The goal of this study was to investigate coal quality features and their relationship to coal spontaneous combustion characteristics in multi-seam coal mines to better predict when coal spontaneous combustion is like...The goal of this study was to investigate coal quality features and their relationship to coal spontaneous combustion characteristics in multi-seam coal mines to better predict when coal spontaneous combustion is likely to occur.To that end,coal samples of various particle sizes were obtained from five coal seams(Nos.6,8,9,12 and 20)in the Shuangyashan City Xin’an Coal Mine.The samples were then respectively heated using a temperature programming system to observe and compare similarities and differences in the sponta-neous combustion process of different particle sizes in response to rising temperature.The experimental results show,that in all five coal seams,the concentration of CO,C_(2)H_(4),and C_(2)H_(6) increased with a certain degree of regularity as a function of rising temperature.However,of these three gasses,only CO and C_(2)H_(4) can be used as indicators to predict coal mine spontaneous combustion.The critical temperature for samples from all five coal seams ranged from 50–85℃,while the dry cracking temperature of coal seams 8 and 12(80–100℃)were lower than those of 6,9,and 20(100–120℃).Furthermore,the production rate of CO,C_(2)H_(4),and C_(2)H_(6) is related to both coal particle size and temperature.The smaller the particle size,the faster the production rate;and the higher the temperature,the more gas that gets produced.All five coal seems are mainly com-posed of long flame coal.However,they differ in that the No.12 coal seam contains weak cohesive coal;the No.8 coal seam contains lean and gas coal;and the Nos.6,9,and 20 coal seams contain a certain amount of anthracite.During the programmed coal heating,the CO,C_(2)H_(4),and C_(2)H_(6) release trend for the coal seams was No.12>No.8>Nos.6,9,and 20.These results demonstrate that the presence of weak cohesive coal and anthracite highly influence the concentration of CO,C_(2)H_(4),and C_(2)H_(6) released during coal spontaneous combustion.展开更多
Our recent progress on developments of laser-induced breakdown spectroscopy (L[BS) based equipments for on-line monitoring of pulverized coal and unburned carbon (UC) level of fly ash are reviewed. A fully softwar...Our recent progress on developments of laser-induced breakdown spectroscopy (L[BS) based equipments for on-line monitoring of pulverized coal and unburned carbon (UC) level of fly ash are reviewed. A fully software-controlled LIBS equipment comprising a self-cleaning device for on-line coal quality monitoring in power plants is developed. The system features an automated sampling device, which is capable of elemental (C, Ca, Mg, Ti, Si, H, Al, Fe, S, and organic oxygen) and proximate analysis (Qad and Aad) through optimal data processing methods. An automated prototype LIBS apparatus has been developed for possible application to power plants for on-line analysis of UC level in fly ash. New data processing methods are proposed to correct spectral interference and matrix effects, with the accuracy for UC level analysis estimated to be 0.26%.展开更多
基金support from the Major Project of Engineering Science and Technology in Heilongjiang Province in 2020(Grant No.2020ZX04A01)support from the Scientific Research Projects of Undergraduate Universities in Heilongjiang Province(Grant No.2020-KYYWF-0534).
文摘The goal of this study was to investigate coal quality features and their relationship to coal spontaneous combustion characteristics in multi-seam coal mines to better predict when coal spontaneous combustion is likely to occur.To that end,coal samples of various particle sizes were obtained from five coal seams(Nos.6,8,9,12 and 20)in the Shuangyashan City Xin’an Coal Mine.The samples were then respectively heated using a temperature programming system to observe and compare similarities and differences in the sponta-neous combustion process of different particle sizes in response to rising temperature.The experimental results show,that in all five coal seams,the concentration of CO,C_(2)H_(4),and C_(2)H_(6) increased with a certain degree of regularity as a function of rising temperature.However,of these three gasses,only CO and C_(2)H_(4) can be used as indicators to predict coal mine spontaneous combustion.The critical temperature for samples from all five coal seams ranged from 50–85℃,while the dry cracking temperature of coal seams 8 and 12(80–100℃)were lower than those of 6,9,and 20(100–120℃).Furthermore,the production rate of CO,C_(2)H_(4),and C_(2)H_(6) is related to both coal particle size and temperature.The smaller the particle size,the faster the production rate;and the higher the temperature,the more gas that gets produced.All five coal seems are mainly com-posed of long flame coal.However,they differ in that the No.12 coal seam contains weak cohesive coal;the No.8 coal seam contains lean and gas coal;and the Nos.6,9,and 20 coal seams contain a certain amount of anthracite.During the programmed coal heating,the CO,C_(2)H_(4),and C_(2)H_(6) release trend for the coal seams was No.12>No.8>Nos.6,9,and 20.These results demonstrate that the presence of weak cohesive coal and anthracite highly influence the concentration of CO,C_(2)H_(4),and C_(2)H_(6) released during coal spontaneous combustion.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant Nos. 61127017, 61205216, 61275213, 61178009, 61108030, and 60978018), the National Basic Research Program (973 Program) (Grant No. 2012CB921603), International Science & Technology Cooperation Program of China (Grant No. 2001DFA12490), Major Program of the National Natural Science Foundation of China (Grant No. 10934004), NSFC Project for Excellent Research Team (Grant No. 61121064), Environmental Project of Shanxi Province (Grant No. 2011256).
文摘Our recent progress on developments of laser-induced breakdown spectroscopy (L[BS) based equipments for on-line monitoring of pulverized coal and unburned carbon (UC) level of fly ash are reviewed. A fully software-controlled LIBS equipment comprising a self-cleaning device for on-line coal quality monitoring in power plants is developed. The system features an automated sampling device, which is capable of elemental (C, Ca, Mg, Ti, Si, H, Al, Fe, S, and organic oxygen) and proximate analysis (Qad and Aad) through optimal data processing methods. An automated prototype LIBS apparatus has been developed for possible application to power plants for on-line analysis of UC level in fly ash. New data processing methods are proposed to correct spectral interference and matrix effects, with the accuracy for UC level analysis estimated to be 0.26%.