To define the diffusion behavior of harmful exhaust substances from diesel vehicles and support safety risk assessments of underground coal mines,we performed a multi-species coupling calculation of the emission and d...To define the diffusion behavior of harmful exhaust substances from diesel vehicles and support safety risk assessments of underground coal mines,we performed a multi-species coupling calculation of the emission and diffusion of harmful substances from a trackless rubber-wheel diesel vehicle.A computational fluid dynamics(CFD)model of the diffusion of harmful emissions was hence established and verified.From the perspective of risk analysis,the diffusion behavior and distribution of hazardous substances emitted by the diesel vehicle were studied under 4 different conditions;moreover,we identified areas characterized by hazardous levels of emissions.When the vehicle idled upwind in the roadway,high-risk areas formed behind and to the right of the vehicle:particularly high concentrations of pollutants were measured near the rear floor of the vehicle and within 5 m behind the vehicle.When the vehicle idled downwind,high-risk areas formed in front of it:particularly high concentrations of pollutants were measured near the floor and within 5 m from the front of the vehicle.In the above cases,the driver would not breathe highly polluted air and would be relatively safe.When the vehicle idled into the chamber,however,high-risk areas formed on both sides of the vehicle and near the upper roof.Forward entry of the vehicle caused a greater increase in the concentration of pollutants in the chamber and in the driver’s breathing zone compared with reverse entry.展开更多
Trackless rubber-tyerd vehicles are the core equipment for auxiliary transportation in inclined-shaft coal mines,and the rationality of their routes plays the direct impact on operation safety and energy consumption.R...Trackless rubber-tyerd vehicles are the core equipment for auxiliary transportation in inclined-shaft coal mines,and the rationality of their routes plays the direct impact on operation safety and energy consumption.Rich studies have been done on scheduling rubber-tyerd vehicles driven by diesel oil,however,less works are for electric trackless rubber-tyred vehicles.Furthermore,energy consumption of vehicles gives no consideration on the impact of complex roadway and traffic rules on driving,especially the limited cruising ability of electric trackless rubber-tyred vehichles(TRVs).To address this issue,an energy consumption model of an electric trackless rubber-tyred vehicle is formulated,in which the effects from total mass,speed profiles,slope of roadways,and energy management mode are all considered.Following that,a low-carbon routing model of electric trackless rubber-tyred vehicles is built to minimize the total energy consumption under the constraint of vehicle avoidance,allowable load,and endurance power.As a problem-solver,an improved artificial bee colony algorithm is put forward.More especially,an adaptive neighborhood search is designed to guide employed bees to select appropriate operator in a specific space.In order to assign onlookers to some promising food sources reasonably,their selection probability is adaptively adjusted.For a stagnant food source,a knowledge-driven initialization is developed to generate a feasible substitute.The experimental results on four real-world instances indicate that improved artificial bee colony algorithm(IABC)outperforms other comparative algorithms and the special designs in its three phases effectively avoid premature convergence and speed up convergence.展开更多
Numerous coal fires burn underneath the Datong coalfield because of indiscriminate mining.Landsat TM/ETM,unmanned aerial vehicle(UAV),and infrared thermal imager were employed to monitor underground coal fires in th...Numerous coal fires burn underneath the Datong coalfield because of indiscriminate mining.Landsat TM/ETM,unmanned aerial vehicle(UAV),and infrared thermal imager were employed to monitor underground coal fires in the Majiliang mining area.The thermal field distributions of this area in 2000,2002,2006,2007,and 2009 were obtained using Landsat TM/ETM.The changes in the distribution were then analyzed to approximate the locations of the coal fires.Through UAV imagery employed at a very high resolution(0.2 m),the texture information,linear features,and brightness of the ground fissures in the coal fire area were determined.All these data were combined to build a knowledge model of determining fissures and were used to support underground coal fire detection.An infrared thermal imager was used to map the thermal field distribution of areas where coal fire is serious.Results were analyzed to identify the hot spot trend and the depth of the burning point.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52174191 and 51874191)the National Key R&D Program of China(No.2017YFC0805201)+1 种基金Qingchuang Science and Technology Project of Shandong Province University(No.2020KJD002)Taishan Scholars Project Special Funding(No.TS20190935).
文摘To define the diffusion behavior of harmful exhaust substances from diesel vehicles and support safety risk assessments of underground coal mines,we performed a multi-species coupling calculation of the emission and diffusion of harmful substances from a trackless rubber-wheel diesel vehicle.A computational fluid dynamics(CFD)model of the diffusion of harmful emissions was hence established and verified.From the perspective of risk analysis,the diffusion behavior and distribution of hazardous substances emitted by the diesel vehicle were studied under 4 different conditions;moreover,we identified areas characterized by hazardous levels of emissions.When the vehicle idled upwind in the roadway,high-risk areas formed behind and to the right of the vehicle:particularly high concentrations of pollutants were measured near the rear floor of the vehicle and within 5 m behind the vehicle.When the vehicle idled downwind,high-risk areas formed in front of it:particularly high concentrations of pollutants were measured near the floor and within 5 m from the front of the vehicle.In the above cases,the driver would not breathe highly polluted air and would be relatively safe.When the vehicle idled into the chamber,however,high-risk areas formed on both sides of the vehicle and near the upper roof.Forward entry of the vehicle caused a greater increase in the concentration of pollutants in the chamber and in the driver’s breathing zone compared with reverse entry.
基金This work was supported by the National Key R&D Program of China(No.2022YFB4703701)National Natural Science Foundation of China(Nos.61973305,52121003,and 61573361)Royal Society International Exchanges 2020 Cost Share,and the 111 Project(No.B21014).
文摘Trackless rubber-tyerd vehicles are the core equipment for auxiliary transportation in inclined-shaft coal mines,and the rationality of their routes plays the direct impact on operation safety and energy consumption.Rich studies have been done on scheduling rubber-tyerd vehicles driven by diesel oil,however,less works are for electric trackless rubber-tyred vehicles.Furthermore,energy consumption of vehicles gives no consideration on the impact of complex roadway and traffic rules on driving,especially the limited cruising ability of electric trackless rubber-tyred vehichles(TRVs).To address this issue,an energy consumption model of an electric trackless rubber-tyred vehicle is formulated,in which the effects from total mass,speed profiles,slope of roadways,and energy management mode are all considered.Following that,a low-carbon routing model of electric trackless rubber-tyred vehicles is built to minimize the total energy consumption under the constraint of vehicle avoidance,allowable load,and endurance power.As a problem-solver,an improved artificial bee colony algorithm is put forward.More especially,an adaptive neighborhood search is designed to guide employed bees to select appropriate operator in a specific space.In order to assign onlookers to some promising food sources reasonably,their selection probability is adaptively adjusted.For a stagnant food source,a knowledge-driven initialization is developed to generate a feasible substitute.The experimental results on four real-world instances indicate that improved artificial bee colony algorithm(IABC)outperforms other comparative algorithms and the special designs in its three phases effectively avoid premature convergence and speed up convergence.
基金Project(201412016)supported by the Special Fund for Public Projects of National Administration of Surveying,Mapping and Geoinformation of ChinaProject(51174287)supported by the National Natural Science Foundation of China
文摘Numerous coal fires burn underneath the Datong coalfield because of indiscriminate mining.Landsat TM/ETM,unmanned aerial vehicle(UAV),and infrared thermal imager were employed to monitor underground coal fires in the Majiliang mining area.The thermal field distributions of this area in 2000,2002,2006,2007,and 2009 were obtained using Landsat TM/ETM.The changes in the distribution were then analyzed to approximate the locations of the coal fires.Through UAV imagery employed at a very high resolution(0.2 m),the texture information,linear features,and brightness of the ground fissures in the coal fire area were determined.All these data were combined to build a knowledge model of determining fissures and were used to support underground coal fire detection.An infrared thermal imager was used to map the thermal field distribution of areas where coal fire is serious.Results were analyzed to identify the hot spot trend and the depth of the burning point.