To elucidate the intrinsic reaction mechanism of cementitious materials composed of red mud and coal gangue(RGC), the hydration kinetics of these cementitious materials at 20°C was investigated on the basis of ...To elucidate the intrinsic reaction mechanism of cementitious materials composed of red mud and coal gangue(RGC), the hydration kinetics of these cementitious materials at 20°C was investigated on the basis of the Krstulovi?-Dabi? model. An isothermal calorimeter was used to characterize the hydration heat evolution. The results show that the hydration of RGC is controlled by the processes of nucleation and crystal growth(NG), interaction at phase boundaries(I), and diffusion(D) in order, and the pozzolanic reactions of slag and compound-activated red mud-coal gangue are mainly controlled by the I process. Slag accelerates the clinker hydration during NG process, whereas the compound-activated red mud-coal gangue retards the hydration of RGC and the time required for I process increases with increasing dosage of red mud-coal gangue in RGC.展开更多
A new approach is provided to resolve the large-scale applications of coal tar pitch. Carbon foams with uniform pore size are prepared at the foaming pressure of normal pressure using coal tar pitch as raw materials. ...A new approach is provided to resolve the large-scale applications of coal tar pitch. Carbon foams with uniform pore size are prepared at the foaming pressure of normal pressure using coal tar pitch as raw materials. The physical and chemical performance of high softening point pitch(HSPP) can be regulated by vacuumizing owing to the cooperation of vacuumizing and polycondensation. Results indicate that the optimum softening point and weight ratio of quinoline insoluble are about 292℃ and 65.7%, respectively. And the optimum viscosity of HSPP during the foaming process is distributed in the range of 1000-10000 Pa·s. The resultant carbon foam exhibits excellent performance, such as uniform pore structure, high compressive strength(4.7 MPa), low thermal conductivity(0.07 W·m^(-1) ·K^(-1)), specially, it cannot be fired under the high temperature of 1200 ℃.Thus, this kind of carbon foam is a potential candidate for thermal insulation material applied in energy saving building.展开更多
Rare earth elements(REEs) are critical materials and provide significant values to national security,energy production, environmental protection and economic growth. The supply of REEs in U.S. solely relies on impor...Rare earth elements(REEs) are critical materials and provide significant values to national security,energy production, environmental protection and economic growth. The supply of REEs in U.S. solely relies on import as domestic production of REEs was ceased because of the environmental concerns during mining and lack of competitiveness. Nonetheless, unconventional REEs-containing resources,including produced water. acid mine drainage, and coal and coal byproducts(C&CBs) contain significant amounts of REEs. However, the concentrations of REEs in these resources are several orders of magnitude lower than that of REEs ores. Thus, extraction of REEs from these materials is challenging. Here we report REEs extraction with environmentally friendly method that successfully concentrated REEs from312 ppm in fly ash to 99.4% in the final product. Especially, the five critically important REEs(Dy, Eu, Nd.Tb. and Y) account for up to ~63% of the total weight of all REEs in the final 99.4%-purity product. Coal fly ash is one of the major solid coal utilization byproducts, representing great potential resources for REEs extraction. Extraction of REEs from these unconventional resources could be the way to secure domestic supply of these critical materials.展开更多
Based on a shallow roadway with weakly cemented soft strata in western China, this paper studies the range and degree of plastic zones in soft strata roadways with weak cementation. Geological radars were used to moni...Based on a shallow roadway with weakly cemented soft strata in western China, this paper studies the range and degree of plastic zones in soft strata roadways with weak cementation. Geological radars were used to monitor the loose range and level of surrounding rocks. A mechanical model of weakly cemented roadway was established, including granular material based on the measured results. The model was then used to determine the plastic zone radium. The predicted results agree well with measured results which provide valuable theoretical references for the analysis of surrounding rock stability and support reinforcing design of weakly cemented roadways. Finally, a combined supporting scheme of whole section bolting and grouting was proposed based on the original supporting scheme. It is proved that this support plan can effectively control the deformation and plastic zone expansion of the roadway surrounding rock and thus ensure the long-term stable and safe mining.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51302012 and 51234008)the China Postdoctoral Science Foundation(No.2016M590046)
文摘To elucidate the intrinsic reaction mechanism of cementitious materials composed of red mud and coal gangue(RGC), the hydration kinetics of these cementitious materials at 20°C was investigated on the basis of the Krstulovi?-Dabi? model. An isothermal calorimeter was used to characterize the hydration heat evolution. The results show that the hydration of RGC is controlled by the processes of nucleation and crystal growth(NG), interaction at phase boundaries(I), and diffusion(D) in order, and the pozzolanic reactions of slag and compound-activated red mud-coal gangue are mainly controlled by the I process. Slag accelerates the clinker hydration during NG process, whereas the compound-activated red mud-coal gangue retards the hydration of RGC and the time required for I process increases with increasing dosage of red mud-coal gangue in RGC.
基金Supported by the National Natural Science Foundation of China(51472086,51002051)CAS Key Laboratory of Carbon Materials(No KLCMKFJJ1703)
文摘A new approach is provided to resolve the large-scale applications of coal tar pitch. Carbon foams with uniform pore size are prepared at the foaming pressure of normal pressure using coal tar pitch as raw materials. The physical and chemical performance of high softening point pitch(HSPP) can be regulated by vacuumizing owing to the cooperation of vacuumizing and polycondensation. Results indicate that the optimum softening point and weight ratio of quinoline insoluble are about 292℃ and 65.7%, respectively. And the optimum viscosity of HSPP during the foaming process is distributed in the range of 1000-10000 Pa·s. The resultant carbon foam exhibits excellent performance, such as uniform pore structure, high compressive strength(4.7 MPa), low thermal conductivity(0.07 W·m^(-1) ·K^(-1)), specially, it cannot be fired under the high temperature of 1200 ℃.Thus, this kind of carbon foam is a potential candidate for thermal insulation material applied in energy saving building.
基金Project supported by the Department of Energy through"Rare Earth Elements From Coal and Coal By-Products"program(DE-FE00027069)
文摘Rare earth elements(REEs) are critical materials and provide significant values to national security,energy production, environmental protection and economic growth. The supply of REEs in U.S. solely relies on import as domestic production of REEs was ceased because of the environmental concerns during mining and lack of competitiveness. Nonetheless, unconventional REEs-containing resources,including produced water. acid mine drainage, and coal and coal byproducts(C&CBs) contain significant amounts of REEs. However, the concentrations of REEs in these resources are several orders of magnitude lower than that of REEs ores. Thus, extraction of REEs from these materials is challenging. Here we report REEs extraction with environmentally friendly method that successfully concentrated REEs from312 ppm in fly ash to 99.4% in the final product. Especially, the five critically important REEs(Dy, Eu, Nd.Tb. and Y) account for up to ~63% of the total weight of all REEs in the final 99.4%-purity product. Coal fly ash is one of the major solid coal utilization byproducts, representing great potential resources for REEs extraction. Extraction of REEs from these unconventional resources could be the way to secure domestic supply of these critical materials.
基金provided by the National 973 Programs(No.2014CB046905)the National Natural Science Foundation of China(Nos.51274191 and 51404245)+1 种基金the Doctoral Fund of Ministry of Education(No.20130095110018)China Postdoctoral Science Foundation(No.2014M551699)
文摘Based on a shallow roadway with weakly cemented soft strata in western China, this paper studies the range and degree of plastic zones in soft strata roadways with weak cementation. Geological radars were used to monitor the loose range and level of surrounding rocks. A mechanical model of weakly cemented roadway was established, including granular material based on the measured results. The model was then used to determine the plastic zone radium. The predicted results agree well with measured results which provide valuable theoretical references for the analysis of surrounding rock stability and support reinforcing design of weakly cemented roadways. Finally, a combined supporting scheme of whole section bolting and grouting was proposed based on the original supporting scheme. It is proved that this support plan can effectively control the deformation and plastic zone expansion of the roadway surrounding rock and thus ensure the long-term stable and safe mining.