Spontaneous combustion of coal is a well-known phenomena around the globe. Apart from the coal itself,burning coal-shales is becoming a problem in the South African coal mines. Serious incidents of spontaneous combust...Spontaneous combustion of coal is a well-known phenomena around the globe. Apart from the coal itself,burning coal-shales is becoming a problem in the South African coal mines. Serious incidents of spontaneous combustion have been reported as a result of self-heating of reactive coal-shales. The intrinsic properties and spontaneous combustion tests of 28 selected coal and coal-shale samples were conducted and a relationship between the two has been established. Intrinsic properties were obtained by using the proximate and ultimate analysis, and spontaneous combustion liability tests results were obtained by using the Wits-Ehac and Wits-CT indices. The experimental results show that intrinsic properties of these materials complement to the spontaneous combustion liability tests results. Comparative analyses of intrinsic properties and spontaneous combustion characteristics indicate similarities between the mechanism of coal oxidation and that of the oxidative processes undergone by coal-shales. For the tested samples, coal samples have a higher intrinsic spontaneous combustion reactivity rating than the coal-shales.Furthermore, an increase in carbon, moisture, hydrogen, volatile matter, nitrogen and a decrease in ash content indicate an increased proneness to self-heating. The concentration of pyrite found in the coal-shales accelerates self-heating. The event of spontaneous combustion can occur if coal-shales absorb sufficient oxygen when subjected to atmospheric conditions.展开更多
Coal and oil shale are two common sedimentary energy sources which are often symbiotically developed in M esozoic- Cenozoic continental fault basins. However, the mechanisms and characteristics of the symbiotic develo...Coal and oil shale are two common sedimentary energy sources which are often symbiotically developed in M esozoic- Cenozoic continental fault basins. However, the mechanisms and characteristics of the symbiotic development are not yet clearly known. In this research study, the typical continental fault basins of eastern China were chosen as examples for the purpose of conducting an examination of the coal and oil shale symbiotic assemblage types, genetic environmental differences, and transformation mechanisms, as well as the development and occurrence characteristics o f different assemblage types. Through a large number of investigations, systematic experimental testing, and sequence stratigraphy studies, the following conclusions were obtained:(1) There were five types of coal and oil shale symbiotic assemblages observed in the continental fault basins,(2) The development of coal and oil shale deposits requires a warm and humid climate, stable structure, abundant organic matter supply, a certain water depth, and a lower terrestrial source debris supply. The observed differences were that the water depth conditions were diversified in the study area, as well as the sources, types, and content of the organic matter.(3) The rapid transformations of the coal and oil shale genetic environments were mainly controlled by the tectonic settings and climatic conditions, which were determined to control the changes in the water depths, salinity,redox conditions, and lake productivity of the genetic environments. Also, in the symbiotic assemblages, genetic environment changes had induced the development of oil shale deposits, which gradually evolved into coal genetic environments.(4) In the isochronous sequence stratigraphic framework of the coal and oil shale symbiotic assemblages, the lake expansion system tracts (EST) were determined to be the most beneficial to the growth o f all the types of assemblages and were characterized by more assemblage development phases and smaller bed thicknesses. From the early to the late stages of the EST, and from the lakesides to lake centers, the thicknesses of the coal seams in the symbiotic assemblages showed trends of thinning, while the thicknesses of the oil shale deposits exhibited increasing trends. The early stages of high stand system tracts were found to be beneficial to the development of the symbiotic assemblages of coal seams overlying the oil shale. This tract type generally presented large bed thicknesses and distribution ranges. The low stand system tract and the late high stand system tract were determined to be unconducive to the development of the symbiotic assemblages.展开更多
Objective The Juhugeng mining area in Qinghai Province of northwest China has attracted wide attention among geologists for it hosts typical coal measure gases.The shale gas reservoirs were reformed by intensive struc...Objective The Juhugeng mining area in Qinghai Province of northwest China has attracted wide attention among geologists for it hosts typical coal measure gases.The shale gas reservoirs were reformed by intensive structural movements during geological periods,展开更多
The Upper Paleozoic(Carboniferous to Permian) succession in the east margin of the Ordos Basin in the North China Craton has a potential to contain significant hydrocarbon resources, though attention have been mainly ...The Upper Paleozoic(Carboniferous to Permian) succession in the east margin of the Ordos Basin in the North China Craton has a potential to contain significant hydrocarbon resources, though attention have been mainly attracted for its successful development of coalbed methane(CBM). To improve the previous resource estimates and evaluate the hydrocarbon play possibilities, this study incorporated new discoveries of hydrocarbon units and their stratigraphic relation with source rocks, hydrocarbon migration and trapping configurations. Continuous hydrocarbon accumulation units were identified within the Upper Paleozoic, including the Taiyuan, Shanxi and Xiashihezi formations with great tight gas potential, and the Taiyuan and Shanxi formations also containing shale gas and CBM. Different strata combinations are identified with coal deposition and favour for continuous gas accumulations, including the tidal flat, deltaic and fluvial systems distributed in most of the study areas. Methane was not only generated from the thick coal seams in the Taiyuan and Shanxi formations, but also from shale and dark mudstones. The coal, shale and tight sandstones are proved of remarkable gas content and hydrocarbon indications, and the gas saturation of tight sandstones decreases upward. The stacked deposit combinations vary isochronally in different areas, while the coal seams were developed stably showing good gas sources. Two key stages control the hydrocarbon enrichment, the continuous subsidence from coal forming to Late Triassic and the anomalous paleo-geothermal event happened in Early Cretaceous, as indicated by the fluid inclusions evidence. Extensive areas show good hydrocarbon development potential presently, and more works should be focused on the evaluation and selection of good reservoir combinations.展开更多
Numerical simulations are used to investigate the impact of intrinsic and extrinsic reservoir properties on the production from coal and organic rich lithologies in the Lower Cretaceous Mannville coal measures of the ...Numerical simulations are used to investigate the impact of intrinsic and extrinsic reservoir properties on the production from coal and organic rich lithologies in the Lower Cretaceous Mannville coal measures of the Western Canadian Sedimentary Basin. The coal measures are complex reservoirs in which production is from horizontal wells drilled and completed in the thickest coal seam in the succession (1 m versus 3 m), which has production and pressure support from thinner coals in the adjacent stratigraphy and from organic-rich shales interbedded and over and underlying the coal seams. Numerical models provide insight as to the relative importance of the myriad of parameters that may impact production that are not self-evident or intuitive in complex coal measures.展开更多
文摘Spontaneous combustion of coal is a well-known phenomena around the globe. Apart from the coal itself,burning coal-shales is becoming a problem in the South African coal mines. Serious incidents of spontaneous combustion have been reported as a result of self-heating of reactive coal-shales. The intrinsic properties and spontaneous combustion tests of 28 selected coal and coal-shale samples were conducted and a relationship between the two has been established. Intrinsic properties were obtained by using the proximate and ultimate analysis, and spontaneous combustion liability tests results were obtained by using the Wits-Ehac and Wits-CT indices. The experimental results show that intrinsic properties of these materials complement to the spontaneous combustion liability tests results. Comparative analyses of intrinsic properties and spontaneous combustion characteristics indicate similarities between the mechanism of coal oxidation and that of the oxidative processes undergone by coal-shales. For the tested samples, coal samples have a higher intrinsic spontaneous combustion reactivity rating than the coal-shales.Furthermore, an increase in carbon, moisture, hydrogen, volatile matter, nitrogen and a decrease in ash content indicate an increased proneness to self-heating. The concentration of pyrite found in the coal-shales accelerates self-heating. The event of spontaneous combustion can occur if coal-shales absorb sufficient oxygen when subjected to atmospheric conditions.
基金supported by the National Key Research and Development Plan (2017YFC0601400)SDUST Research Fund (2018TDJH101)the National Natural Science Foundation of China (41402086, 272172)
文摘Coal and oil shale are two common sedimentary energy sources which are often symbiotically developed in M esozoic- Cenozoic continental fault basins. However, the mechanisms and characteristics of the symbiotic development are not yet clearly known. In this research study, the typical continental fault basins of eastern China were chosen as examples for the purpose of conducting an examination of the coal and oil shale symbiotic assemblage types, genetic environmental differences, and transformation mechanisms, as well as the development and occurrence characteristics o f different assemblage types. Through a large number of investigations, systematic experimental testing, and sequence stratigraphy studies, the following conclusions were obtained:(1) There were five types of coal and oil shale symbiotic assemblages observed in the continental fault basins,(2) The development of coal and oil shale deposits requires a warm and humid climate, stable structure, abundant organic matter supply, a certain water depth, and a lower terrestrial source debris supply. The observed differences were that the water depth conditions were diversified in the study area, as well as the sources, types, and content of the organic matter.(3) The rapid transformations of the coal and oil shale genetic environments were mainly controlled by the tectonic settings and climatic conditions, which were determined to control the changes in the water depths, salinity,redox conditions, and lake productivity of the genetic environments. Also, in the symbiotic assemblages, genetic environment changes had induced the development of oil shale deposits, which gradually evolved into coal genetic environments.(4) In the isochronous sequence stratigraphic framework of the coal and oil shale symbiotic assemblages, the lake expansion system tracts (EST) were determined to be the most beneficial to the growth o f all the types of assemblages and were characterized by more assemblage development phases and smaller bed thicknesses. From the early to the late stages of the EST, and from the lakesides to lake centers, the thicknesses of the coal seams in the symbiotic assemblages showed trends of thinning, while the thicknesses of the oil shale deposits exhibited increasing trends. The early stages of high stand system tracts were found to be beneficial to the development of the symbiotic assemblages of coal seams overlying the oil shale. This tract type generally presented large bed thicknesses and distribution ranges. The low stand system tract and the late high stand system tract were determined to be unconducive to the development of the symbiotic assemblages.
基金supported by the National Natural Science Foundation of China(grant No.41572141)
文摘Objective The Juhugeng mining area in Qinghai Province of northwest China has attracted wide attention among geologists for it hosts typical coal measure gases.The shale gas reservoirs were reformed by intensive structural movements during geological periods,
基金supported by the Natural Science Foundation of China(grant No.41702171)the Beijing Municipal Excellent Talents Foundation(grant No.2017000020124G107)+1 种基金2017 Open Project Fund of State Key Laboratory of Coal Resources and Safe Mining(grant No.SKLCRSM17KFA12)the Joint Research Fund for Overseas Chinese Scholars and Scholars in HongKong and Macao(grant No.41728005)
文摘The Upper Paleozoic(Carboniferous to Permian) succession in the east margin of the Ordos Basin in the North China Craton has a potential to contain significant hydrocarbon resources, though attention have been mainly attracted for its successful development of coalbed methane(CBM). To improve the previous resource estimates and evaluate the hydrocarbon play possibilities, this study incorporated new discoveries of hydrocarbon units and their stratigraphic relation with source rocks, hydrocarbon migration and trapping configurations. Continuous hydrocarbon accumulation units were identified within the Upper Paleozoic, including the Taiyuan, Shanxi and Xiashihezi formations with great tight gas potential, and the Taiyuan and Shanxi formations also containing shale gas and CBM. Different strata combinations are identified with coal deposition and favour for continuous gas accumulations, including the tidal flat, deltaic and fluvial systems distributed in most of the study areas. Methane was not only generated from the thick coal seams in the Taiyuan and Shanxi formations, but also from shale and dark mudstones. The coal, shale and tight sandstones are proved of remarkable gas content and hydrocarbon indications, and the gas saturation of tight sandstones decreases upward. The stacked deposit combinations vary isochronally in different areas, while the coal seams were developed stably showing good gas sources. Two key stages control the hydrocarbon enrichment, the continuous subsidence from coal forming to Late Triassic and the anomalous paleo-geothermal event happened in Early Cretaceous, as indicated by the fluid inclusions evidence. Extensive areas show good hydrocarbon development potential presently, and more works should be focused on the evaluation and selection of good reservoir combinations.
文摘Numerical simulations are used to investigate the impact of intrinsic and extrinsic reservoir properties on the production from coal and organic rich lithologies in the Lower Cretaceous Mannville coal measures of the Western Canadian Sedimentary Basin. The coal measures are complex reservoirs in which production is from horizontal wells drilled and completed in the thickest coal seam in the succession (1 m versus 3 m), which has production and pressure support from thinner coals in the adjacent stratigraphy and from organic-rich shales interbedded and over and underlying the coal seams. Numerical models provide insight as to the relative importance of the myriad of parameters that may impact production that are not self-evident or intuitive in complex coal measures.