Zeolite derived from coal-based solid wastes(coal gangue and coal fly ash)can overcome the environmental problems caused by coal-based solid wastes and achieve valuable utilization.In this paper,the physicochemical pr...Zeolite derived from coal-based solid wastes(coal gangue and coal fly ash)can overcome the environmental problems caused by coal-based solid wastes and achieve valuable utilization.In this paper,the physicochemical properties of coal gangue and coal fly ash are introduced.The mechanism and application characteristics of the pretreatment processes for zeolite synthesis from coal-based solid wastes are also introduced.The synthesis processes of coal-based solid waste zeolite and their advantages and disadvantages are summarized.Furthermore,the application characteristics of various coal-based solid waste zeolites and their common application fields are illustrated.Finally,we propose an alkaline fusion-assisted supercritical hydrothermal crystallization as an efficient method for synthesizing coal-based solid waste zeolites.In addition,more attention should be given to the recycling of alkaline waste liquid and the application of coal-based solid waste zeolites in the field of volatile organic compound adsorption removal.展开更多
Mixed incineration of municipal solid waste (MSW) in existing coal gangue power plant is a potentially highefficiency and low-cost MSW disposal way. In this paper, the co-combustion and pollutants emission characteris...Mixed incineration of municipal solid waste (MSW) in existing coal gangue power plant is a potentially highefficiency and low-cost MSW disposal way. In this paper, the co-combustion and pollutants emission characteristic of MSW and coal gangue was investigated in a circulating fluidized bed (CFB) combustor. The effect of MSW blend ratio, bed temperature and excess air ratio was detailedly studied. The results show the NOX and HC1 emission increases with the increasing MSW blend ratio and the SO2 emission decreases. With the increase of bed temperature, the CO emission decreases while the NOX and SO2 emission increases. The HC1 emission is nearly stable in the temperature range of 850-950℃. The increase of excess air ratio gradually increases the NOX emission but has no significant effect on the SO2 emission. The HC1 emission firstly increases and then decreases with the increase of excess air ratio. For a typical CFB operating condition with excess air ratio of 1.4, bed temperature of 900℃ and MSW blend ratio of 10%, the original CO, NOX, SO2 and HC1 emissions are 52, 181, 3373 and 58 mg/Nm^3 respectively.展开更多
Coal is the vital resource of energy in China,but abandoned coal ash and gangue lead to the degradation of vegetation cover and reduce soil quality.Both arbuscular mycorrhizal fungi (AMF) and phosphate solubilizing ba...Coal is the vital resource of energy in China,but abandoned coal ash and gangue lead to the degradation of vegetation cover and reduce soil quality.Both arbuscular mycorrhizal fungi (AMF) and phosphate solubilizing bacteria (PSB) play a key role in biogeochemical cycle such as soil organic matter decomposition,nutrition release,and energy flow.To improve and reclamation the soil quality and ecological efficiency of the coal mining waste,we investigated the effects of an AMF strain (Glomus mosseae) and a PSB strain (Pantoesstewarti) on phytate mineralization and subsequent transfer to the host plant (Medicago sativa L.) using a two-compartment microcosm with a central 30 mm nylon mesh barrier.The results showed that significantly higher available P (AP),above ground biomass (AGB) and underground biomass (UGB) were in combined inoculation of AMF-PSB than other treatments in root and hyphae compartment.The microbial inoculum of the AMF or PSB had a significant influence on soil acid phosphatase activities (ACP).AMF-PSB enhanced phytate mineralization,improved plant biomass.AP and ACP positively influenced the AGB and UGB.AMF-PSB could be used as bioinoculant to enhance sustainable production of the plant in abandoned solid waste of coal mine.展开更多
A novel sorting system based on one degree of freedom (DOF) tendon based parallel manipulator (TBPM) for high value waste processing was presented and designed. In order to control the motion of loads, nonlinear state...A novel sorting system based on one degree of freedom (DOF) tendon based parallel manipulator (TBPM) for high value waste processing was presented and designed. In order to control the motion of loads, nonlinear state feed forward control algorithm in the tendon length coordinate was used. Considering the system redundancy and actuation behavior, algorithms of optimal tension distribution and forward kinematics were designed. Then, the simulation experiments of motion control were implemented. The results demonstrate that the proposed TBPM translation system performs robust capacities. It can transfer the loads 1 m away within 1.5 s. With further optimization, the translation duration can be further reduced to be about 1 s and the optimized translation is followed with 43.59 m/s2 maximum acceleration. The translation errors at the aim position remain below 0.4 mm.展开更多
Considering the fact that there is much coal ash in the municipal solid waste (MSW) in some cities of China, the feasibility of composting in this situation was studied and the effect of content of the coal ash on the...Considering the fact that there is much coal ash in the municipal solid waste (MSW) in some cities of China, the feasibility of composting in this situation was studied and the effect of content of the coal ash on the composting process and some basic relative technological parameters were investigated. The values of the moisture, the total organic matter, the content of coal ash, the C/N ratio and the ventilation were suggested to be 50%60%, 40%60%, 40%60%, (25∶1)(35∶1) and 0.050.20 m 3/(min·m 3), respectively.展开更多
Municipal solid waste(MSW)is a carbon–neutral energy source and possesses a moderate heating value;hence,it can be used as an alternative fuel for coal.To use high ash and high sulfur Indian coals efficiently,a techn...Municipal solid waste(MSW)is a carbon–neutral energy source and possesses a moderate heating value;hence,it can be used as an alternative fuel for coal.To use high ash and high sulfur Indian coals efficiently,a techno economic analysis is performed for electricity generation using supercritical and subcritical based steam turbines operating in the oxy-fuel co-combustion mode of MSW with Indian coals.The impact of the capture of direct and indirect greenhouse gasses such as CO_(2),NO_(x)and SO_(x)on the net thermal efficiency of the power plants is assessed.The supercritical based steam turbine achieved a higher net thermal efficiency by 8.8%using MSW based feedstock compared to sub-critical conditions.The co-combustion mode reduced the levelized cost of electricity(LCOE)by 48–73$/MWh.Techno-economic analysis for sulfur removal in coal using ultrasonication technology has not yet been reported in the literature.The incorporation of an ultrasonicator(a pre-combustion sulfur remover)and a duct sorbent injector(a post-combustion SO_(x)absorber)increased the LCOE by 1.39–2.75$/MWh.In high sulfur coals,the SO_(x)emissions decreased from 224.79 mg/m^(3)to 9.2 mg/m^(3).展开更多
The NO_(x)emission of coal slime burned in circulating fluidized bed(CFB)boilers could hardly meet the increasingly strict standards in China.Feeding coal slime from the top of furnace led to uneven combustion in furn...The NO_(x)emission of coal slime burned in circulating fluidized bed(CFB)boilers could hardly meet the increasingly strict standards in China.Feeding coal slime from the top of furnace led to uneven combustion in furnace and cyclones,short residence time and overheated tail heating surface.The effects of feeding positions on the combustion uniformity and pollutant emission characteristics of coal slime were studied.The experimental results showed that the coal slime combustion was more uniform when feeding from the front wall and longer residence time was conducive to the control of NO_(x)emission.When the boiler temperature and excess air ratio were almost identical,the initial NO_(x)emissions were 45.0 mg·m^(−3)and 70.7 mg·m^(−3)when feeding from the front wall and the top of furnace,respectively;the NO_(x)emission was cut down 36.35%when feeding from the front wall,successfully meeting the ultra-low NO_(x)emission standard of China.The adoption of feeding from the front wall greatly reduced the original emission of NO_(x);the operation costs in the practical applications were saved to a large extent.展开更多
Mine grouting reinforcement and water plugging projects often require large amounts of grouting materials.To reduce the carbon emission of grouting material production,improve the utilization of solid waste from minin...Mine grouting reinforcement and water plugging projects often require large amounts of grouting materials.To reduce the carbon emission of grouting material production,improve the utilization of solid waste from mining enterprises,and meet the needs of mine reinforcement and seepage control,a double-liquid grouting material containing a high admixture of coal gangue powder/bottom ash geopolymer was studied.The setting time,fluidity,bleeding rate,and mechanical properties of grouting materials were studied through laboratory tests,and SEM analyzed the microstructure of the materials.The results show that the total mixture of calcined gangue does not exceed 60%.And the proportion of bottom ash replacing cement should be within 30%.At the same time,the volume mixture of sodium silicate is 20%.And the water-solid ratio does not exceed 0.6.The stability of the slurry prepared under this ratio is good.The microstructure of the stone body is dense,and its strength can meet the requirements of rock reinforcement and seepage control.Its economic and environmental benefits are more significant than the traditional cement-silicate double-liquid grouting material.展开更多
煤矿固体废弃物是煤炭开采、洗选和利用过程中产生的一种工业固体废弃物。我国煤矿固体废弃物虽然利用率逐年上升,但现阶段的堆存量仍然很大,它不仅侵占土地资源,还会造成严重的环境污染。本文通过系统检索知网、Web of Science和Google...煤矿固体废弃物是煤炭开采、洗选和利用过程中产生的一种工业固体废弃物。我国煤矿固体废弃物虽然利用率逐年上升,但现阶段的堆存量仍然很大,它不仅侵占土地资源,还会造成严重的环境污染。本文通过系统检索知网、Web of Science和Google Scholar数据库,收集了2014—2024年间关于煤矿固体废弃物理化特征及生态环境影响方面的研究文献,综合分析发现,煤矿固体废弃物对环境的影响主要表现在:①煤矿固体废弃物在堆存过程中产生的多环芳烃、SO_(2)等气体和细颗粒物,会对大气产生污染;②煤矿固体废弃物中的重金属在淋滤过程中会污染周围地下水;③煤矿固体废弃物中的Cd、Cr、Hg等重金属元素会通过风化、浸出等过程向周围土壤迁移释放,造成严重的重金属污染。基于安全、环保、监测等相关规定,结合目前综合利用和处理现状,提出了今后煤矿固体废弃物的研究重点。展开更多
基金This work was financially supported by the National Key R&D Program of China(Nos.2020YFC1806504 and 2019YFC1904903)the Yue Qi Young Scholar Project,China University of Mining&Technology(Beijing)(No.2017QN12).
文摘Zeolite derived from coal-based solid wastes(coal gangue and coal fly ash)can overcome the environmental problems caused by coal-based solid wastes and achieve valuable utilization.In this paper,the physicochemical properties of coal gangue and coal fly ash are introduced.The mechanism and application characteristics of the pretreatment processes for zeolite synthesis from coal-based solid wastes are also introduced.The synthesis processes of coal-based solid waste zeolite and their advantages and disadvantages are summarized.Furthermore,the application characteristics of various coal-based solid waste zeolites and their common application fields are illustrated.Finally,we propose an alkaline fusion-assisted supercritical hydrothermal crystallization as an efficient method for synthesizing coal-based solid waste zeolites.In addition,more attention should be given to the recycling of alkaline waste liquid and the application of coal-based solid waste zeolites in the field of volatile organic compound adsorption removal.
基金This work was supported by the National Natural Science Foundation of China (Grant No.U1610254)Shanxi Province Coal-based key Technology Research and Development Program (Grant No.MD2014-03).
文摘Mixed incineration of municipal solid waste (MSW) in existing coal gangue power plant is a potentially highefficiency and low-cost MSW disposal way. In this paper, the co-combustion and pollutants emission characteristic of MSW and coal gangue was investigated in a circulating fluidized bed (CFB) combustor. The effect of MSW blend ratio, bed temperature and excess air ratio was detailedly studied. The results show the NOX and HC1 emission increases with the increasing MSW blend ratio and the SO2 emission decreases. With the increase of bed temperature, the CO emission decreases while the NOX and SO2 emission increases. The HC1 emission is nearly stable in the temperature range of 850-950℃. The increase of excess air ratio gradually increases the NOX emission but has no significant effect on the SO2 emission. The HC1 emission firstly increases and then decreases with the increase of excess air ratio. For a typical CFB operating condition with excess air ratio of 1.4, bed temperature of 900℃ and MSW blend ratio of 10%, the original CO, NOX, SO2 and HC1 emissions are 52, 181, 3373 and 58 mg/Nm^3 respectively.
基金We gratefully acknowledge the State Key Research Development Program of China(Grant No.2016YFC0501106)and the National Natural Science Foundation of China(Project 51574253).
文摘Coal is the vital resource of energy in China,but abandoned coal ash and gangue lead to the degradation of vegetation cover and reduce soil quality.Both arbuscular mycorrhizal fungi (AMF) and phosphate solubilizing bacteria (PSB) play a key role in biogeochemical cycle such as soil organic matter decomposition,nutrition release,and energy flow.To improve and reclamation the soil quality and ecological efficiency of the coal mining waste,we investigated the effects of an AMF strain (Glomus mosseae) and a PSB strain (Pantoesstewarti) on phytate mineralization and subsequent transfer to the host plant (Medicago sativa L.) using a two-compartment microcosm with a central 30 mm nylon mesh barrier.The results showed that significantly higher available P (AP),above ground biomass (AGB) and underground biomass (UGB) were in combined inoculation of AMF-PSB than other treatments in root and hyphae compartment.The microbial inoculum of the AMF or PSB had a significant influence on soil acid phosphatase activities (ACP).AMF-PSB enhanced phytate mineralization,improved plant biomass.AP and ACP positively influenced the AGB and UGB.AMF-PSB could be used as bioinoculant to enhance sustainable production of the plant in abandoned solid waste of coal mine.
基金Project(B07028) supported by "111" Introducing Talents of Discipline to University Program through Ministry of Education of China
文摘A novel sorting system based on one degree of freedom (DOF) tendon based parallel manipulator (TBPM) for high value waste processing was presented and designed. In order to control the motion of loads, nonlinear state feed forward control algorithm in the tendon length coordinate was used. Considering the system redundancy and actuation behavior, algorithms of optimal tension distribution and forward kinematics were designed. Then, the simulation experiments of motion control were implemented. The results demonstrate that the proposed TBPM translation system performs robust capacities. It can transfer the loads 1 m away within 1.5 s. With further optimization, the translation duration can be further reduced to be about 1 s and the optimized translation is followed with 43.59 m/s2 maximum acceleration. The translation errors at the aim position remain below 0.4 mm.
文摘Considering the fact that there is much coal ash in the municipal solid waste (MSW) in some cities of China, the feasibility of composting in this situation was studied and the effect of content of the coal ash on the composting process and some basic relative technological parameters were investigated. The values of the moisture, the total organic matter, the content of coal ash, the C/N ratio and the ventilation were suggested to be 50%60%, 40%60%, 40%60%, (25∶1)(35∶1) and 0.050.20 m 3/(min·m 3), respectively.
文摘Municipal solid waste(MSW)is a carbon–neutral energy source and possesses a moderate heating value;hence,it can be used as an alternative fuel for coal.To use high ash and high sulfur Indian coals efficiently,a techno economic analysis is performed for electricity generation using supercritical and subcritical based steam turbines operating in the oxy-fuel co-combustion mode of MSW with Indian coals.The impact of the capture of direct and indirect greenhouse gasses such as CO_(2),NO_(x)and SO_(x)on the net thermal efficiency of the power plants is assessed.The supercritical based steam turbine achieved a higher net thermal efficiency by 8.8%using MSW based feedstock compared to sub-critical conditions.The co-combustion mode reduced the levelized cost of electricity(LCOE)by 48–73$/MWh.Techno-economic analysis for sulfur removal in coal using ultrasonication technology has not yet been reported in the literature.The incorporation of an ultrasonicator(a pre-combustion sulfur remover)and a duct sorbent injector(a post-combustion SO_(x)absorber)increased the LCOE by 1.39–2.75$/MWh.In high sulfur coals,the SO_(x)emissions decreased from 224.79 mg/m^(3)to 9.2 mg/m^(3).
基金This work was financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA21040100).
文摘The NO_(x)emission of coal slime burned in circulating fluidized bed(CFB)boilers could hardly meet the increasingly strict standards in China.Feeding coal slime from the top of furnace led to uneven combustion in furnace and cyclones,short residence time and overheated tail heating surface.The effects of feeding positions on the combustion uniformity and pollutant emission characteristics of coal slime were studied.The experimental results showed that the coal slime combustion was more uniform when feeding from the front wall and longer residence time was conducive to the control of NO_(x)emission.When the boiler temperature and excess air ratio were almost identical,the initial NO_(x)emissions were 45.0 mg·m^(−3)and 70.7 mg·m^(−3)when feeding from the front wall and the top of furnace,respectively;the NO_(x)emission was cut down 36.35%when feeding from the front wall,successfully meeting the ultra-low NO_(x)emission standard of China.The adoption of feeding from the front wall greatly reduced the original emission of NO_(x);the operation costs in the practical applications were saved to a large extent.
基金Funding Statement:The research described in this paper was financially supported by the National Natural Science Foundation of China(No.51974172)Innovation and Technology Program of Universities in Shandong Province,China(No.2020KJH001)+1 种基金National Natural Science Foundation of China(No.52274131)State Key Laboratory of Coal Mining and Clean Utilization(No.2021-CMCU-KF017).
文摘Mine grouting reinforcement and water plugging projects often require large amounts of grouting materials.To reduce the carbon emission of grouting material production,improve the utilization of solid waste from mining enterprises,and meet the needs of mine reinforcement and seepage control,a double-liquid grouting material containing a high admixture of coal gangue powder/bottom ash geopolymer was studied.The setting time,fluidity,bleeding rate,and mechanical properties of grouting materials were studied through laboratory tests,and SEM analyzed the microstructure of the materials.The results show that the total mixture of calcined gangue does not exceed 60%.And the proportion of bottom ash replacing cement should be within 30%.At the same time,the volume mixture of sodium silicate is 20%.And the water-solid ratio does not exceed 0.6.The stability of the slurry prepared under this ratio is good.The microstructure of the stone body is dense,and its strength can meet the requirements of rock reinforcement and seepage control.Its economic and environmental benefits are more significant than the traditional cement-silicate double-liquid grouting material.
文摘煤矿固体废弃物是煤炭开采、洗选和利用过程中产生的一种工业固体废弃物。我国煤矿固体废弃物虽然利用率逐年上升,但现阶段的堆存量仍然很大,它不仅侵占土地资源,还会造成严重的环境污染。本文通过系统检索知网、Web of Science和Google Scholar数据库,收集了2014—2024年间关于煤矿固体废弃物理化特征及生态环境影响方面的研究文献,综合分析发现,煤矿固体废弃物对环境的影响主要表现在:①煤矿固体废弃物在堆存过程中产生的多环芳烃、SO_(2)等气体和细颗粒物,会对大气产生污染;②煤矿固体废弃物中的重金属在淋滤过程中会污染周围地下水;③煤矿固体废弃物中的Cd、Cr、Hg等重金属元素会通过风化、浸出等过程向周围土壤迁移释放,造成严重的重金属污染。基于安全、环保、监测等相关规定,结合目前综合利用和处理现状,提出了今后煤矿固体废弃物的研究重点。