A novel suspension-floating-circulating fluidized combustion technology is proposed for burning coal slurry fuel in traditional circulating ftuidized bed boilers (CFBB). This technology can solve some existing probl...A novel suspension-floating-circulating fluidized combustion technology is proposed for burning coal slurry fuel in traditional circulating ftuidized bed boilers (CFBB). This technology can solve some existing problems in large- capacity CFBB burning coal slurry. The principles of the suspension-floating-circulating fluidized combustion technology were introduced in detail in this paper. A 130 t/h CFBB was retrofitted based on the technology, and the retrofitted system mainly includes a long-distance transport sub-system, a bed-material conveying sub-system with a wind-seal device invented by the authors, a superheater thermoregulation device using a novel temperature regulator, a return loop flu- idization facility, and a pneumatic ash conveying sub-system with sealed pump. The achieved performance of the retro- fitted CFBB shows that the thermal efficiency is 89.83 %, the combustion efficiency is 96.24 %, and the blending proportion of slurry is 94 %.展开更多
Several typical ash samples from a 0.25 MW test furnace fired black liquor coal slurry were selected for investigation. The phases and compounds containing sodium in ash samples were acquired from X-ray diffraction an...Several typical ash samples from a 0.25 MW test furnace fired black liquor coal slurry were selected for investigation. The phases and compounds containing sodium in ash samples were acquired from X-ray diffraction analyses. As well, detailed analyses of the amounts of major mineral elements along thickness gradients of representative ash samples were carried out. The elements, including Na, Si, A1, S and C1 were analyzed by the advanced electron probe microanalyzer equipment, which provid evidence and interpretation for the analytical results of XRD. The findings indicate that the occurrence form of sodium has experi- enced important changes during the combustion of black liquor coal slurry, which translated into nepheline, thenardite, sodium sulfate, sodium chloride, sodium silicoaluminate, hanyne and other phases containing sodium, from NaOH, Na2CO3 and Na2S in raw fuel. Of all the sodium compounds, nepheline, thenardite and sodium sulfate are the most important forms of Na in solid com- bustion residues. Such a transformation of Na during the combustion of black liquor coal slurry resulted in a considerable impact on ash deposition and is not only different from the raw coal and papermaldng black liquors, but is also affected by local circum- stances in the combustion furnace. Amounts of Na, S and C1 in ash deposits from low temperature zones were larger than those from high temperature zones. Our findings should provide important theoretical instructions for industrial applications of black liquor coal slurry.展开更多
The microstructure and phase composition of high chrome brick used in coal slurry gasifier has been analyzed by means of SEM and Energy Spectrum. The results indicate that the used brick can be divided into different ...The microstructure and phase composition of high chrome brick used in coal slurry gasifier has been analyzed by means of SEM and Energy Spectrum. The results indicate that the used brick can be divided into different zones as slag-adhered zone, reaction zone, penetration zone and unaltered zone. The phase composition and microstructure are different and cracks occurred in different degree at these zones. A dense ring belt was formed with complex spinel (Mg,Fe)(Cr,Al,Fe 2O 4) in the reaction zone near the hot face. The wear mechanism of the brick during its employment has been discussed. It is considered that the reaction and penetration of coal slag and strong reductant bring about the composition change of the brick and destroys its original network inlayed structure and consequently result in its structure spalling and weakening strength, which is the main wear mechanism of the brick and followed by temperature fluctuation and high mechanical impact of flowing fluid with high-speed.展开更多
Water, oxygen and coal are converted into CO, H2, methane in the coal slurry gasifier. Under the condition of high temperature and high pressure, high chromecontaining refractories are used as hot face lining. The col...Water, oxygen and coal are converted into CO, H2, methane in the coal slurry gasifier. Under the condition of high temperature and high pressure, high chromecontaining refractories are used as hot face lining. The collapse of refractories from corrosion and spalling is mainly attributed to liquid deslagging. Refractories for coal slurry gasifier, destruction mechanism and solutions are analyzed.展开更多
Not only the basic principle of the extended DLVO has been expounded, but also all kinds of interaction energies between fine particles in coal slurry suspension have been calculated in this peper. Coal is a natural h...Not only the basic principle of the extended DLVO has been expounded, but also all kinds of interaction energies between fine particles in coal slurry suspension have been calculated in this peper. Coal is a natural hydrophobic mineral, and the hydrophobic attractive power between coal surfaces is a decisive factor to the aggregation of particles in hydrophobic suspensions. The calculation results show that the extended DLVO theory can explain successfully the coagulation or dispersion of fine particle coal.展开更多
The development of more environment-friendly ways to dispose of oil sludge is currently regarded as a hot topic.In this context,gasification technologies are generally seen as a promising way to combine oil sludge wit...The development of more environment-friendly ways to dispose of oil sludge is currently regarded as a hot topic.In this context,gasification technologies are generally seen as a promising way to combine oil sludge with coal–water slurry(CWS)and generate resourceful fuel.In this study,a novel five-nozzle gasifier reactor was analyzed by means of a CFD(Computational fluid dynamic)method.Among several influential factors,special attention was paid to the height-to-diameter ratio of the gasifier and the mixing ratio of oil sludge,which are known to have a significant impact on the flow field,temperature distribution and gasifier performances.According to the numerical results,the optimal height-to-diameter ratio and oil mixing ratio are about 2.4:1 and 20%,respectively.Furthermore,the carbon conversion rate can become as high as 98.55%with the hydrolysis rate reaching a value of 53.88%.The consumption of raw coal and oxygen is generally reduced,while the effective gas production is increased to 50.93 mol/%.展开更多
Disposing of coal gangue and fly-ash on the surface is a risky method with tremendous potential catastrophic consequences for the environment.Backfill mining is a promising practice for turning those hazardous wastes ...Disposing of coal gangue and fly-ash on the surface is a risky method with tremendous potential catastrophic consequences for the environment.Backfill mining is a promising practice for turning those hazardous wastes into functional backfill materi-als.Unfortunately,how to efficiently deliver the slurry to the desired places remains under-researched.To address this issue,the computational fluid dynamics software Fluent was used in the current study in addition to a laboratory rheological test to simulate the impact of various parameters on the evolution of pressure at a particular section of the pipeline.Furthermore,the response surface method was employed to investigate how the various components and their corresponding influencing weights interact to affect the pressure drop.This study demonstrates that the pressure drop of the slurry is highly influenced by slurry concentration,speed,and pipe diameter.While conveying speed is the main component in the bend section,pipe diameter takes over in the horizontal and vertical pipe sections.展开更多
The volume change and shear strength behaviour of tailings slurry with the changes in gravimetric moisture content is important to effectively utilise the storage volume and analysis of dam failure potential.Consolida...The volume change and shear strength behaviour of tailings slurry with the changes in gravimetric moisture content is important to effectively utilise the storage volume and analysis of dam failure potential.Consolidation testing of tailings from a slurry-like to soil-like state is a critical task,and conventional consolidation apparatus does not have the capability of doing such testing,as the tailings slurries contain high water content.Settling tests conducted on slurries having a 25%solids concentration showed very low efficiency;final sediment was still slurry-like.An intrinsic point was identified based on pore water pressure dissipation during consolidation tests in a slurry consolidometer that can define two states of the tailings i.e.slurry-like and soil-like.In the slurry-like state,the volume change was greater for Slurry 2 than Slurry 1,while the inverse was observed in the soil-like state.The evolution of peak vane shear strength with the changes in moisture content was almost similar for both samples and obeyed the power function.Regression models have been developed and validated to predict the shear strength of materials at any gravimetric moisture content or void ratio.展开更多
Coal sludge slurry(CSS) is an alternative fuel and a potential competitive method for sludge reduction.Based on the researches of coal water slurry, we studied CSSs by using a wet-grinding process with different types...Coal sludge slurry(CSS) is an alternative fuel and a potential competitive method for sludge reduction.Based on the researches of coal water slurry, we studied CSSs by using a wet-grinding process with different types of regional municipal sludge(sludge) in an orthogonal experiment. The sludge type,sludge mixing proportion, dosage of dispersant, and grinding time were tested in this study. The results show that water content and its occurrence characteristics in the sludge have primary hindering influences on slurry ability. The range of fixed-viscosity concentrations with raw wet sludge is from 50.78%to 44.40%(by weight), while the range is from 53.35% to 51.51%(by weight) with dry sludge. All of the CSSs exhibit shear-thinning behaviors with different variation trends, especially the CSSs with more than 15%(by weight) raw wet sludge in it. Adding the same proportion of raw wet sludge increases the thixotropic properties of CSSs and the highest area of thixotropy loop is 3065 Pa/s, while the highest value of dry sludge is 1798 Pa/s. Hydrophilic group plays an important role in adsorbing water and building three-dimension networks with other particles, which is the main reason for CSS properties.Therefore, the mechanism can be used to find the way for making high quality CSS.展开更多
Aspen plus software was employed to simulate process. The system concludes gasification scrubbing system the opposed multi-burner gasifier (OMB) methanol production and purification shift system. The distributions o...Aspen plus software was employed to simulate process. The system concludes gasification scrubbing system the opposed multi-burner gasifier (OMB) methanol production and purification shift system. The distributions of ammonia con- centration in streams were obtained. The study demonstrates that ammonium crystallization problem caused by ammonia ac- cumulation, and if the process has ammonia exports its concentration will greatly reduced and the ammonia salt problem will effectively alleviate. Aspen plus simulation is a useful tool strengthening the ammonia recycling use and reducing pollutant for improving water quality, maintaining stable production, emissions.展开更多
Energy saving has been an important concept in modern industry especially to the countries and regions with energy shortage such as China and Japan. Utilization of Coal-Water Slurry (CWS) can improve the burning eff...Energy saving has been an important concept in modern industry especially to the countries and regions with energy shortage such as China and Japan. Utilization of Coal-Water Slurry (CWS) can improve the burning efficiency of coal and reduce the pollutions of soot, sulfide and the nitride by burning lump coal directly. The CWS is a promising energy saving technique and the effectual substitute of oil. The study on the preparation and application of the CWS has made progresses in many aspects. The present paper studied the basal problems for applying the CWS on the rotary kilns during the calcining-dolomite process in the magnesium factory, summarized the key points for the application process of the CWS and gave the corresponding solutions.展开更多
Life cycle assessment is applied to assess the ultra-clean micronized coal oil water slurry (UCMCOWS) with SimaPro and the environmental impact of UCMCOWS on its whole life cycle is also analyzed. The result shows tha...Life cycle assessment is applied to assess the ultra-clean micronized coal oil water slurry (UCMCOWS) with SimaPro and the environmental impact of UCMCOWS on its whole life cycle is also analyzed. The result shows that the consumption of energy and products are increasing along with the deepening of UCMCOWS processing, UCMCOWS making and combustion are the two periods which have a bigger impact on eco-system and human health. As a new substitute of fuel, UCMCOWS merits to be utilized more efficiently and reasonably.展开更多
Advantges and disadvantage of Mie scattering model and Fraunhofer diffraction model are discussed. The result shows that 1) the Fraunhofer diffraction model is simple in design and fast in operation, which is quite su...Advantges and disadvantage of Mie scattering model and Fraunhofer diffraction model are discussed. The result shows that 1) the Fraunhofer diffraction model is simple in design and fast in operation, which is quite suitable for on-line control and 2) the intensity and energy distribution of diffracted light of both the Mie scattering model and the Fraunhofer theoretical model are compared and researched. Feasibility of using the Fraunhofer diffraction model to replace the Mie scattering model in measuring particles in coal water slurry is demonstrated.展开更多
The main characteristics of high chrome refractories for coal water slurry gasifiers were introduced. The damage mechanism of the refractories was analyzed by observing the microstructure of the used high chrome refra...The main characteristics of high chrome refractories for coal water slurry gasifiers were introduced. The damage mechanism of the refractories was analyzed by observing the microstructure of the used high chrome refractories with the aid of SEM. The main influencing factors on the service life of the refractories were summarized.展开更多
Froth image features of coal flotation have been extracted and studied by neighboring grey level dependence matrix, spatial grey level dependence matrix and grey level histogram. In this paper, a basic algorithm of un...Froth image features of coal flotation have been extracted and studied by neighboring grey level dependence matrix, spatial grey level dependence matrix and grey level histogram. In this paper, a basic algorithm of unsupervised learning pattern classification is presented, and coal flotation froth images are classified by means of self organizing map (SOM). By extracting features from 51 flotation froth images with laboratory column, four types of froth images are classified. The correct rate of SOM cluster is satisfactory. And a good relationship of froth type with average ash content is also observed.展开更多
The flocculation effect of the Phanerochaete chrysosporium on the coal slurry were studied by orthogonal experimental method in this study.The results of research show that the P.chrysosporium has a good effect on flo...The flocculation effect of the Phanerochaete chrysosporium on the coal slurry were studied by orthogonal experimental method in this study.The results of research show that the P.chrysosporium has a good effect on flocculating coal slurry.The optimum combination of the experimental is the P.chrysosporium,which is cultured in 2 days,mixed with 2 mL coagulant and 2 mL broth.The flocculant is a broken liquid with pH value of 6.The hightest flocculation ratio is 93.5%.The result of FTIR shows that the biological extraction of P.chrysosporium contains a lot of acidic polysaccharides that has the effect on flocculation.Microbial flocculant molecules and particles of coal slurry could be flocculated by‘‘absorption bridge’’.展开更多
In order to improve the dewatering rate and the effect of fine clean coal(FCC), the advanced method offine coal( 0.5 mm) dewatering and the correlated basic theory were investigated in this study. It was found that th...In order to improve the dewatering rate and the effect of fine clean coal(FCC), the advanced method offine coal( 0.5 mm) dewatering and the correlated basic theory were investigated in this study. It was found that the dewatering by sleeve type press filter was an efficient way of FCC dewatering. On the other hand, the results also proved that particle size distribution, volatile matter, ash content, pore size distribution and specific surface area of coal particles of FCC samples, as well as viscosity and density of FCC slurry, were important parameters in determining the process of efficient dewatering. Especially, wet mass to dry mass, specific resistance of average mass, compressibility factor and microstructure of filter cake explained the reasons and mechanisms of fine clean coal efficient dewatering.展开更多
The paper reports the effects of surface fractal structures on the rheological behavior and combustion kinetics of raw brown coal and three modified coal water slurries (CWSs). The results show that the fractal stru...The paper reports the effects of surface fractal structures on the rheological behavior and combustion kinetics of raw brown coal and three modified coal water slurries (CWSs). The results show that the fractal structures and physicochemical properties of samples are dependent on various modification processes. The apparent viscosities of the coal water slurries increase with increasing surface fractal dimensions (D), especially with decreasing shear rates. Fur- thermore, it has been proved that the ignition temperatures and apparent activation energies of modified CWSs are lower than that of raw coal water slurry. Compared with the traditional qualitative analysis of the effect of pore structures on CWSs properties, D can more efficiently indicate the quantificational effect of pore structures on the rheological behavior and combustion kinetics of CWSs.展开更多
Three coal samples of different ranks were used to study the effect of coal blending on the preparation of Coal Water Slurry (CWS). The results show that by taking advantage of two kinds of coal, the coal concentratio...Three coal samples of different ranks were used to study the effect of coal blending on the preparation of Coal Water Slurry (CWS). The results show that by taking advantage of two kinds of coal, the coal concentration in slurry made from hard-to-pulp coal can be effectively improved and increased by 3%–5% generally. DLT coal (DaLiuTa coal mine) is very poor in slurryability and the stability and rheology of the resulting slurry are not very good. When the amount of easily slurried coal is more than 30%, all properties of the CWS improve and the CWS meets the requirements for use as fuel. Coalification, porosity, surface oxygenic functional groups, zeta potential and grindability have a great effect on the performance of blended coal CWS. This leads to some differences in performance between the slurry made from a single coal and slurry made from blended coal.展开更多
Coal water slurry gasification is a main source of hydrogen in the developing hydrogen economy.Moreover,biomass and waste can be added,making gasification process greener.To expand the application of coal water slurry...Coal water slurry gasification is a main source of hydrogen in the developing hydrogen economy.Moreover,biomass and waste can be added,making gasification process greener.To expand the application of coal water slurry and gasification process,it is necessary to understand the micro-structure in this large particle suspension system.In this paper,the micro-structure in coal water slurry was studied by extended DLVO(eDLVO)theory and fractal dimension,which is used to explain the mechanism of stability in large particle suspension systems.The interaction between two coal particles was characterized from the interparticle potential and energy barrier based on the eDLVO theory.The rheology and stability between different types of coals are measured and explained by the aggregating structure and fractal dimension in coal water slurry.The results indicated that there would be an aggregating structure in high rank coals,due to the interparticle potential caused by the surface properties,but probably not in low rank coals.This aggregating structure can be described and characterized by fractal dimension.The aggregation of particles is the source of the stability for high rank coals,as the close-packed 3D network structure in large particle suspension can support coal particles from settling down.The results have demonstrated that the combination of the eDLVO theory and rheological measurement is an effective way to investigate the stability of large particle suspension systems.展开更多
文摘A novel suspension-floating-circulating fluidized combustion technology is proposed for burning coal slurry fuel in traditional circulating ftuidized bed boilers (CFBB). This technology can solve some existing problems in large- capacity CFBB burning coal slurry. The principles of the suspension-floating-circulating fluidized combustion technology were introduced in detail in this paper. A 130 t/h CFBB was retrofitted based on the technology, and the retrofitted system mainly includes a long-distance transport sub-system, a bed-material conveying sub-system with a wind-seal device invented by the authors, a superheater thermoregulation device using a novel temperature regulator, a return loop flu- idization facility, and a pneumatic ash conveying sub-system with sealed pump. The achieved performance of the retro- fitted CFBB shows that the thermal efficiency is 89.83 %, the combustion efficiency is 96.24 %, and the blending proportion of slurry is 94 %.
基金Projects 2004CB217701 supported by the National Basic Research Program of China 2005-1 by the Scientific Research Foundation of the Ministry ofEducation of Hebei Province
文摘Several typical ash samples from a 0.25 MW test furnace fired black liquor coal slurry were selected for investigation. The phases and compounds containing sodium in ash samples were acquired from X-ray diffraction analyses. As well, detailed analyses of the amounts of major mineral elements along thickness gradients of representative ash samples were carried out. The elements, including Na, Si, A1, S and C1 were analyzed by the advanced electron probe microanalyzer equipment, which provid evidence and interpretation for the analytical results of XRD. The findings indicate that the occurrence form of sodium has experi- enced important changes during the combustion of black liquor coal slurry, which translated into nepheline, thenardite, sodium sulfate, sodium chloride, sodium silicoaluminate, hanyne and other phases containing sodium, from NaOH, Na2CO3 and Na2S in raw fuel. Of all the sodium compounds, nepheline, thenardite and sodium sulfate are the most important forms of Na in solid com- bustion residues. Such a transformation of Na during the combustion of black liquor coal slurry resulted in a considerable impact on ash deposition and is not only different from the raw coal and papermaldng black liquors, but is also affected by local circum- stances in the combustion furnace. Amounts of Na, S and C1 in ash deposits from low temperature zones were larger than those from high temperature zones. Our findings should provide important theoretical instructions for industrial applications of black liquor coal slurry.
文摘The microstructure and phase composition of high chrome brick used in coal slurry gasifier has been analyzed by means of SEM and Energy Spectrum. The results indicate that the used brick can be divided into different zones as slag-adhered zone, reaction zone, penetration zone and unaltered zone. The phase composition and microstructure are different and cracks occurred in different degree at these zones. A dense ring belt was formed with complex spinel (Mg,Fe)(Cr,Al,Fe 2O 4) in the reaction zone near the hot face. The wear mechanism of the brick during its employment has been discussed. It is considered that the reaction and penetration of coal slag and strong reductant bring about the composition change of the brick and destroys its original network inlayed structure and consequently result in its structure spalling and weakening strength, which is the main wear mechanism of the brick and followed by temperature fluctuation and high mechanical impact of flowing fluid with high-speed.
文摘Water, oxygen and coal are converted into CO, H2, methane in the coal slurry gasifier. Under the condition of high temperature and high pressure, high chromecontaining refractories are used as hot face lining. The collapse of refractories from corrosion and spalling is mainly attributed to liquid deslagging. Refractories for coal slurry gasifier, destruction mechanism and solutions are analyzed.
文摘Not only the basic principle of the extended DLVO has been expounded, but also all kinds of interaction energies between fine particles in coal slurry suspension have been calculated in this peper. Coal is a natural hydrophobic mineral, and the hydrophobic attractive power between coal surfaces is a decisive factor to the aggregation of particles in hydrophobic suspensions. The calculation results show that the extended DLVO theory can explain successfully the coagulation or dispersion of fine particle coal.
基金Enterprise Horizontal Project(Project Contract No.2021K2450)Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(SJCX22_1437).
文摘The development of more environment-friendly ways to dispose of oil sludge is currently regarded as a hot topic.In this context,gasification technologies are generally seen as a promising way to combine oil sludge with coal–water slurry(CWS)and generate resourceful fuel.In this study,a novel five-nozzle gasifier reactor was analyzed by means of a CFD(Computational fluid dynamic)method.Among several influential factors,special attention was paid to the height-to-diameter ratio of the gasifier and the mixing ratio of oil sludge,which are known to have a significant impact on the flow field,temperature distribution and gasifier performances.According to the numerical results,the optimal height-to-diameter ratio and oil mixing ratio are about 2.4:1 and 20%,respectively.Furthermore,the carbon conversion rate can become as high as 98.55%with the hydrolysis rate reaching a value of 53.88%.The consumption of raw coal and oxygen is generally reduced,while the effective gas production is increased to 50.93 mol/%.
文摘Disposing of coal gangue and fly-ash on the surface is a risky method with tremendous potential catastrophic consequences for the environment.Backfill mining is a promising practice for turning those hazardous wastes into functional backfill materi-als.Unfortunately,how to efficiently deliver the slurry to the desired places remains under-researched.To address this issue,the computational fluid dynamics software Fluent was used in the current study in addition to a laboratory rheological test to simulate the impact of various parameters on the evolution of pressure at a particular section of the pipeline.Furthermore,the response surface method was employed to investigate how the various components and their corresponding influencing weights interact to affect the pressure drop.This study demonstrates that the pressure drop of the slurry is highly influenced by slurry concentration,speed,and pipe diameter.While conveying speed is the main component in the bend section,pipe diameter takes over in the horizontal and vertical pipe sections.
文摘The volume change and shear strength behaviour of tailings slurry with the changes in gravimetric moisture content is important to effectively utilise the storage volume and analysis of dam failure potential.Consolidation testing of tailings from a slurry-like to soil-like state is a critical task,and conventional consolidation apparatus does not have the capability of doing such testing,as the tailings slurries contain high water content.Settling tests conducted on slurries having a 25%solids concentration showed very low efficiency;final sediment was still slurry-like.An intrinsic point was identified based on pore water pressure dissipation during consolidation tests in a slurry consolidometer that can define two states of the tailings i.e.slurry-like and soil-like.In the slurry-like state,the volume change was greater for Slurry 2 than Slurry 1,while the inverse was observed in the soil-like state.The evolution of peak vane shear strength with the changes in moisture content was almost similar for both samples and obeyed the power function.Regression models have been developed and validated to predict the shear strength of materials at any gravimetric moisture content or void ratio.
基金supported by the National Natural Science Foundation of China (Nos. 51204179, 51204182)the Natural Science Foundation of Jiangsu Province of China (No. BK20141242)the Fundamental Research Funds for the Central Universities of China (No. 2014XT05)
文摘Coal sludge slurry(CSS) is an alternative fuel and a potential competitive method for sludge reduction.Based on the researches of coal water slurry, we studied CSSs by using a wet-grinding process with different types of regional municipal sludge(sludge) in an orthogonal experiment. The sludge type,sludge mixing proportion, dosage of dispersant, and grinding time were tested in this study. The results show that water content and its occurrence characteristics in the sludge have primary hindering influences on slurry ability. The range of fixed-viscosity concentrations with raw wet sludge is from 50.78%to 44.40%(by weight), while the range is from 53.35% to 51.51%(by weight) with dry sludge. All of the CSSs exhibit shear-thinning behaviors with different variation trends, especially the CSSs with more than 15%(by weight) raw wet sludge in it. Adding the same proportion of raw wet sludge increases the thixotropic properties of CSSs and the highest area of thixotropy loop is 3065 Pa/s, while the highest value of dry sludge is 1798 Pa/s. Hydrophilic group plays an important role in adsorbing water and building three-dimension networks with other particles, which is the main reason for CSS properties.Therefore, the mechanism can be used to find the way for making high quality CSS.
文摘Aspen plus software was employed to simulate process. The system concludes gasification scrubbing system the opposed multi-burner gasifier (OMB) methanol production and purification shift system. The distributions of ammonia con- centration in streams were obtained. The study demonstrates that ammonium crystallization problem caused by ammonia ac- cumulation, and if the process has ammonia exports its concentration will greatly reduced and the ammonia salt problem will effectively alleviate. Aspen plus simulation is a useful tool strengthening the ammonia recycling use and reducing pollutant for improving water quality, maintaining stable production, emissions.
文摘Energy saving has been an important concept in modern industry especially to the countries and regions with energy shortage such as China and Japan. Utilization of Coal-Water Slurry (CWS) can improve the burning efficiency of coal and reduce the pollutions of soot, sulfide and the nitride by burning lump coal directly. The CWS is a promising energy saving technique and the effectual substitute of oil. The study on the preparation and application of the CWS has made progresses in many aspects. The present paper studied the basal problems for applying the CWS on the rotary kilns during the calcining-dolomite process in the magnesium factory, summarized the key points for the application process of the CWS and gave the corresponding solutions.
文摘Life cycle assessment is applied to assess the ultra-clean micronized coal oil water slurry (UCMCOWS) with SimaPro and the environmental impact of UCMCOWS on its whole life cycle is also analyzed. The result shows that the consumption of energy and products are increasing along with the deepening of UCMCOWS processing, UCMCOWS making and combustion are the two periods which have a bigger impact on eco-system and human health. As a new substitute of fuel, UCMCOWS merits to be utilized more efficiently and reasonably.
文摘Advantges and disadvantage of Mie scattering model and Fraunhofer diffraction model are discussed. The result shows that 1) the Fraunhofer diffraction model is simple in design and fast in operation, which is quite suitable for on-line control and 2) the intensity and energy distribution of diffracted light of both the Mie scattering model and the Fraunhofer theoretical model are compared and researched. Feasibility of using the Fraunhofer diffraction model to replace the Mie scattering model in measuring particles in coal water slurry is demonstrated.
文摘The main characteristics of high chrome refractories for coal water slurry gasifiers were introduced. The damage mechanism of the refractories was analyzed by observing the microstructure of the used high chrome refractories with the aid of SEM. The main influencing factors on the service life of the refractories were summarized.
基金National Natural Science Foundation of China( 5 99740 32 )
文摘Froth image features of coal flotation have been extracted and studied by neighboring grey level dependence matrix, spatial grey level dependence matrix and grey level histogram. In this paper, a basic algorithm of unsupervised learning pattern classification is presented, and coal flotation froth images are classified by means of self organizing map (SOM). By extracting features from 51 flotation froth images with laboratory column, four types of froth images are classified. The correct rate of SOM cluster is satisfactory. And a good relationship of froth type with average ash content is also observed.
基金fnancial support provided by the National Natural Science Foundation of China(No.51274012)for this work is gratefully acknowledged
文摘The flocculation effect of the Phanerochaete chrysosporium on the coal slurry were studied by orthogonal experimental method in this study.The results of research show that the P.chrysosporium has a good effect on flocculating coal slurry.The optimum combination of the experimental is the P.chrysosporium,which is cultured in 2 days,mixed with 2 mL coagulant and 2 mL broth.The flocculant is a broken liquid with pH value of 6.The hightest flocculation ratio is 93.5%.The result of FTIR shows that the biological extraction of P.chrysosporium contains a lot of acidic polysaccharides that has the effect on flocculation.Microbial flocculant molecules and particles of coal slurry could be flocculated by‘‘absorption bridge’’.
基金the National Natural Science Foundation of China (No. 21206190)the Science Fund Project of China University of Mining & Technology (No. 2008A027)the China Coal Industry Association 2012 Annual Scientific and Technological Guidance Project (Nos. MTKJ 2012-288 and MTKJ 2012-289) for their financial support
文摘In order to improve the dewatering rate and the effect of fine clean coal(FCC), the advanced method offine coal( 0.5 mm) dewatering and the correlated basic theory were investigated in this study. It was found that the dewatering by sleeve type press filter was an efficient way of FCC dewatering. On the other hand, the results also proved that particle size distribution, volatile matter, ash content, pore size distribution and specific surface area of coal particles of FCC samples, as well as viscosity and density of FCC slurry, were important parameters in determining the process of efficient dewatering. Especially, wet mass to dry mass, specific resistance of average mass, compressibility factor and microstructure of filter cake explained the reasons and mechanisms of fine clean coal efficient dewatering.
文摘The paper reports the effects of surface fractal structures on the rheological behavior and combustion kinetics of raw brown coal and three modified coal water slurries (CWSs). The results show that the fractal structures and physicochemical properties of samples are dependent on various modification processes. The apparent viscosities of the coal water slurries increase with increasing surface fractal dimensions (D), especially with decreasing shear rates. Fur- thermore, it has been proved that the ignition temperatures and apparent activation energies of modified CWSs are lower than that of raw coal water slurry. Compared with the traditional qualitative analysis of the effect of pore structures on CWSs properties, D can more efficiently indicate the quantificational effect of pore structures on the rheological behavior and combustion kinetics of CWSs.
基金Projects 20060290506 supported by the Doctoral Foundation of the Chinese Education Ministry2005B013 by the Science and TechnologyFoundation of China University of Mining & Technology
文摘Three coal samples of different ranks were used to study the effect of coal blending on the preparation of Coal Water Slurry (CWS). The results show that by taking advantage of two kinds of coal, the coal concentration in slurry made from hard-to-pulp coal can be effectively improved and increased by 3%–5% generally. DLT coal (DaLiuTa coal mine) is very poor in slurryability and the stability and rheology of the resulting slurry are not very good. When the amount of easily slurried coal is more than 30%, all properties of the CWS improve and the CWS meets the requirements for use as fuel. Coalification, porosity, surface oxygenic functional groups, zeta potential and grindability have a great effect on the performance of blended coal CWS. This leads to some differences in performance between the slurry made from a single coal and slurry made from blended coal.
基金supported by the National Key Research and Development Program of China(Grant Nos.2017YFB0602602 and 2017YFB0602703)the Seed Fund of Shanxi Research Institute for Clean Energy,Tsinghua University,China.
文摘Coal water slurry gasification is a main source of hydrogen in the developing hydrogen economy.Moreover,biomass and waste can be added,making gasification process greener.To expand the application of coal water slurry and gasification process,it is necessary to understand the micro-structure in this large particle suspension system.In this paper,the micro-structure in coal water slurry was studied by extended DLVO(eDLVO)theory and fractal dimension,which is used to explain the mechanism of stability in large particle suspension systems.The interaction between two coal particles was characterized from the interparticle potential and energy barrier based on the eDLVO theory.The rheology and stability between different types of coals are measured and explained by the aggregating structure and fractal dimension in coal water slurry.The results indicated that there would be an aggregating structure in high rank coals,due to the interparticle potential caused by the surface properties,but probably not in low rank coals.This aggregating structure can be described and characterized by fractal dimension.The aggregation of particles is the source of the stability for high rank coals,as the close-packed 3D network structure in large particle suspension can support coal particles from settling down.The results have demonstrated that the combination of the eDLVO theory and rheological measurement is an effective way to investigate the stability of large particle suspension systems.