To predict joint development characteristics of coal seams, joint characteristics of rock seams from 88field stations were observed and comparisons were made between joint characteristics of coal and rock seams at 10 ...To predict joint development characteristics of coal seams, joint characteristics of rock seams from 88field stations were observed and comparisons were made between joint characteristics of coal and rock seams at 10 coal outcrops. Additionally, detailed joint measurements of underground coal seams were taken at two coal mines. This study investigated the effects of seam thickness, lithology, and structure on joint development and established the relationship between joint development of coal and rock seams, which allowed predictions of predominant joint densities for the No.5 coal seam in the southeastern margin of the Ordos basin. The results show that outcrop and underground coal seams exhibit the same joint systems as rock seams. The joints are mainly upright. Predominant joints strike 55° on average, followed by joints striking 320°. The joint density of the coal seam is 18.7–22.5 times that of the sandstone seam at the same thickness. The predominant joint density of the No.5 coal seam, controlled by the structure, is 4–20 joints per meter. Joint densities exhibit high values at intersecting areas of faults and folds and decrease values in structurally stable areas. The permeability increases exponentially with increasing density of the predominant joints.展开更多
In mining the left-over coal above the gob,stope wall rock of mining area have hard limestone.through field observation,the face-contacted block structure was found in rocks between coal seams to mine the left-over co...In mining the left-over coal above the gob,stope wall rock of mining area have hard limestone.through field observation,the face-contacted block structure was found in rocks between coal seams to mine the left-over coal above the gob.In order to probe into the movement law of rock strata and strata control measures,it is very important to identify the mobile block in face-contacted block structure of rocks between coal seams.This paper relies on the thought of block theory to establish appropriate parameter matrix and figure out its discrimination matrix in view of the fact that the block in face-contacted block structure has high intensity and stiffness,the展开更多
In order to investigate the behaviors and stability of rock strata surrounding an entry with bolt supporting in large dip coal seams (LDCSs) dipping from 25° to 45°, a self-developed rotatable experimental f...In order to investigate the behaviors and stability of rock strata surrounding an entry with bolt supporting in large dip coal seams (LDCSs) dipping from 25° to 45°, a self-developed rotatable experimental frame for similar material simulation test was used to build the model with the dip of 30°, based on analyses of geological and technological conditions in Huainan mine area, Anhui, China. The strata behaviors, such as extracting- and mining-induced stresses development, deformation and failure modes, were synthetically integrated during working face advancing. Results show that the development characteristics of mining-induced stress and deformation are asymmetrical in the roadway. The strata behaviors are totally different in different sections of the roadway. Because of asymmetrically geometrical structure influenced by increasing dip, strata dislocating, rock falling and breaking occur in roof. Then, squeezing, collapsing and caving of coal happen in upper- and lower-rib due to shearing action caused by asymmetrical roof bending and dislocating. Owing to the absence of supporting, floor heaving is very violent and usually the zone of floor heaving develops from the lower-rib to upper-rib. Engineering practices show that, due to the asymmetrical characteristics of rock pressure and roadway configuration, it is more difficult to implement bolt supporting system to control rock stability of roadways in LDCSs. The upper-rib and roof of entries are the key sections. Consequently, it is reliable to use asymmetrical bolt-mesh-cable supporting system to control rock stability of roadways based on the asymmetrical characteristics of roadway configuration and strata behaviors.展开更多
Surrounding rock of coal seam was one of the important factors to gas occurrence. The coal seam gas occurrence was studied by the index of roof strata thickness or sand content rate;we found that there were certain sh...Surrounding rock of coal seam was one of the important factors to gas occurrence. The coal seam gas occurrence was studied by the index of roof strata thickness or sand content rate;we found that there were certain shortcomings. In order to reasonably evaluate the influence of coal seam surrounding rock on gas occurrence in Panji mining area, we quantitatively evaluated the effect of coal seam surrounding rock on gas occurrence by influence coefficient of roof strata thickness, and built six mathematical models of the variational gas content in the mining area which is divided into six gas geological units. The results shows that the coal seam gas content is mainly influenced by 20 mroof strata in each gas geological unit, the gas content presents the tendency of increase, and with the influence coefficient of strata thickness increases, they exist a significant linear relationship.展开更多
To explore the impact of lateral stress concentration in interlayer rock stratum on the exploitation of protected coal seam, a field experiment was carried out in a multi-seam mining structure. Lateral stress redistri...To explore the impact of lateral stress concentration in interlayer rock stratum on the exploitation of protected coal seam, a field experiment was carried out in a multi-seam mining structure. Lateral stress redistribution and interlayer rock failure behavior were surveyed. Then an assistant numerical investigation was implemented to evolve the effect of liberated seam mining and its influence on stress reconstruction in surrounding rock mass. The cause of lateral stress concentration and its impact were discussed finally. Key findings turn out that a certain lateral stress increases in interlayer rock stratum and concentrates on its lower region. Lateral stress concentration and interlayer rock failure are interactional. The former is an inducing factor of the latter;the latter promotes the increase of concentration degree. Extent of lateral stress concentration increases to the maximum as seam distance is about 50 m. But the efficacy of liberated seam mining decreases as the seam spacing gets larger. Protected seam mining is then classified based upon the impact of lateral stress concentration, which helps to prevent the rock burst hazard and then to achieve a reliable mining in deep mines.展开更多
For a study of the movement and deformation of coal-rock mass and low protected seams below a stope,as well as for fracture developments and rules of evolution of permeability,we designed a plane strain model test sta...For a study of the movement and deformation of coal-rock mass and low protected seams below a stope,as well as for fracture developments and rules of evolution of permeability,we designed a plane strain model test stand to carry out model tests of similar materials in order to improve the effect of gas drainage from low protected seams and to measure the movement and deformation of coal-rock mass using a method of non-contact close-range photogrammetry.Our results show that 1) using paraffin melting to take the place of coal seam mining can satisfy the mining conditions of a protective seam;2) coal-rock mass under goafs has an upward movement after the protective seam has been mined,causing floor heaving;3) low protected seams become swollen and deformed,providing a good pressure-relief effect and causing the coal-rock mass under both sides of coal pillars to become deformed by compression and 4) the evolution of permeability of low protected seams follows the way of initial values→a slight decrease→a great increase→stability→final decrease.Simultaneously,the coefficient of air permeability increased at a decreasing rate with an increase in interlayer spacing.展开更多
In light of the severe deformation and destruction of the district raise tunnel in the mining area at the northern part of the Lubanshan colliery, by the theoretic analysis and numerical simulation, both the mining st...In light of the severe deformation and destruction of the district raise tunnel in the mining area at the northern part of the Lubanshan colliery, by the theoretic analysis and numerical simulation, both the mining stress distribution in seams group and the deformation and destruction mechanism of floor district raise were investigated. The results show that, at the maximum vertical distance of 40 m, the abutment stress has an influence on the recovery of 2# and 3# coal seam and 8# coal seam at distance of 30 m. As a result, the recovery of 8# is rather than those of 2# or 3# coal seam, which contributes to the deformation and destruction of the district raise surrounding rock. The major factors affecting the abutment stress include the mining depth, mining height, residual gob space, adjacent working faces and short spacing coal seam recovery.展开更多
基金Financial support for this work, provided by the National Science and Technology Major Project (No. 2011ZX05034-001)
文摘To predict joint development characteristics of coal seams, joint characteristics of rock seams from 88field stations were observed and comparisons were made between joint characteristics of coal and rock seams at 10 coal outcrops. Additionally, detailed joint measurements of underground coal seams were taken at two coal mines. This study investigated the effects of seam thickness, lithology, and structure on joint development and established the relationship between joint development of coal and rock seams, which allowed predictions of predominant joint densities for the No.5 coal seam in the southeastern margin of the Ordos basin. The results show that outcrop and underground coal seams exhibit the same joint systems as rock seams. The joints are mainly upright. Predominant joints strike 55° on average, followed by joints striking 320°. The joint density of the coal seam is 18.7–22.5 times that of the sandstone seam at the same thickness. The predominant joint density of the No.5 coal seam, controlled by the structure, is 4–20 joints per meter. Joint densities exhibit high values at intersecting areas of faults and folds and decrease values in structurally stable areas. The permeability increases exponentially with increasing density of the predominant joints.
文摘In mining the left-over coal above the gob,stope wall rock of mining area have hard limestone.through field observation,the face-contacted block structure was found in rocks between coal seams to mine the left-over coal above the gob.In order to probe into the movement law of rock strata and strata control measures,it is very important to identify the mobile block in face-contacted block structure of rocks between coal seams.This paper relies on the thought of block theory to establish appropriate parameter matrix and figure out its discrimination matrix in view of the fact that the block in face-contacted block structure has high intensity and stiffness,the
基金Supported by the National Basic Research Program of China (2010CB226806)the Visiting Scholar Foundation of Key Laboratory for Exploitation of Southwestern Resources and Environmental Disaster Control Engineeringthe Outstanding Innovation Group Program of Anhui University of Science and Technology
文摘In order to investigate the behaviors and stability of rock strata surrounding an entry with bolt supporting in large dip coal seams (LDCSs) dipping from 25° to 45°, a self-developed rotatable experimental frame for similar material simulation test was used to build the model with the dip of 30°, based on analyses of geological and technological conditions in Huainan mine area, Anhui, China. The strata behaviors, such as extracting- and mining-induced stresses development, deformation and failure modes, were synthetically integrated during working face advancing. Results show that the development characteristics of mining-induced stress and deformation are asymmetrical in the roadway. The strata behaviors are totally different in different sections of the roadway. Because of asymmetrically geometrical structure influenced by increasing dip, strata dislocating, rock falling and breaking occur in roof. Then, squeezing, collapsing and caving of coal happen in upper- and lower-rib due to shearing action caused by asymmetrical roof bending and dislocating. Owing to the absence of supporting, floor heaving is very violent and usually the zone of floor heaving develops from the lower-rib to upper-rib. Engineering practices show that, due to the asymmetrical characteristics of rock pressure and roadway configuration, it is more difficult to implement bolt supporting system to control rock stability of roadways in LDCSs. The upper-rib and roof of entries are the key sections. Consequently, it is reliable to use asymmetrical bolt-mesh-cable supporting system to control rock stability of roadways based on the asymmetrical characteristics of roadway configuration and strata behaviors.
文摘Surrounding rock of coal seam was one of the important factors to gas occurrence. The coal seam gas occurrence was studied by the index of roof strata thickness or sand content rate;we found that there were certain shortcomings. In order to reasonably evaluate the influence of coal seam surrounding rock on gas occurrence in Panji mining area, we quantitatively evaluated the effect of coal seam surrounding rock on gas occurrence by influence coefficient of roof strata thickness, and built six mathematical models of the variational gas content in the mining area which is divided into six gas geological units. The results shows that the coal seam gas content is mainly influenced by 20 mroof strata in each gas geological unit, the gas content presents the tendency of increase, and with the influence coefficient of strata thickness increases, they exist a significant linear relationship.
文摘To explore the impact of lateral stress concentration in interlayer rock stratum on the exploitation of protected coal seam, a field experiment was carried out in a multi-seam mining structure. Lateral stress redistribution and interlayer rock failure behavior were surveyed. Then an assistant numerical investigation was implemented to evolve the effect of liberated seam mining and its influence on stress reconstruction in surrounding rock mass. The cause of lateral stress concentration and its impact were discussed finally. Key findings turn out that a certain lateral stress increases in interlayer rock stratum and concentrates on its lower region. Lateral stress concentration and interlayer rock failure are interactional. The former is an inducing factor of the latter;the latter promotes the increase of concentration degree. Extent of lateral stress concentration increases to the maximum as seam distance is about 50 m. But the efficacy of liberated seam mining decreases as the seam spacing gets larger. Protected seam mining is then classified based upon the impact of lateral stress concentration, which helps to prevent the rock burst hazard and then to achieve a reliable mining in deep mines.
基金the Major Programs of the National Basic Research Program of China (No.2005CB221503)the National Natural Science Foundation of China (Nos. 70533050 and 50674089) for their support of this project
文摘For a study of the movement and deformation of coal-rock mass and low protected seams below a stope,as well as for fracture developments and rules of evolution of permeability,we designed a plane strain model test stand to carry out model tests of similar materials in order to improve the effect of gas drainage from low protected seams and to measure the movement and deformation of coal-rock mass using a method of non-contact close-range photogrammetry.Our results show that 1) using paraffin melting to take the place of coal seam mining can satisfy the mining conditions of a protective seam;2) coal-rock mass under goafs has an upward movement after the protective seam has been mined,causing floor heaving;3) low protected seams become swollen and deformed,providing a good pressure-relief effect and causing the coal-rock mass under both sides of coal pillars to become deformed by compression and 4) the evolution of permeability of low protected seams follows the way of initial values→a slight decrease→a great increase→stability→final decrease.Simultaneously,the coefficient of air permeability increased at a decreasing rate with an increase in interlayer spacing.
基金Project(51104176)supported by the National Natural Science Foundation of China
文摘In light of the severe deformation and destruction of the district raise tunnel in the mining area at the northern part of the Lubanshan colliery, by the theoretic analysis and numerical simulation, both the mining stress distribution in seams group and the deformation and destruction mechanism of floor district raise were investigated. The results show that, at the maximum vertical distance of 40 m, the abutment stress has an influence on the recovery of 2# and 3# coal seam and 8# coal seam at distance of 30 m. As a result, the recovery of 8# is rather than those of 2# or 3# coal seam, which contributes to the deformation and destruction of the district raise surrounding rock. The major factors affecting the abutment stress include the mining depth, mining height, residual gob space, adjacent working faces and short spacing coal seam recovery.