To characterize the pore features of outburst coal samples and investigate whether outburst coal has some unique features or not, one of the authors, working as the member of the State Coal Mine Safety Committee of Ch...To characterize the pore features of outburst coal samples and investigate whether outburst coal has some unique features or not, one of the authors, working as the member of the State Coal Mine Safety Committee of China, sampled nine outburst coal samples(coal powder and block) from outburst disaster sites in underground coal mines in China, and then analyzed the pore and surface features of these samples using low temperature nitrogen adsorption tests. Test data show that outburst powder and block coal samples have similar properties in both pore size distribution and surface area. With increasing coal rank, the proportion of micropores increases, which results in a higher surface area. The Jiulishan samples are rich in micropores, and other tested samples contain mainly mesopores, macropores and fewer micropores. Both the unclosed hysteresis loop and force closed desorption phenomena are observed in all tested samples. The former can be attributed to the instability of the meniscus condensation in pores,interconnected pore features of coal and the potential existence of ink-bottle pores, and the latter can be attributed to the non-rigid structure of coal and the gas affinity of coal.展开更多
Three hundred and six coal samples were taken from main coal mines of twenty-six provinces,autonomous regions,and municipalities in China,according to the resource distribution and coal-forming periods as well as the ...Three hundred and six coal samples were taken from main coal mines of twenty-six provinces,autonomous regions,and municipalities in China,according to the resource distribution and coal-forming periods as well as the coal ranks and coal yields.Nitrogen was determined by using the Kjeldahl method at U.S.Geological Survey(USGS),which exhibit a normal frequency distribution.The nitrogen contents of over 90% Chinese coal vary from 0.52% to 1.41% and the average nitrogen content is recommended to be 0.98%.Nitrogen in coal exists primarily in organic form.There is a slight positive relationship between nitrogen content and coal ranking.展开更多
以SBA-15为硬模板剂,采用溶剂挥发诱导煤基沥青烯与聚丙烯腈(PAN)自组装,制备了氮掺杂有序介孔炭(NOMC)。通过CO_(2)活化,进一步提升NOMC的比表面积及电容性能。结果表明,SBA-15、沥青烯、PAN的比例为1∶1.2∶4.8时,800℃炭化所得炭材...以SBA-15为硬模板剂,采用溶剂挥发诱导煤基沥青烯与聚丙烯腈(PAN)自组装,制备了氮掺杂有序介孔炭(NOMC)。通过CO_(2)活化,进一步提升NOMC的比表面积及电容性能。结果表明,SBA-15、沥青烯、PAN的比例为1∶1.2∶4.8时,800℃炭化所得炭材料成炭率与有序性均较高。900℃活化后其比表面积、孔容及孔径依次为602.1 m 2/g,0.426 cm 3/g,3.808 nm,且比电容达到127.2 F/g,相比未活化,提升了41.8%。展开更多
基金provided by the Fundamental Research Funds for the Universities of Henan Province of China(No.NSFRF140105)the 2015 Key Research Program of Higher Education Institution in Henan Department of Education of China(No.15A440007)+4 种基金the Henan Polytechnic University Doctoral Fund Project(No.B2014-004)the 2016 Foundation and Advanced Technology Research Project of Henan Province(No.162300410038)the 2014 Provincial University Training Program Under the National-Level Undergraduate Training Program in Innovation and Entrepreneurship of China(No.201410460036)the National Natural Science Foundation of China(No.51274090)the State Key Laboratory Cultivation Base for Gas Geology and Gas Control(Henan Polytechnic University-China)(No.WS2012B01)
文摘To characterize the pore features of outburst coal samples and investigate whether outburst coal has some unique features or not, one of the authors, working as the member of the State Coal Mine Safety Committee of China, sampled nine outburst coal samples(coal powder and block) from outburst disaster sites in underground coal mines in China, and then analyzed the pore and surface features of these samples using low temperature nitrogen adsorption tests. Test data show that outburst powder and block coal samples have similar properties in both pore size distribution and surface area. With increasing coal rank, the proportion of micropores increases, which results in a higher surface area. The Jiulishan samples are rich in micropores, and other tested samples contain mainly mesopores, macropores and fewer micropores. Both the unclosed hysteresis loop and force closed desorption phenomena are observed in all tested samples. The former can be attributed to the instability of the meniscus condensation in pores,interconnected pore features of coal and the potential existence of ink-bottle pores, and the latter can be attributed to the non-rigid structure of coal and the gas affinity of coal.
基金supported by the National Natural Science Foundation of China (Grant No. 40133010)
文摘Three hundred and six coal samples were taken from main coal mines of twenty-six provinces,autonomous regions,and municipalities in China,according to the resource distribution and coal-forming periods as well as the coal ranks and coal yields.Nitrogen was determined by using the Kjeldahl method at U.S.Geological Survey(USGS),which exhibit a normal frequency distribution.The nitrogen contents of over 90% Chinese coal vary from 0.52% to 1.41% and the average nitrogen content is recommended to be 0.98%.Nitrogen in coal exists primarily in organic form.There is a slight positive relationship between nitrogen content and coal ranking.
文摘以SBA-15为硬模板剂,采用溶剂挥发诱导煤基沥青烯与聚丙烯腈(PAN)自组装,制备了氮掺杂有序介孔炭(NOMC)。通过CO_(2)活化,进一步提升NOMC的比表面积及电容性能。结果表明,SBA-15、沥青烯、PAN的比例为1∶1.2∶4.8时,800℃炭化所得炭材料成炭率与有序性均较高。900℃活化后其比表面积、孔容及孔径依次为602.1 m 2/g,0.426 cm 3/g,3.808 nm,且比电容达到127.2 F/g,相比未活化,提升了41.8%。