Coal consumption curve of the thermal power plant can reflect the function relationship between the coal consumption of unit and load, which plays a key role for research on unit economic operation and load optimal di...Coal consumption curve of the thermal power plant can reflect the function relationship between the coal consumption of unit and load, which plays a key role for research on unit economic operation and load optimal dispatch. Now get coal consumption curve is generally obtained by least square method, but which are static curve and these curves remain unchanged for a long time, and make them are incompatible with the actual operation situation of the unit. Furthermore, coal consumption has the characteristics of typical nonlinear and time varying, sometimes the least square method does not work for nonlinear complex problems. For these problems, a method of coal consumption curve fitting of the thermal power plant units based on genetic algorithm is proposed. The residual analysis method is used for data detection;quadratic function is employed to the objective function;appropriate parameters such as initial population size, crossover rate and mutation rate are set;the unit’s actual coal consumption curves are fitted, and comparing the proposed method with least squares method, the results indicate that fitting effect of the former is better than the latter, and further indicate that the proposed method to do curve fitting can best approximate known data in a certain significance, and they can real-timely reflect the interdependence between power output and coal consumption.展开更多
In this paper, the mechanical and thermal properties of a sand-clay ceramic with additives coal bottom ash (CBA) waste from incinerator coal power plant are investigated to develop an alternative material for thermal ...In this paper, the mechanical and thermal properties of a sand-clay ceramic with additives coal bottom ash (CBA) waste from incinerator coal power plant are investigated to develop an alternative material for thermal energy storage (TES). Ceramic balls are developed at 1000°C and 1060°C using sintering or firing method. The obtained ceramics were compressed with a compression machine and thermally analyse using Decagon devise KD2 Pro thermal analyser. A muffle furnace was also used for thermal cycling at 610°C. It was found that the CBA increased the porosity, which resulted in the increase of the axial tensile strength reaching 3.5 MPa for sand-clay and ash ceramic. The ceramic balls with the required tensile strength for TES were selected. Their volumetric heat capacity, and thermal conductivity range respectively from 2.4075 MJ·m-3·°C-1 to 3.426 MJ·m-3·°C-1 and their thermal conductivity from 0.331 Wm-1·K-1, to 1.014 Wm-1·K-1 depending on sand origin, size and firing temperature. The selected formulas have good thermal stability because the most fragile specimens after 60 thermal cycles did not present any cracks. These properties allow envisioning the use of the ceramic balls developed as filler material for thermocline thermal energy storage (structured beds) in Concentrating Solar Power plants. And for other applications like solar cooker and solar dryer.展开更多
In India coal combustion is the single largest source of emission of mercury which is a widespread persistent global toxicant,travelling across international borders through air and water.As a party to the Minamata co...In India coal combustion is the single largest source of emission of mercury which is a widespread persistent global toxicant,travelling across international borders through air and water.As a party to the Minamata convention,India aims to monitor and reduce Hg emissions and stricter norms are introduced for mercury emissions from power plants(30μg/Nm 3 for flue gas in stack).This paper presents the results obtained during the experimental studies performed on mercury emissions at four coal-fired and one lignite-fired power plants in India.The mercury concentration in the feed coal varied between 0.12-0.27 mg/Kg.In the mercury mass balance,significant proportion of feed coal mercury has been found to be associated with fly ash,whereas bottom ash contained very low mercury.80%-90%of mercury was released to air through stack gas.However,for circulating fluidised bed boiler burning lignite,about 64.8%of feed mercury was found to get captured in the fly ash and only 32.4%was released to air.The mercury emission factor was found to lie in the range of 4.7-15.7 mg/GJ.展开更多
Integrating solar power utilization systems with coal-fired power units, the solar aided coal-fired power generation (SACPG) shows a significant prospect for the large-scale utilization of solar energy and energy savi...Integrating solar power utilization systems with coal-fired power units, the solar aided coal-fired power generation (SACPG) shows a significant prospect for the large-scale utilization of solar energy and energy saving of thermal power units. The methods and mechanism of system integration were studied. The parabolic trough solar collectors were used to collect solar energy and the integration scheme of SACPG system was determined considering the matching of working fluid flows and energy flows. The thermodynamic characteristics of solar thermal power generation and their effects on the performance of thermal power units were studied, and based on this the integration and optimization model of system structure and parameters were built up. The integration rules and coupling mecha- nism of SACPG systems were summarized in accordance with simulation results. The economic analysis of this SACPG system showed that the solar LEC of a typical SACPG system, considering CO2 avoidance, is 0.098 $/kW·h, lower than that of SEGS, 0.14 $/kW·h.展开更多
Air quality in the vicinity of the thermal power plant of Logbaba in the town of Douala was investigated in this study using data collected in a 5-year period (2008-2012). The distribution of pollutants such as SO2, N...Air quality in the vicinity of the thermal power plant of Logbaba in the town of Douala was investigated in this study using data collected in a 5-year period (2008-2012). The distribution of pollutants such as SO2, NOx, CO and the particle matter PM2.5 was analyzed using numerical modeling, based on physical and thermal characteristics, as well as the operating periods of the power plant. The American Environmental Regulator Model (AERMOD) that is an atmospheric dispersion model was used for simulation. The wind rose and others National Oceanic Atmospheric Administration (NOAA) in-situ data were used for the validation of the model. The pollutants distribution was evaluated at two locations: the exit of the power plant, considered as reference point, and at 330 m away from the exit where the first houses appeared. The results show that the relative concentration for each contaminant at the exit of the power plant is 7.2% for the PM2.5 during 24 hours of emission, 46.0% for CO over 8 hours of emission, and 17.5% for SO2 over one hour. The NOx is the highest pollutant with 259.1% over an hour of emission and 51.0% over one year. Beyond 330 m of the power plant, only NOx keeps a polluting character with a relative rate of 100%. These results show that the pollution level of the power plant is over the threshold for air quality set by the World Health Organization. Moreover, among all pollutants investigated, NOx appears to be the most critical for the population in the vicinity of the Logbaba thermal power plant. This information is therefore important for policy and decision makers in preventing the vulnerability of the population to air pollutants from such industrial settings.展开更多
“双碳目标”背景下,煤电机组将长期作为主力调峰电源,保障电网安全稳定。储热是提升煤电机组灵活性的重要手段,但煤电耦合储热系统的运行特性尚不明确,不同储热技术与煤电机组耦合适应性亟待研究。为此,该文构建600 MW煤电-90 MW显热/...“双碳目标”背景下,煤电机组将长期作为主力调峰电源,保障电网安全稳定。储热是提升煤电机组灵活性的重要手段,但煤电耦合储热系统的运行特性尚不明确,不同储热技术与煤电机组耦合适应性亟待研究。为此,该文构建600 MW煤电-90 MW显热/潜热/热化学储热3种耦合系统,详细考察系统储/释热过程调峰能力及热力学性能,并基于优劣解距离法(technique for order preference by similarity to an ideal solution,TOPSIS)综合评价,明确最优耦合方案。研究发现,储热过程,Ca(OH)_(2)/CaO热化学储热的调峰容量、调峰深度及?效率均优于热水及熔融盐储热,而释热过程熔融盐储热性能最优;通过TOPSIS综合评价法确定热储热方案均为抽取主蒸汽作为热源,最佳释热方案均为以#2高加进水为冷源,同时确定煤电耦合熔融盐储热为最佳系统耦合方案。相关研究结论可为构建煤电耦合储热调峰系统提供一定的理论和数据支撑。展开更多
文摘Coal consumption curve of the thermal power plant can reflect the function relationship between the coal consumption of unit and load, which plays a key role for research on unit economic operation and load optimal dispatch. Now get coal consumption curve is generally obtained by least square method, but which are static curve and these curves remain unchanged for a long time, and make them are incompatible with the actual operation situation of the unit. Furthermore, coal consumption has the characteristics of typical nonlinear and time varying, sometimes the least square method does not work for nonlinear complex problems. For these problems, a method of coal consumption curve fitting of the thermal power plant units based on genetic algorithm is proposed. The residual analysis method is used for data detection;quadratic function is employed to the objective function;appropriate parameters such as initial population size, crossover rate and mutation rate are set;the unit’s actual coal consumption curves are fitted, and comparing the proposed method with least squares method, the results indicate that fitting effect of the former is better than the latter, and further indicate that the proposed method to do curve fitting can best approximate known data in a certain significance, and they can real-timely reflect the interdependence between power output and coal consumption.
文摘In this paper, the mechanical and thermal properties of a sand-clay ceramic with additives coal bottom ash (CBA) waste from incinerator coal power plant are investigated to develop an alternative material for thermal energy storage (TES). Ceramic balls are developed at 1000°C and 1060°C using sintering or firing method. The obtained ceramics were compressed with a compression machine and thermally analyse using Decagon devise KD2 Pro thermal analyser. A muffle furnace was also used for thermal cycling at 610°C. It was found that the CBA increased the porosity, which resulted in the increase of the axial tensile strength reaching 3.5 MPa for sand-clay and ash ceramic. The ceramic balls with the required tensile strength for TES were selected. Their volumetric heat capacity, and thermal conductivity range respectively from 2.4075 MJ·m-3·°C-1 to 3.426 MJ·m-3·°C-1 and their thermal conductivity from 0.331 Wm-1·K-1, to 1.014 Wm-1·K-1 depending on sand origin, size and firing temperature. The selected formulas have good thermal stability because the most fragile specimens after 60 thermal cycles did not present any cracks. These properties allow envisioning the use of the ceramic balls developed as filler material for thermocline thermal energy storage (structured beds) in Concentrating Solar Power plants. And for other applications like solar cooker and solar dryer.
文摘In India coal combustion is the single largest source of emission of mercury which is a widespread persistent global toxicant,travelling across international borders through air and water.As a party to the Minamata convention,India aims to monitor and reduce Hg emissions and stricter norms are introduced for mercury emissions from power plants(30μg/Nm 3 for flue gas in stack).This paper presents the results obtained during the experimental studies performed on mercury emissions at four coal-fired and one lignite-fired power plants in India.The mercury concentration in the feed coal varied between 0.12-0.27 mg/Kg.In the mercury mass balance,significant proportion of feed coal mercury has been found to be associated with fly ash,whereas bottom ash contained very low mercury.80%-90%of mercury was released to air through stack gas.However,for circulating fluidised bed boiler burning lignite,about 64.8%of feed mercury was found to get captured in the fly ash and only 32.4%was released to air.The mercury emission factor was found to lie in the range of 4.7-15.7 mg/GJ.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 50776028 and 50606010) the Program for New Century Excellent Talents in University (Grant No. NCET-05-0217)
文摘Integrating solar power utilization systems with coal-fired power units, the solar aided coal-fired power generation (SACPG) shows a significant prospect for the large-scale utilization of solar energy and energy saving of thermal power units. The methods and mechanism of system integration were studied. The parabolic trough solar collectors were used to collect solar energy and the integration scheme of SACPG system was determined considering the matching of working fluid flows and energy flows. The thermodynamic characteristics of solar thermal power generation and their effects on the performance of thermal power units were studied, and based on this the integration and optimization model of system structure and parameters were built up. The integration rules and coupling mecha- nism of SACPG systems were summarized in accordance with simulation results. The economic analysis of this SACPG system showed that the solar LEC of a typical SACPG system, considering CO2 avoidance, is 0.098 $/kW·h, lower than that of SEGS, 0.14 $/kW·h.
文摘Air quality in the vicinity of the thermal power plant of Logbaba in the town of Douala was investigated in this study using data collected in a 5-year period (2008-2012). The distribution of pollutants such as SO2, NOx, CO and the particle matter PM2.5 was analyzed using numerical modeling, based on physical and thermal characteristics, as well as the operating periods of the power plant. The American Environmental Regulator Model (AERMOD) that is an atmospheric dispersion model was used for simulation. The wind rose and others National Oceanic Atmospheric Administration (NOAA) in-situ data were used for the validation of the model. The pollutants distribution was evaluated at two locations: the exit of the power plant, considered as reference point, and at 330 m away from the exit where the first houses appeared. The results show that the relative concentration for each contaminant at the exit of the power plant is 7.2% for the PM2.5 during 24 hours of emission, 46.0% for CO over 8 hours of emission, and 17.5% for SO2 over one hour. The NOx is the highest pollutant with 259.1% over an hour of emission and 51.0% over one year. Beyond 330 m of the power plant, only NOx keeps a polluting character with a relative rate of 100%. These results show that the pollution level of the power plant is over the threshold for air quality set by the World Health Organization. Moreover, among all pollutants investigated, NOx appears to be the most critical for the population in the vicinity of the Logbaba thermal power plant. This information is therefore important for policy and decision makers in preventing the vulnerability of the population to air pollutants from such industrial settings.
文摘“双碳目标”背景下,煤电机组将长期作为主力调峰电源,保障电网安全稳定。储热是提升煤电机组灵活性的重要手段,但煤电耦合储热系统的运行特性尚不明确,不同储热技术与煤电机组耦合适应性亟待研究。为此,该文构建600 MW煤电-90 MW显热/潜热/热化学储热3种耦合系统,详细考察系统储/释热过程调峰能力及热力学性能,并基于优劣解距离法(technique for order preference by similarity to an ideal solution,TOPSIS)综合评价,明确最优耦合方案。研究发现,储热过程,Ca(OH)_(2)/CaO热化学储热的调峰容量、调峰深度及?效率均优于热水及熔融盐储热,而释热过程熔融盐储热性能最优;通过TOPSIS综合评价法确定热储热方案均为抽取主蒸汽作为热源,最佳释热方案均为以#2高加进水为冷源,同时确定煤电耦合熔融盐储热为最佳系统耦合方案。相关研究结论可为构建煤电耦合储热调峰系统提供一定的理论和数据支撑。