Based on data from through-hole and logging,we studied the failure characteristics of surface drainage wells for relieved coal gas in Huainan mining area and its influencing factors.The results show that the damaged p...Based on data from through-hole and logging,we studied the failure characteristics of surface drainage wells for relieved coal gas in Huainan mining area and its influencing factors.The results show that the damaged positions of drainage wells are mainly located at the thick clay layer in the low alluvium and the lithological interface in the upper section of bedrock in west mining area.The failure depth of casing is 244-670 m and concentrates at about 270-460 m deep.These damaged positions are mainly located in the bending zone according to three zones of rock layers in the vertical section above the roof divided. Generally,the casing begins to deform or damage before the face line about 30-150 m.Special formation structure and rock mass properties are the direct causes of the casing failure,high mining height and fast advancing speed are fundamental reasons for rock mass damage.However,the borehole configuration and spacing to the casing failure are not very clear.展开更多
Surrounding rock of coal seam was one of the important factors to gas occurrence. The coal seam gas occurrence was studied by the index of roof strata thickness or sand content rate;we found that there were certain sh...Surrounding rock of coal seam was one of the important factors to gas occurrence. The coal seam gas occurrence was studied by the index of roof strata thickness or sand content rate;we found that there were certain shortcomings. In order to reasonably evaluate the influence of coal seam surrounding rock on gas occurrence in Panji mining area, we quantitatively evaluated the effect of coal seam surrounding rock on gas occurrence by influence coefficient of roof strata thickness, and built six mathematical models of the variational gas content in the mining area which is divided into six gas geological units. The results shows that the coal seam gas content is mainly influenced by 20 mroof strata in each gas geological unit, the gas content presents the tendency of increase, and with the influence coefficient of strata thickness increases, they exist a significant linear relationship.展开更多
Coal and gas outburst is a violent disaster driven by released energy from gas desorption.The initial expansion energy of released gas(IEERG)is a new method to predict coal and gas outburst.In this paper,an instrument...Coal and gas outburst is a violent disaster driven by released energy from gas desorption.The initial expansion energy of released gas(IEERG)is a new method to predict coal and gas outburst.In this paper,an instrument for IEERG measurement was developed.Compared with previous setups,the new one which is equipped with three convergent nozzles and quick-release mechanism gets improved in data acquisition and gas sealing and releasing performance.To comprehensively know the effect of gas pressure,particle size,and nozzle area on IEERG,a series of experiments were carried out with this new setup.The variable control test results indicated that the gas pressure-IEERG curves remain the linear trend and the particle size-IEERG curves maintain the negative exponential trend for nozzle areas at 1.13,2.26,and3.39 mm2,respectively.The increase in nozzle area leads to deceases in value of IEERG and absolute value of slope of fitting curves in each test.In addition,the orthogonal experiment showed that the influence of gas pressure,nozzle area,and particle size on IEERG decreases in turn.Only gas pressure had a marked impact on IEERG.This work offers great importance in improving the accuracy of prediction of coal and gas outburst.展开更多
Objective The Juhugeng mining area in Qinghai Province of northwest China has attracted wide attention among geologists for it hosts typical coal measure gases.The shale gas reservoirs were reformed by intensive struc...Objective The Juhugeng mining area in Qinghai Province of northwest China has attracted wide attention among geologists for it hosts typical coal measure gases.The shale gas reservoirs were reformed by intensive structural movements during geological periods,展开更多
The experiment of gas and coal dust explosion propagation in a single lanewaywas carried out in a large experimental roadway that is nearly the same with actual environmentand geometry conditions.In the experiment,the...The experiment of gas and coal dust explosion propagation in a single lanewaywas carried out in a large experimental roadway that is nearly the same with actual environmentand geometry conditions.In the experiment,the time when the gas and coal dustexplosion flame reaches test points has a logarithmic function relation with the test pointdistances.The explosion flame propagation velocity rises rapidly in the foreside of the coaldust segment and comes down after that.The length of the flame area is about 2 timesthat of the original coal dust accumulation area.Shock wave pressure comes down to therock bottom in the coal dust segment,then reaches the maximum peak rapidly and comesdown.The theoretical basis of the research and assemble of across or explosion is suppliedby the experiment conclusion.Compared with gas explosion,the force and destructiondegree of gas and coal dust explosion is much larger.展开更多
The target of the text is to scientifically appraise dynamic development of surface deformation in subsidence area and its influence on groundwork stability of natural pipe and then adopt some technological measures t...The target of the text is to scientifically appraise dynamic development of surface deformation in subsidence area and its influence on groundwork stability of natural pipe and then adopt some technological measures to ensure safe circulation of natural pipeline. Analysed the influence on natural pipeline from coal mining subsidence in the way of pipeline grade variation, vertical curve variation, transverse deformation, horizontal pull and compression deformation and pipe stress variation etc., and described detailed surface subsidence product and its used time among initial phase, active phase and decline phase in the course of surface movement deformation time. In the context of considering surface subsidence that doesn't reach basic latter end and residual subsidence quantity, the text confirmed the calculation method of residual deformation in surface subsidence area, and gave the technological measures about building natural gas pipeline in subsidence area finally.展开更多
The yield of tar and syngas has been investigated by catalytic pyrolysis of Pingzhuang lignite(PZL)over Ca(OH)2 catalyst in temperature range of 600℃-1000℃in a tube furnace.The results show that the yield of volatil...The yield of tar and syngas has been investigated by catalytic pyrolysis of Pingzhuang lignite(PZL)over Ca(OH)2 catalyst in temperature range of 600℃-1000℃in a tube furnace.The results show that the yield of volatile pyrolysis increases and char decreases with rising temperature for both raw and catalyzed Pingzhuang lignite.The hydrogen fraction(H2)increased from 20%to 40%for the PZL sample;but,for the PZL-Ca(OH)2 sample,H2 fraction fluctuated randomly between 35%to 42%,with the maximum H2 fraction found at 1000℃.The Gaschromatography mass-spectroscopic(GC-MS)analysis revealed that the maximum tar yield at 800℃and 700℃was obtained for PZL and PZL-Ca(OH)2,respectively.The surface morphology of PZL and PZL-Ca(OH)2 chars underwent different transformation in the presence of catalyst as illustrated by SEM/EDX,FTIR,and BET analysis.Furthermore,char sample was investigated for the carbon conversion and reactivity index using TGA analysis under N2 and CO atmosphere.展开更多
Pingxiang Mining Area in Jiangxi Province is one of the major coal-producing areas and is prone to serious coal and gas outburst, therefore, it is of significance to research on gas geological features and its control...Pingxiang Mining Area in Jiangxi Province is one of the major coal-producing areas and is prone to serious coal and gas outburst, therefore, it is of significance to research on gas geological features and its controlling factors. Based on the analysis of gas data collected from geological exploration and coal mining, the research reveals that the features of gas geology vary significantly between west part and east part of Pingxiang Mining Area, and it is characterized by high gas mines with se- rious coal and gas outburst in the west part and low gas mines with no coal and gas outburst in the east part. The main controlling factors to gas geology are discussed, and the great difference of gas geology between west part and east part is the result of comprehensive effect by geological factors. Concerning the gas generation, the coal rank in the west part is higher than that in the east part, which is favorable to generate more gas in the west part than in the east part. Concerning the gas preservation, the structures are characterized by gliding nappe in the west part and by tectonic window in the east part, the surrounding rocks are characterized by poor permeability in the west part and comparatively good permeability in the east part, and the characteristics of coal rank and coal body structure are favorable to gas preservation in the west part and favorable to gas emission in the east part.展开更多
A large amount of energy is consumed in a coal and gas outburst since a mass of coal is pulverized and ejected, accompanying a great quantity of gas emitted, resulting in a major mining hazard in underground coal mini...A large amount of energy is consumed in a coal and gas outburst since a mass of coal is pulverized and ejected, accompanying a great quantity of gas emitted, resulting in a major mining hazard in underground coal mining around the world. Understanding how potential energy stored in gassy coal seams dissipates in the process of outbursting may possibly be a key to clarify the mechanisms responsible for coal and gas outburst. The present study was aimed to evaluate energy for crushing coal to various size fractions in coal and gas outbursts through theoretical and experimental investigation into the shape of fine coal particles and their equivalent diameter. Theoretical analysis indicates that the shape of a particle has a significant impact both on its equivalent diameter and hence on its outer surface area.Microscopic observations demonstrate the particle fraction with diameters less than 0.075 mm, produced from crushing coal samples, mostly takes on a spherical or ellipsoidal shape, and experimental data also show this part of particles consists of 30%–50% surface area newly generated from crushing operation,though these fine coal accounts for only less than ten percentages by weight. Further, analysis of experimental data indicates that the total surface area of this particle size fraction varies exponentially with input crushing energy, and the specific area energy is not a constant but probably in association with physical properties and textures of material.展开更多
基金sponsored by the National High-Tech Research and Development Program of China(No.2007AA06Z220)the Key Science and Technology Program of Ministry of Education(No. 307014)the Research Program of Huainan Mining Group.
文摘Based on data from through-hole and logging,we studied the failure characteristics of surface drainage wells for relieved coal gas in Huainan mining area and its influencing factors.The results show that the damaged positions of drainage wells are mainly located at the thick clay layer in the low alluvium and the lithological interface in the upper section of bedrock in west mining area.The failure depth of casing is 244-670 m and concentrates at about 270-460 m deep.These damaged positions are mainly located in the bending zone according to three zones of rock layers in the vertical section above the roof divided. Generally,the casing begins to deform or damage before the face line about 30-150 m.Special formation structure and rock mass properties are the direct causes of the casing failure,high mining height and fast advancing speed are fundamental reasons for rock mass damage.However,the borehole configuration and spacing to the casing failure are not very clear.
文摘Surrounding rock of coal seam was one of the important factors to gas occurrence. The coal seam gas occurrence was studied by the index of roof strata thickness or sand content rate;we found that there were certain shortcomings. In order to reasonably evaluate the influence of coal seam surrounding rock on gas occurrence in Panji mining area, we quantitatively evaluated the effect of coal seam surrounding rock on gas occurrence by influence coefficient of roof strata thickness, and built six mathematical models of the variational gas content in the mining area which is divided into six gas geological units. The results shows that the coal seam gas content is mainly influenced by 20 mroof strata in each gas geological unit, the gas content presents the tendency of increase, and with the influence coefficient of strata thickness increases, they exist a significant linear relationship.
基金supported by the National Key Scientific Instruments and Equipment Development Projects of China(No.51427804)the National Science Foundation of Shandong Province(No.ZR2017MEE023)。
文摘Coal and gas outburst is a violent disaster driven by released energy from gas desorption.The initial expansion energy of released gas(IEERG)is a new method to predict coal and gas outburst.In this paper,an instrument for IEERG measurement was developed.Compared with previous setups,the new one which is equipped with three convergent nozzles and quick-release mechanism gets improved in data acquisition and gas sealing and releasing performance.To comprehensively know the effect of gas pressure,particle size,and nozzle area on IEERG,a series of experiments were carried out with this new setup.The variable control test results indicated that the gas pressure-IEERG curves remain the linear trend and the particle size-IEERG curves maintain the negative exponential trend for nozzle areas at 1.13,2.26,and3.39 mm2,respectively.The increase in nozzle area leads to deceases in value of IEERG and absolute value of slope of fitting curves in each test.In addition,the orthogonal experiment showed that the influence of gas pressure,nozzle area,and particle size on IEERG decreases in turn.Only gas pressure had a marked impact on IEERG.This work offers great importance in improving the accuracy of prediction of coal and gas outburst.
基金supported by the National Natural Science Foundation of China(grant No.41572141)
文摘Objective The Juhugeng mining area in Qinghai Province of northwest China has attracted wide attention among geologists for it hosts typical coal measure gases.The shale gas reservoirs were reformed by intensive structural movements during geological periods,
基金Supported by the National Basic Research Program(973)(2005CB221506)the Open Research Fund Program of Shandong University of Science and Technology(MDPC0611)
文摘The experiment of gas and coal dust explosion propagation in a single lanewaywas carried out in a large experimental roadway that is nearly the same with actual environmentand geometry conditions.In the experiment,the time when the gas and coal dustexplosion flame reaches test points has a logarithmic function relation with the test pointdistances.The explosion flame propagation velocity rises rapidly in the foreside of the coaldust segment and comes down after that.The length of the flame area is about 2 timesthat of the original coal dust accumulation area.Shock wave pressure comes down to therock bottom in the coal dust segment,then reaches the maximum peak rapidly and comesdown.The theoretical basis of the research and assemble of across or explosion is suppliedby the experiment conclusion.Compared with gas explosion,the force and destructiondegree of gas and coal dust explosion is much larger.
文摘The target of the text is to scientifically appraise dynamic development of surface deformation in subsidence area and its influence on groundwork stability of natural pipe and then adopt some technological measures to ensure safe circulation of natural pipeline. Analysed the influence on natural pipeline from coal mining subsidence in the way of pipeline grade variation, vertical curve variation, transverse deformation, horizontal pull and compression deformation and pipe stress variation etc., and described detailed surface subsidence product and its used time among initial phase, active phase and decline phase in the course of surface movement deformation time. In the context of considering surface subsidence that doesn't reach basic latter end and residual subsidence quantity, the text confirmed the calculation method of residual deformation in surface subsidence area, and gave the technological measures about building natural gas pipeline in subsidence area finally.
基金Supported by the Innovation Reasearch Groups of the National Natural Science Foundation of China(51621005)EPSRC from the UK.
文摘The yield of tar and syngas has been investigated by catalytic pyrolysis of Pingzhuang lignite(PZL)over Ca(OH)2 catalyst in temperature range of 600℃-1000℃in a tube furnace.The results show that the yield of volatile pyrolysis increases and char decreases with rising temperature for both raw and catalyzed Pingzhuang lignite.The hydrogen fraction(H2)increased from 20%to 40%for the PZL sample;but,for the PZL-Ca(OH)2 sample,H2 fraction fluctuated randomly between 35%to 42%,with the maximum H2 fraction found at 1000℃.The Gaschromatography mass-spectroscopic(GC-MS)analysis revealed that the maximum tar yield at 800℃and 700℃was obtained for PZL and PZL-Ca(OH)2,respectively.The surface morphology of PZL and PZL-Ca(OH)2 chars underwent different transformation in the presence of catalyst as illustrated by SEM/EDX,FTIR,and BET analysis.Furthermore,char sample was investigated for the carbon conversion and reactivity index using TGA analysis under N2 and CO atmosphere.
基金Supported by the National Natural Science Foundation of China (41172138) the Special Fund Project of Jiangxi Energy Bureau (20100730) Acknowledgments The authors wish to thank Professor Tang Xiuyi from Anhui University of Science and Technology for his constructive advice. The authors also express their gratitude to the technical personnel from Jiangxi Exploration Institute of Coalfield Geology, Jiangxi Coal Group Corporation, for their kind help.
文摘Pingxiang Mining Area in Jiangxi Province is one of the major coal-producing areas and is prone to serious coal and gas outburst, therefore, it is of significance to research on gas geological features and its controlling factors. Based on the analysis of gas data collected from geological exploration and coal mining, the research reveals that the features of gas geology vary significantly between west part and east part of Pingxiang Mining Area, and it is characterized by high gas mines with se- rious coal and gas outburst in the west part and low gas mines with no coal and gas outburst in the east part. The main controlling factors to gas geology are discussed, and the great difference of gas geology between west part and east part is the result of comprehensive effect by geological factors. Concerning the gas generation, the coal rank in the west part is higher than that in the east part, which is favorable to generate more gas in the west part than in the east part. Concerning the gas preservation, the structures are characterized by gliding nappe in the west part and by tectonic window in the east part, the surrounding rocks are characterized by poor permeability in the west part and comparatively good permeability in the east part, and the characteristics of coal rank and coal body structure are favorable to gas preservation in the west part and favorable to gas emission in the east part.
基金financially supported by Natural Science Foundation (Nos.51174241,and 51674049) of ChinaNational Basic Research Program of China (No.2011CB201203)
文摘A large amount of energy is consumed in a coal and gas outburst since a mass of coal is pulverized and ejected, accompanying a great quantity of gas emitted, resulting in a major mining hazard in underground coal mining around the world. Understanding how potential energy stored in gassy coal seams dissipates in the process of outbursting may possibly be a key to clarify the mechanisms responsible for coal and gas outburst. The present study was aimed to evaluate energy for crushing coal to various size fractions in coal and gas outbursts through theoretical and experimental investigation into the shape of fine coal particles and their equivalent diameter. Theoretical analysis indicates that the shape of a particle has a significant impact both on its equivalent diameter and hence on its outer surface area.Microscopic observations demonstrate the particle fraction with diameters less than 0.075 mm, produced from crushing coal samples, mostly takes on a spherical or ellipsoidal shape, and experimental data also show this part of particles consists of 30%–50% surface area newly generated from crushing operation,though these fine coal accounts for only less than ten percentages by weight. Further, analysis of experimental data indicates that the total surface area of this particle size fraction varies exponentially with input crushing energy, and the specific area energy is not a constant but probably in association with physical properties and textures of material.