页
This paper provides an overview of coal waste management practices with two case studies and an estimate of management cost in 2010 US dollars.Processing of as-mined coal typically results in considerable amount of co... This paper provides an overview of coal waste management practices with two case studies and an estimate of management cost in 2010 US dollars.Processing of as-mined coal typically results in considerable amount of coarse and fine coal processing wastes because of in-seam and out-of-seam dilution mining.Processing plant clean coal recovery values run typically 50%-80%.Trace metals and sulfur may be present in waste materials that may result in leachate water with corrosive characteristics.Water discharges may require special measures such as liner and collection systems,and treatment to neutralize acid drainage and/or water quality for trace elements.The potential for variations in coal waste production and quality depends upon mining or processing,plus the long-term methods of waste placement.The changes in waste generation rates and engineering properties of the coal waste during the life of the facility must be considered.Safe,economical and environmentally acceptable management of coal waste involves consideration of geology,soil and rock mechanics,hydrology,hydraulics,geochemistry,soil science,agronomy and environmental sciences.These support all aspects of the regulatory environment including the design and construction of earth and rock embankments and dams,as well as a wide variety of waste disposal structures.Development of impoundments is critical and require considerations of typical water-impounding dams and additional requirements of coal waste disposal impoundments.The primary purpose of a coal waste disposal facility is to dispose of unusable waste materials from mining.However,at some sites coal waste impoundments serve to provide water storage capacity for processing and flood attenuation. 展开更多
关键词 coal waste Coarse coal processing waste Fine coal processing waste coal refuse Out-of-seam dilution Dilution impacts Environmental impacts Reclamations
下载PDF
Ash Depression in Fine Coal Flotation Using a Novel Polymer Aid 被引量:1
5
作者 Ontlametse Molatlhegi Lana Alagha 《International Journal of Clean Coal and Energy》 2016年第4期65-85,共21页
The current study investigated the effects of novel hybrid polyacrylamide polymers as ash (slime) depressants in fine coal flotation to enhance combustible recovery and ash rejection. Coal samples at P<sub>80<... The current study investigated the effects of novel hybrid polyacrylamide polymers as ash (slime) depressants in fine coal flotation to enhance combustible recovery and ash rejection. Coal samples at P<sub>80</sub> of approximately 45 um with ~25% ash content were floated in the presence of in-house synthesized hybrid aluminum hydroxide polyacrylamide polymers (Al(OH)<sub>3</sub>-PAM, or Al-PAM). All flotation experiments were carried out in a 5-L Denver flotation cell. Various influencing factors were examined to optimize the flotation process in the presence of the Al-PAM polymers, including the Al-PAM dosage, Al-PAM conditioning time, impeller rotation speed and pulp pH. Comparative and synergistic studies were also performed using organic polyacrylamide polymers (PAMs), commercial dispersants and Al-PAM/dispersant system. Results showed a significant improvement in both combustible recovery and ash rejection at an Al-PAM dosage of 0.25 mg/L. The maximum combustible recovery obtained, at natural pH, with Al-PAM and Al-PAM/dispersant system was determined to be 70% and 66% at ash content of 7.74% and 7.4%, respectively. Zeta potential values of both the raw coal and concentrate products showed a large shift toward more positive values (from ˉ50 mV to ˉ13 mV), indicating a significant decrease in ash-forming minerals (slimes) when Al-PAM polymers were applied. 展开更多
关键词 Fine coal Flotation Novel Organic/Inorganic (Hybrid) Polyacrylamide Zeta Potential Slime Coating
下载PDF
Enhancing flotation recovery of residual carbon from gasification waste by mixing hydrophobic powder with diesel as collector 被引量:1
6
作者 Rui Han Ningning Zhang +3 位作者 Anning Zhou Zhen Li Jinzhou Qu Hong Wang 《Particuology》 SCIE EI CAS CSCD 2024年第6期211-217,共7页
Coal gasification fine slag(CGFS)is a solid waste containing residual carbon and ash generated during the coal gasification process,and the separation of the two components is the essential way to realize its environm... Coal gasification fine slag(CGFS)is a solid waste containing residual carbon and ash generated during the coal gasification process,and the separation of the two components is the essential way to realize its environmental pollution reduction and resource value increase.Froth flotation is the preferred method for separating CGFS,but there is a barrier of low carbon recovery in this process due to the extensive adsorption of collector by the well-developed pores on residual carbon.In this study,a sufficiently simple yet innovative collector,a mixture of hydrophobic powder and diesel,was proposed in an attempt to break the bottleneck.Flotation experiments with common diesel and this novel collector were performed respectively,and FTIR,XPS,and SEM-EDX were employed to analyze the collector action mechanism.Flotation results revealed that the novel collector could significantly improve the residual carbon recovery;test results demonstrated that the novel collector could increase the hydrophobic functional group content on the fine slag surface,and the hydrophobic powders in this novel collector mainly appeared at the pore openings of the flotation concentrate.The essence of the mechanism is that the hydrophobic powders play a dual role of blocking pores and providing adsorption sites,thus facilitating the spreading of diesel on the carbon surface and promoting its floatability.The study can provide creative ideas for the efficient disposal of coal gasification waste. 展开更多
关键词 coal gasification fine slag Carbon recovery COLLECTOR Fotation Hydrophobic powder
原文传递
Microstructure of Solid Phase Reduction on Manganese Oxide Ore Fines Containing Coal by Microwave Heating 被引量:4
7
作者 CHEN Jin TIAN Peng-fei +2 位作者 SONG Xiu-an LI Ning ZHOU Jian-xiong 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2010年第3期13-20,共8页
Microstructure of solid phase reduction on manganese oxide ore fines containing coal (MOOFCC) is one of important kinetics conditions of influencing microwave heating. On condition thai an atomic molar ratio of ro ... Microstructure of solid phase reduction on manganese oxide ore fines containing coal (MOOFCC) is one of important kinetics conditions of influencing microwave heating. On condition thai an atomic molar ratio of ro : rc in MOOFCC is 1 : 1.06 as well as a molecular molar ratio of rSiO2: rCaO is 1 : 1.28, 1 kg of MOOFCC is heated by microwave to reach 1 000-1 300℃ and hold different time respectively. Experiments show that the metal phase takes the iron-based metal compounds containing manganese as the main content. The manganese content of metal phase increases with the xise of temperature. The particle size of the metal phase is within the range from 0. 01 to 0.05 mm. MO2 phase in the stuff is entirely changed into MnO phase and the slag phase is mainly composed of wollastonite and manganese olivine. The stuff reduced is loose and massive as a whole and its porosity is from 30% to 45%. The low softening-melting property and the low density of the stuff impact, to some degree, the solid phase reduction of powder by microwave heating. 展开更多
关键词 manganese oxide ore fines containing coal microwave heating solid phase reduction MICROSTRUCTURE
原文传递
Motion characteristics and density separation of fine coal in an inflatable-inclined liquid-solid fluidized bed 被引量:1
8
作者 Bo Lv Bobing Dong +1 位作者 Xiaowei Deng Chaojun Fang 《Particuology》 SCIE EI CAS CSCD 2021年第5期299-307,共9页
To improve the adaptability of fluidized beds for fine coal separation,a new type of liquid-solid fluidized bed was constructed,i.e.,the inflatable-inclined liquid-solid fluidized bed(IILSFB).A combination of simulati... To improve the adaptability of fluidized beds for fine coal separation,a new type of liquid-solid fluidized bed was constructed,i.e.,the inflatable-inclined liquid-solid fluidized bed(IILSFB).A combination of simulation analysis and separation experiments was used to analyze the fluidization characteristics and separation performance of the IILSFB.The results showed that there was upflow and downflow in the fluidized bed.The upflow was mainly composed of water flow,followed by light and heavy particles;on the other hand,the downflow was caused by the backflow of heavy particles that settled at the inclined section.In addition,the light particles that settled at the inclined section could return to the rising water flow under the action of secondary airflow.As the water velocity,separation time,and secondary gas velocity increased,the comprehensive separation efficiency of fine coal in the fluidized bed improved,while the value decreased as the feed quantity increased.This also indicated the order of importance for these four factors,i.e.,water velocity,separation time,feed quantity,and secondary gas velocity,on fluidisation.Furthermore,the comprehensive separation efficiency of 0.1-1 mm fine coal varied significantly with various factors,while that of∼0.1 mm and 1-3 mm fine coal was always at a low value.In the latter case,the classification process of the size fraction was significantly better than the separation process in the fluidized bed.Under optimal working conditions,an IILSFB was used to separate the fine coal(0.1-1 mm).The yield of clean coal was 37.95% with an ash content of 12.11%,and the possible error was 0.085 g/cm^(3),indicating that the IILSFB had good separation performance for 0.1-1 mm fine coal. 展开更多
关键词 Inflatable-inclined liquid-solid fluidized bed Fine coal separation FLUIDIZATION Separation efficiency Secondary gas velocity Size fraction
原文传递
Particle mixing behavior of fine coal in density control of gas-solid separation fluidized bed 被引量:1
9
作者 Bo Lv Zhenfu Luo +3 位作者 Yanhong Fu Bo Zhang Xingzong Qin Xiangnan Zhu 《Particuology》 SCIE EI CAS CSCD 2020年第3期76-87,共12页
In a gas-solid separation fluidized bed,mixing of fine coal is necessary to achieve a suitable bed density to enable effective separation of low rank coal.On the basis of a variety of mixture models,a gas-solid separa... In a gas-solid separation fluidized bed,mixing of fine coal is necessary to achieve a suitable bed density to enable effective separation of low rank coal.On the basis of a variety of mixture models,a gas-solid separation fluidized bed was judged,where fine coal particles of 0.6-1.0mm were uniformly mixed with magnetite powder.High-speed dynamic camera technology was combined with a slump-sampling method to study the mixing process of the fine coal in the fluidized bed.These results showed that limitations of the fluidized bed structure cause the mixing process to be dominated by lateral diffusion and supplemented by axial diffusion.Axial diffusion was mainly achieved through the ascension of bubbles,whereas lateral diffusion was determined by the bursting action of the gas bubbles at the surface of the bed and the undulating characteristics of the bed.The effective lateral diffusion coefficient increased exponentially with gas velocity but had no strong relationship with the bed height.As the feed point moved toward the center,fine coal began to diffuse to both sides,which shortened the time for the bed density stabilization from 20 to 5 min.The bed density of the layer was stabilized at approximately 1.75 g/cm3.The separation efficiency of the gas-solid separation fluidized bed containing binary mixtures was more obvious for 6-50 mm raw coal,with a probable error E of 0.16. 展开更多
关键词 Gas-solid separation fluidized bed Density control Fine coal Diffusion behavior Separation process
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部