The study of the dynamic disaster mechanism of coal and gas outburst two-phase flow is crucial for improving disaster reduction and rescue ability of coal mine outburst accidents.An outburst test in a T-shaped roadway...The study of the dynamic disaster mechanism of coal and gas outburst two-phase flow is crucial for improving disaster reduction and rescue ability of coal mine outburst accidents.An outburst test in a T-shaped roadway was conducted using a self-developed large-scale outburst dynamic disaster test system.We investigated the release characteristics of main energy sources in coal seam,and obtained the dynamic characteristics of outburst two-phase flow in a roadway.Additionally,we established a formation model for outburst impact flow and a model for its flow in a bifurcated structure.The results indicate that the outburst process exhibits pulse characteristics,and the rapid destruction process of coal seam and the blocking state of gas flow are the main causes of the pulse phenomenon.The outburst energy is released in stages,and the elastic potential energy is released in the vertical direction before the horizontal direction.In a straight roadway,the impact force oscillates along the roadway.With an increase in the solid–gas ratio,the two-phase flow impact force gradually increases,and the disaster range extends from the middle of the roadway to the coal seam.In the area near the coal seam,the disaster caused by the two-phase flow impact is characterized by intermittent recovery.In a bifurcated roadway,the effect of impact airflow on impact dynamic disaster is much higher than that of two-phase flow,and the impact force tends to weaken with increasing solid-gas ratio.The impact force is asymmetrically distributed;it is higher on the left of the bifurcated roadway.With an increase in the solid-gas ratio,the static pressure rapidly decreases,and the bifurcated structure accelerates the attenuation of static pressure.Moreover,secondary acceleration is observed when the shock wave moves along the T-shaped roadway,indicating that the bifurcated structure increases the shock wave velocity.展开更多
Introduced the coal and rock AE propagation rule,wave guide fixing technics onAE sensors,and AE forecasting coal and rock disaster on the scene and so on,The coaland rock AE propagation rule that follows the exponent ...Introduced the coal and rock AE propagation rule,wave guide fixing technics onAE sensors,and AE forecasting coal and rock disaster on the scene and so on,The coaland rock AE propagation rule that follows the exponent attenuation function on different AEfrequencies,different quality factors and different propagation distances were analyzedand deduced by theory,numerical simulation,and by actual experiment.Consequently,itwas deduced that the coal and rock AE propagation rule follows the exponent attenuationfunction.Based on the correlative theory of wave dynamics and AE sensor,the AE waveguide propagation mechanical model on the sensor fixing manner is found,and the relationsof displacement and speed and acceleration between the AE signal source and theAE signal receiving terminal are presented.The effect of the AE sensor fixing manners oncoal and rock surfaces,coal and rock bottoms and wave guides were studied by actualexperiment.For the results,the effect of the AE sensor fixing manner on wave guides isbetter than on coal and rock surfaces,and was equivalent to the fixing manner on coal androck bottoms.Based on the above study results,actual coal and rock dynamistic disasterswere successfully forecasted.展开更多
The electromagnetic radiation (EMR) signal collected by monitoring system during coal or rock dynamic disaster may be interferred easily by electromagnetic noises in mines. The noises have a direct influence on the ...The electromagnetic radiation (EMR) signal collected by monitoring system during coal or rock dynamic disaster may be interferred easily by electromagnetic noises in mines. The noises have a direct influence on the recognition and analysis of the EMR signal features during the disaster. With the aim of removing these noises, an ensemble empirical mode decomposition (EEMD) adaptive morphological filter was proposed. From the result of the simulation and the experiment, it is shown that the method can restrain the random noise and white Gaussian noise mixed with EMR signal effectively. The filter is highly useful for improving the robustness of the coal or rock dynamic disaster monitoring system.展开更多
基金This work was supported by the National Natural Science Foundation of China(Nos.51874055,52074047,and 52064016).
文摘The study of the dynamic disaster mechanism of coal and gas outburst two-phase flow is crucial for improving disaster reduction and rescue ability of coal mine outburst accidents.An outburst test in a T-shaped roadway was conducted using a self-developed large-scale outburst dynamic disaster test system.We investigated the release characteristics of main energy sources in coal seam,and obtained the dynamic characteristics of outburst two-phase flow in a roadway.Additionally,we established a formation model for outburst impact flow and a model for its flow in a bifurcated structure.The results indicate that the outburst process exhibits pulse characteristics,and the rapid destruction process of coal seam and the blocking state of gas flow are the main causes of the pulse phenomenon.The outburst energy is released in stages,and the elastic potential energy is released in the vertical direction before the horizontal direction.In a straight roadway,the impact force oscillates along the roadway.With an increase in the solid–gas ratio,the two-phase flow impact force gradually increases,and the disaster range extends from the middle of the roadway to the coal seam.In the area near the coal seam,the disaster caused by the two-phase flow impact is characterized by intermittent recovery.In a bifurcated roadway,the effect of impact airflow on impact dynamic disaster is much higher than that of two-phase flow,and the impact force tends to weaken with increasing solid-gas ratio.The impact force is asymmetrically distributed;it is higher on the left of the bifurcated roadway.With an increase in the solid-gas ratio,the static pressure rapidly decreases,and the bifurcated structure accelerates the attenuation of static pressure.Moreover,secondary acceleration is observed when the shock wave moves along the T-shaped roadway,indicating that the bifurcated structure increases the shock wave velocity.
基金Supported by the Project of National Basic Research Program of China(973 Program)(2005CB221505)the Significant Project of National Natural Science Fund(50534080/E041503)the Project of Coal Mine Gas and Fire Hazard Prevention Major Lab in Henan Province(HKLGF200508)
文摘Introduced the coal and rock AE propagation rule,wave guide fixing technics onAE sensors,and AE forecasting coal and rock disaster on the scene and so on,The coaland rock AE propagation rule that follows the exponent attenuation function on different AEfrequencies,different quality factors and different propagation distances were analyzedand deduced by theory,numerical simulation,and by actual experiment.Consequently,itwas deduced that the coal and rock AE propagation rule follows the exponent attenuationfunction.Based on the correlative theory of wave dynamics and AE sensor,the AE waveguide propagation mechanical model on the sensor fixing manner is found,and the relationsof displacement and speed and acceleration between the AE signal source and theAE signal receiving terminal are presented.The effect of the AE sensor fixing manners oncoal and rock surfaces,coal and rock bottoms and wave guides were studied by actualexperiment.For the results,the effect of the AE sensor fixing manner on wave guides isbetter than on coal and rock surfaces,and was equivalent to the fixing manner on coal androck bottoms.Based on the above study results,actual coal and rock dynamistic disasterswere successfully forecasted.
文摘The electromagnetic radiation (EMR) signal collected by monitoring system during coal or rock dynamic disaster may be interferred easily by electromagnetic noises in mines. The noises have a direct influence on the recognition and analysis of the EMR signal features during the disaster. With the aim of removing these noises, an ensemble empirical mode decomposition (EEMD) adaptive morphological filter was proposed. From the result of the simulation and the experiment, it is shown that the method can restrain the random noise and white Gaussian noise mixed with EMR signal effectively. The filter is highly useful for improving the robustness of the coal or rock dynamic disaster monitoring system.