Using lignite-based hypercoal as raw material, KOH as activator and CuO as microwave absorber, we prepared hypercoal-based activated carbons by microwave-assisted activation. The pore structure and the electrochemical...Using lignite-based hypercoal as raw material, KOH as activator and CuO as microwave absorber, we prepared hypercoal-based activated carbons by microwave-assisted activation. The pore structure and the electrochemical performance of the activated carbons were tested, and the effects of adding CuO in the activation reaction process were also investigated. The activated carbons prepared were characterized by nitrogen adsorption-desorption, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The specific surface area and mesoporous ratio of the hypercoal-based activated carbon are 1257 m2/g and 55.4%, respectively. When the activated carbons are used as the electrode materials, the specific capacitance reaches 309 F/g in 3 M KOH electrolyte. In comparison with those prepared without CuO absorber, the specific capacitance increases by 11.6%. It was proved that the addition of microwave absorber in microwave-assisted activation was a low-cost method for rapidly preparing activated carbon, and it could effectively promote the development of the pore structure and improve its electrochemical performance.展开更多
Nitrogen-containing carbons were prepared by modification of activated carbons.The modified carbons were used as electrode materials with improved electrochemical performance.Precursor anthracite was activated by KOH(...Nitrogen-containing carbons were prepared by modification of activated carbons.The modified carbons were used as electrode materials with improved electrochemical performance.Precursor anthracite was activated by KOH(KOH:anthracite= 1:1), modified by melamine or urea and then treated at 1173 K to obtain the modified carbons.The porous structure, the chemical composition and the electrochemical characteristics of the carbons were investigated by nitrogen sorption, XPS and electrochemical methods respectively.Electrochemical experiments were performed in an organic electrolytic solution of 1 M(C2H5)4NBF4/PC.The samples modified by the different methods showed differences in chemical composition that introduced varying degrees of electrochemical performance enhancement.The presence of nitrogen enhanced the electron donor properties and the surface wettability of the activated carbons:this ensured a sufficient utilization of the exposed surface for charge storage.展开更多
A novel type of metal oxide/activated carbon catalyst was prepared by sol-gel method for the hydrolysis of carbonyl sulfide (COS). The influences of the calcination temperature, additive content (2.5%-10.0% Fe2O3, ...A novel type of metal oxide/activated carbon catalyst was prepared by sol-gel method for the hydrolysis of carbonyl sulfide (COS). The influences of the calcination temperature, additive content (2.5%-10.0% Fe2O3, mass fraction) and the basic density of the activation process were thoroughly investigated. The surface of catalysts was characterized by Boehm titration. The products were characterized by scanning electron microscopy (SEM), X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS). The results show that catalysts with 2.5%-5.0% Fe2O3 after calcining at 500 ℃ have superior activity. The conversion rate of COS increases with increasing the relative density of basic capacity loaded onto activated carbon(AC), and the activity follows the order: KOH〉Na2CO3 〉NaHCO3. Boehm titration data clearly show that the total acidity increases (from 0.06 to 0.48 mmol/g) and the basic groups decrease (from 0.78 to 0.56 mmol/g) after COS hydrolysis and H2S adsorption. The XPS results show that the product of HzS may be absorbed by the interaction with metal compounds and 02 to form sulfate (171.28 eV) and element sulfur (164.44 eV), which lead to catalysts poisoning.展开更多
Development of pore structures of activated carbon(AC)from activation of biomass with ZnCl_(2) relies on content and structure of cellulose/hemicellulose in the feedstock.Thermal pretreatment of biomass could induce d...Development of pore structures of activated carbon(AC)from activation of biomass with ZnCl_(2) relies on content and structure of cellulose/hemicellulose in the feedstock.Thermal pretreatment of biomass could induce dehydration and/or aromatization to change the structure of cellulose/hemicellulose.This might interfere with evolution of structures of AC,which was investigated herein via thermal pretreatment of willow branch(WB)from 200 to 360℃and the subsequent activation with ZnCl_(2) at 550℃.The results showed that thermal pretreatment at 360℃(WB-360)could lead to substantial pyrolysis to form biochar,with a yield of 31.9%,accompanying with nearly complete destruction of cellulose crystals and remarkably enhanced aromatic degree.However,cellulose residual in WB-360 could still be activated to form AC-360 with specific surface area of 1837.9 m~2·g^(-1),which was lower than that in AC from activation of untreated WB(AC-blank,2077.8 m~2·g^(-1)).Nonetheless,the AC-200 from activation of WB-200 had more developed pores(2113.9 m~2·g^(-1))and superior capability for adsorption of phenol,due to increased permeability of ZnCl_(2) to the largely intact cellulose structure in WB-200.The thermal pretreatment did increase diameters of micropores of AC but reduced the overall yield of AC(26.8%for AC-blank versus 18.0%for AC-360),resulting from accelerated cracking but reduced intensity of condensation.In-situ infrared characterization of the activation showed that ZnCl_(2) mainly catalyzed dehydration,dehydrogenation,condensation,and aromatization but not cracking,suppressing the formation of derivatives of cellulose and lignin in bio-oil.The thermal pretreatment formed phenolic-OH and C=O with higher chemical innerness,which changed the reaction network in activation,shifting morphology of fibrous structures in AC-blank to“melting surface”in AC-200 or AC-280.展开更多
Cyanobacteria-based activated carbon(CBAC)was successfully prepared by pyrolysis-activation of Taihu cyanobacteria.When the impregnation ratio and activated temperature were 2 and 800-C,respectively,the optimal CBACs ...Cyanobacteria-based activated carbon(CBAC)was successfully prepared by pyrolysis-activation of Taihu cyanobacteria.When the impregnation ratio and activated temperature were 2 and 800-C,respectively,the optimal CBACs possessed an ultra-high specific surface(2178.90 m^(2)·g^(-1))and plenty of micro-and meso-pores,as well as a high pore volume(1.01 cm^(3)·g^(-1)).Ascribed to ultra-high surface area,π-π interaction,electrostatic interaction,as well as hydrogen-bonding interactions,the CBACs displayed huge superiority in efficient dye removal.The saturated methylene blue adsorption capacity by CBACs could be as high as 1143.4 mg·g^(-1),superior to that of other reported biomass-activated carbons.The adsorption was endothermic and modeled well by the pseudo-second-order kinetic,intra-particle diffusion,and Langmuir models.This work presented the effectiveness of Taihu cyanobacteria adsorbent ascribed to its super large specific surface area and high adsorption ability.展开更多
Flue gas and coal bed methane are two important sources of greenhouse gases.Pressure swing adsorption process has a wide range of application in the field of gas separation,and the selection of adsorbent is crucial.In...Flue gas and coal bed methane are two important sources of greenhouse gases.Pressure swing adsorption process has a wide range of application in the field of gas separation,and the selection of adsorbent is crucial.In this regard,in order to assess the better adsorbent for separating CO_(2) from flue gas and CH_(4) from coal bed methane,adsorption isotherms of CO_(2),CH_(4) and N_(2) on activated carbon and carbon molecular sieve are measured at 303.15,318.15 and 333.15 K,and up to 250 kPa.The experimental data fit better with Langmuir 2 compared to Langmuir 3 and Langmuir-Freundlich models,and Clausius-Clapeyron equation was used to calculate the isosteric heat.Both the order of the adsorbed amount and the adsorption heat on the two adsorbents are CO_(2)>CH_(4)>N_(2).The adsorption kinetics are calculated by the pseudo-first kinetic model,and the order of adsorption rates on activated carbon is N_(2)-CH_(4)>CO_(2),while on carbon molecular sieve,it is CO_(2)-N_(2)>CH_(4).It is shown that relative molecular mass and adsorption heat are the primary effect on kinetics for activated carbon,while kinetic diameter is the main resistance factor for carbon molecular sieve.Moreover,the adsorption selectivity of CH_(4)/N_(2) and CO_(2)/N_(2) were estimated with the ideal adsorption solution theory,and carbon molecular sieve performed best at 318.15 K for both CO_(2) and CH_(4) separation.The study suggested that activated carbon is a better choice for separating flue gas and carbon molecular sieve can be a strong candidate for separating coal bed methane.展开更多
The accessibility of tetracycline resistance gene (tetG) into the pores of activated carbon (AC), as well as the impact of the pore size distribution (PSD) of AC on the uptake capacity of tetG, were investigated using...The accessibility of tetracycline resistance gene (tetG) into the pores of activated carbon (AC), as well as the impact of the pore size distribution (PSD) of AC on the uptake capacity of tetG, were investigated using eight types of AC (four coal-based and four wood-based). AC showed the capability to admit tetG and the average reduction of tetG for coal-based and wood-based ACs at the AC dose of 1 g·L<sup>-1</sup> was 3.12 log and 3.65 log, respectively. The uptake kinetic analysis showed that the uptake of the gene followed the pseudo-second-order kinetics reaction, and the uptake rate constant for the coal-based and wood-based ACs was in the range of 5.97 × 10<sup>-12</sup> - 4.64 × 10<sup>-9</sup> and 7.02 × 10<sup>-11</sup> - 1.59 × 10<sup>-8</sup> copies·mg<sup>-1</sup>·min<sup>-1</sup>, respectively. The uptake capacity analysis by fitting the obtained experiment data with the Freundlich isotherm model indicated that the uptake constant (K<sub>F</sub>) values were 1.71 × 10<sup>3</sup> - 8.00 × 10<sup>9</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for coal-based ACs and 7.00 × 10<sup>8</sup> - 3.00 × 10<sup>10</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for wood-based ones. In addition, the correlation analysis between K<sub>F</sub> values and pore volume as well as pore surface at different pore size regions of ACs showed that relatively higher positive correlation was found for pores of 50 - 100 Å, suggesting ACs with more pores in this size region can uptake more tetG. The findings of this study are valuable as reference for optimizing the adsorption process regarding antibiotic resistance-related concerns in drinking water treatment.展开更多
Fe/Cu/Ce modified coal-based activated carbon(AC) was prepared by the sol-gel method,and the effect of Fe/Cu/Ce on catalytic properties of Fe/AC,Fe-Cu/AC and Fe-Cu-Ce/AC was investigated in the hydrolysis of carbonyl ...Fe/Cu/Ce modified coal-based activated carbon(AC) was prepared by the sol-gel method,and the effect of Fe/Cu/Ce on catalytic properties of Fe/AC,Fe-Cu/AC and Fe-Cu-Ce/AC was investigated in the hydrolysis of carbonyl sulfide(COS) at 50 °C.Their surface properties were evaluated by means of nitrogen adsorption and were characterized by using scanning electron microscopy(SEM),X-ray diffracto-metry(XRD) and X-ray photoelectron spectroscopy(XPS).The catalytic activities results showed that addition of Cu and Ce...展开更多
The synergistic reaction of photocatalysis and advanced oxidation is a valid strategy for the degradation of harmful antibiotic wastewater.Herein,carbon dots(CDs)modified MIL-101(Fe)octahedrons to form CDs/MIL-101(Fe)...The synergistic reaction of photocatalysis and advanced oxidation is a valid strategy for the degradation of harmful antibiotic wastewater.Herein,carbon dots(CDs)modified MIL-101(Fe)octahedrons to form CDs/MIL-101(Fe)composite photocatalyst was synthesized for visible light-driven photocatalytic/persulfate(PS)-activated tetracycline(TC)degradation.The electron spin resonance(ESR)spectra,scavenging experiment and electrochemical analysis were carried out to reveal that the high visible light-driven photocatalytic degradation activity of TC over CDs/MIL-101(Fe)photocatalysts is not only ascribed to the production of free active radicals in the CDs/MIL-101(Fe)/PS system(·OH,·SO_(4-),^(1)O_(2),h^(+)and·O_(2)^(-))but also attributed to the consumption of electrons caused by the PS,which can suppress the recombination of photo-generated carriers as well as strong light scattering and electron trapping effects of CDs.Finally,the possible degradation pathways were proposed by analyzing intermediates via liquid chromatography-mass spectrometry technique.This research presents a rational design conception to construct a CDs/PS-based photocatalysis/advanced oxidation technology with high-efficient degradation activity for the remediation of organic antibiotic pollutant wastewater and for the improvement of carrier transport kinetics of photocatalysts.展开更多
Lignin-derived porous carbons have emerged as promising electrode materials for supercapacitors.However,the challenge remains in designing and controlling their structure to achieve ideal electrochemical performance d...Lignin-derived porous carbons have emerged as promising electrode materials for supercapacitors.However,the challenge remains in designing and controlling their structure to achieve ideal electrochemical performance due to the complex molecular structure of lignin and its intricate chemical reactions during the activation process.In this study,three porous carbons were synthesized from lignin by spray drying and chemical activation with vary-ing KOH ratios.The specific surface area and structural order of the prepared porous carbon continued to increase with the increase of the KOH ratio.Thermogravimetric-mass spectrometry(TG-MS)was employed to track the molecular fragments generated during the pyrolysis of KOH-activated lignin,and the mechanism of the thermochemical conversion was investigated.During the thermochemical conversion of lignin,KOH facili-tated the removal of H2 and CO,leading to the formation of not only more micropores and mesopores,but also more ordered carbon structures.The pore structure exhibited a greater impact than the carbon structure on the electrochemical performance of porous carbon.The optimized porous carbon exhibited a capacitance of 256 F g-1 at a current density of 0.2 A g-1,making it an ideal electrode material for high-performance supercapacitors.展开更多
In this research,activated carbon from mangosteen peel has been synthesized using sulfuric acid as an activator.The adsorption performance of the activated carbon was optimized using malachite green dye as absorbate.M...In this research,activated carbon from mangosteen peel has been synthesized using sulfuric acid as an activator.The adsorption performance of the activated carbon was optimized using malachite green dye as absorbate.Mala-chite green dye waste is a toxic and non-biodegradable material that damages the environment.Optimization of adsorption processes was carried out using Response Surface Methodology(RSM)with a Box-Behnken Design(BBD).The synthesized activated carbon was characterized using FTIR and SEM instruments.The FTIR spectra confirmed the presence of a sulfonate group(-SO_(3)H)in the activated carbon,indicating that the activation pro-cess using sulfuric acid was successful.SEM characterization shows that activated carbon has porous morphology.Optimization was carried out for three adsorption parameters,namely contact time(20,60,and 120 min),adsor-bent mass(0.005,0.025,and 0.05 g),and initial concentration of malachite green solution(5,50,and 100 mg·L^(-1)).The concentration of the malachite green solution was determined using a UV-Vis spectrophotometer at the max-imum wavelength of malachite green,618 nm.The optimum of malachite green adsorption using mangosteen peel activated carbon was obtained at a contact time of 80 min,an adsorbent mass of 0.032 g,and malachite green initial concentration of 25 mg·L^(-1),with a maximum removal percentage and maximum adsorption capacity of 93.66%and 19.345 mg·g^(-1),respectively.展开更多
The baobab, Adansonia digitata L., plays an important role in the economy of local populations. Nowadays, baobab seed oil is highly prized for its many cosmetic and therapeutic applications, and for its composition of...The baobab, Adansonia digitata L., plays an important role in the economy of local populations. Nowadays, baobab seed oil is highly prized for its many cosmetic and therapeutic applications, and for its composition of unsaturated fatty acids, sterols, and tocopherols. However, it undergoes numerous reactions during production, processing, transport, and storage, leading to undesirable products that make it unstable. The aim of this study was to provide local processors with innovative solutions for the treatment of unrefined vegetable oils. To this end, an experimental device for filtering crude oil on activated carbon made from fruit capsules was designed. The results obtained after the treatment show a significant decrease at (p < 5%) in acid value (1.62 to 0.58 mg KOH/g), peroxide value (4.40a to 0.50c mEqO<sub>2</sub>/Kg), chlorophyll concentration (1.81 to 0.50 mg/Kg) and primary and secondary oxidation products. According to these results, activated carbon’s adsorptive power eliminates oxidation products and certain pro-oxidants such as chlorophyll, resulting in a cleaner, more stable and better storable oil.展开更多
The goal of this work is to improve the simultaneous removal of Pb2+, Cu2+, Zn2+, and Cd2+ ions from synthetic wastewater in a fixed bed column by incorporating sodium dodecyl sulfate (SDS) onto the surface of activat...The goal of this work is to improve the simultaneous removal of Pb2+, Cu2+, Zn2+, and Cd2+ ions from synthetic wastewater in a fixed bed column by incorporating sodium dodecyl sulfate (SDS) onto the surface of activated carbon made from coconut shells. The activated carbons were characterized using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy-energy dispersive x-ray (SEM-EDX). The adsorption column dynamics were studied by varying the flow rates (5, 10 and 15 mL/min), bed heights (10, 15 and 20 cm), and initial concentrations (50, 150, and 250 mg/L). The activated carbon has a pore volume of 0.715 cm3/g and a BET-specific surface area of 1410 m2/g. Sodium dodecyl sulfate (SDS) surfactant incorporation onto the surface of the activated carbon enhances its capacity for simultaneous adsorption of Pb2+, Cu2+, Zn2+, and Cd2+ from the aqueous medium. The affinity of the heavy metals to both unmodified (AC) and modified (AC-SDS) activated carbons followed the order of Pb2+ > Cu2+ > Zn2+ > Cd2+. The dynamic adsorption of the column depends on the flow rate, bed height, initial metal concentration, and SDS surface modification. With a 5 mL/min flow rate, a 20 cm bed height, and a 50 mg/L initial metal concentration, a maximum break-through time of 150 minutes for the unmodified activated carbon (AC) and 180 minutes for the SDS-modified activated carbon (AC-SDS) was reached.展开更多
The purpose of this study is to compare the results of chemical analysis of two types of activated from the pyrolysis of bull horn and that of cow. Six samples were used to measure pH, carbon, calcium and to determine...The purpose of this study is to compare the results of chemical analysis of two types of activated from the pyrolysis of bull horn and that of cow. Six samples were used to measure pH, carbon, calcium and to determine adsorbent power. The pH was measured at a temperature of 20˚C using an “ANION 7010 ionomer” pH meter, the carbon (C) content was analyzed using a “EURO EA 3000” analyzer. and the electronic balance: “Sartorius CP-2P”, calcium (Ca) was analyzed using a DFS-8 spectrograph. For the adsorbency test, the 0.15% methylene blue R solution was used. At the end of this study, we found that the activated carbon from the bull horn demonstrated a carbon content that is higher than that of the cow horn (20.79% against 15.63%), activated carbon of cow horn is richer in calcium than that of bull horn (16.27% against 3.69%) and then the pH. The cow horn is higher than that of the bull horn (7.43 versus 6.5). For the adsorbent power, the sample (75% bull horn and 25% cow horn) was recorded with the greatest adsorbent power. Thus, from this study, it can be recommended as an activated carbon antidote to be used for poisonings treatment.展开更多
We employed the previously developed micro porous activated carbon models of different pore sizes ranges of 9-11?,10-12?,and 13-16?that were constructed by molecular simulation method based on a random packing of plat...We employed the previously developed micro porous activated carbon models of different pore sizes ranges of 9-11?,10-12?,and 13-16?that were constructed by molecular simulation method based on a random packing of platelets of carbon sheets,functionalized with oxygen containing groups,to study the adsorption behavior of methane molecules.In studying methane adsorption behavior,we used Grand Canonical Monte Carlo and Molecular Dynamics methods at different temperatures of 273.15,298.15 and303.15 K.Adsorption isotherms,isosteric heats of adsorption,adsorption energy distributions and porosity changes of the models during adsorption process were analyzed and discussed.Furthermore,radial distribution Functions,relative distribution and diffusion coefficients of methane molecules in activated carbon models at different temperatures were studied.After the analysis,the main results indicated that large micro pores activated carbons were favorable for storing methane at lower temperatures and small micro pores were the most favorable for adsorbing methane molecules at higher temperatures.Interestingly,the developed model structures showed high capacities to store methane molecule at ambient temperatures and low pressure.展开更多
Suzuki-Miyaura reaction of aryl halides with phenylboronic acid using a heterogeneous palladium catalyst based on activated carbons(AC) was systematically investigated in this work. Two different reaction modes(batch ...Suzuki-Miyaura reaction of aryl halides with phenylboronic acid using a heterogeneous palladium catalyst based on activated carbons(AC) was systematically investigated in this work. Two different reaction modes(batch procedure and continuous-flow procedure) were used to study the variations of reaction processing. The heterogeneous catalysts presented excellent reactivity and recyclability for iodobenzene and bromobenzene substrates in batch mode, which can be attributed to stabilization of Pd nanoparticles by the thiol and amino groups on the AC supports. However, significant dehalogenation in the reaction mixture and Pd leaching from the heterogeneous catalysts were observed in continuous-flow mode.This unique phenomenon in continuous-flow mode resulted in a dramatic decline in reaction selectivity and durability of heterogeneous catalysts comparing with that of batch mode. In addition, the heterogeneous Pd catalysts with thiol-and amino-modified AC supports exhibited different reactivity and durability in batch and continuous-flow mode owing to the difference of interaction between Pd species and AC supports.展开更多
Activated carbons calcined at 400˚C and 600˚C (AC-400 and AC-600), prepared using palm nuts, collected in the town of Franceville in Gabon, were used to study the dynamic adsorption of MnO<sub>4</sub>-<...Activated carbons calcined at 400˚C and 600˚C (AC-400 and AC-600), prepared using palm nuts, collected in the town of Franceville in Gabon, were used to study the dynamic adsorption of MnO<sub>4</sub>-</sup> ions in acidic media on fixed bed column and on the kinetic modeling of experimental data of breakthrough curves of MnO<sub>4</sub>-</sup> ions obtained. Results on the adsorption of MnO<sub>4</sub>-</sup> ions in fixed-bed dynamics obtained on AC-400 and AC-600 adsorbents beds indicated that the AC-400 bed appears to be the most efficient in removing MnO<sub>4</sub>-</sup> ions in acidic media. Indeed, the adsorbed amounts, the adsorbed capacities at saturation and the elimination percentage of MnO<sub>4</sub>-</sup> ions obtained with AC-400 (31.24 mg;52.06 mg·g<sup>-1</sup> and 41.65% respectively) were higher compared to those obtained with AC-600 (9.87 mg;16.45 mg·g<sup>-1</sup> and 17.79% respectively). The breakthrough curves kinetic modeling revealed that the Thomas model and the pseudo-first-order kinetic model were the most suitable models to describe the adsorption of MnO<sub>4</sub>-</sup> ions on adsorbents studied in our experimental conditions. The results of the intraparticle diffusion model showed that intraparticle diffusion was involved in the adsorption mechanism of MnO<sub>4</sub>-</sup> ions on investigated adsorbents and was not the limiting step and the only process controlling MnO<sub>4</sub>-</sup> ions adsorption. In contrast to AC-400, the intraparticle diffusion on AC-600 bed plays an important role in the adsorption mechanism of MnO<sub>4</sub>-</sup> ions.展开更多
In this study,the Heishan coal was used to prepare a series of activated carbon(AC)samples via a vapor deposition method.The effects of the Fe(NO_(3))3/coal weight ratio on the physicochemical properties of the activa...In this study,the Heishan coal was used to prepare a series of activated carbon(AC)samples via a vapor deposition method.The effects of the Fe(NO_(3))3/coal weight ratio on the physicochemical properties of the activated carbon were systematically investigated,and the AC samples were analyzed by the N2 adsorption-desorption technique,the scanning electron microscopy,the X-ray diffraction,the Raman spectroscopy,and the Fourier transform infrared spectroscopy.Furthermore,the adsorption properties of ethyl acetate were investigated.The results indicated that as the Fe(NO_(3))3/coal mass ratio increased from 1:8 to 1:2,the specific surface area,the total pore volume and the micropore volume initially increased and then decreased.The specific surface area increased from 560.86 m^(2)/g to 685.90 m^(2)/g,and then decreased to 299.56 m^(2)/g.The total pore volume and micropore volume increased from 0.29 cm^(3)/g and 0.17 cm^(3)/g to 0.30 cm^(3)/g and 0.22 cm^(3)/g,and then decreased to 0.16 cm^(3)/g and 0.10 cm^(3)/g,respectively.The optimized ratio was 1:8.During the activation process,iron ions infiltrated the activated carbon to promote the development of the pore structure,the pore size of which was between 2.5 nm and 3 nm in daimeter.This approach could enhance the capacity for adsorption of ethyl acetate.It is worth noting that the ACs displaying the largest specific surface area and total pore volume(685.90 m^(2)/g and 0.30 cm^(3)/g)were formed under the optimized activation conditions(950℃,20%(volume)of CO_(2),ratio 1:5),and the maximum AC capacity for adsorption of ethyl acetate was 962.62 mg/g.After seven repeated thermal regeneration experiments,the saturated AC adsorption capacity was still above 90%.展开更多
The role of Nil(NO3)2 in the preparation of a magnetic activated carbon is reported in this paper. Magnetic coal-based activated carbons (MCAC) were prepared from Taixi anthracite with low ash content in the prese...The role of Nil(NO3)2 in the preparation of a magnetic activated carbon is reported in this paper. Magnetic coal-based activated carbons (MCAC) were prepared from Taixi anthracite with low ash content in the presence of Ni(NO3)2. The MCAC materials were characterized by a vibrating sample magnetometer (VSM), X-ray diffraction (XRD), a scanning electric microscope (SEM), and by N2 adsorption. The cylindri- cal precursors and derived char were also subjected to thermogravimetric analysis to compare their behavior of weight losses during carbonization. The results show that MCAC has a larger surface area (1074 m21g) and a higher pore volume (0.5792 cm3/g) with enhanced mesopore ratio (by about 10~). It also has a high saturation magnetization (1.6749 emu/g) and low coercivity (43.26 Oe), which allows the material to be magnetically separated. The MCAC is easily magnetized because the nickel salt is con- vetted into Ni during carbonization and activation. Metallic Ni has a strong magnetism on account of electrostatic interaction. Added Ni(NO3)2 catalyzes the carbonization and activation process by accelerat- ing burn off of the carbon, which contributes to the development of mesopores and macropores in the activated carbon.展开更多
Fe/C-based magnetically activated carbon(MAC) was obtained by carbonizing and activating its precursor, that was prepared by co-precipitation of anthracite coal impregnated in ferric chloride solution. The effect of t...Fe/C-based magnetically activated carbon(MAC) was obtained by carbonizing and activating its precursor, that was prepared by co-precipitation of anthracite coal impregnated in ferric chloride solution. The effect of the concentrations of FeCl3 and pH of solution on BET surface area, pore volume and magnetic properties of the MAC was studied by BET N2 adsorption and VSM method. The results indicated that the magnetization of MAC gradually increases with increasing concentration of FeCl3 and pH value of solution, and BET surface area was inclined to fluctuation. The largest BET surface area and magnetization of MAC were 1327.5 m2/g and 35.56 emu/g, respectively. The form of magnetic matter in the magnetically activated carbon was mainly Fe3C by X-ray powder diffraction(XRD) and magnetic attraction test.展开更多
基金Funded by the National Natural Science Foundation of China(No.51874136)Natural Science Foundation of Hebei Province(No.B2017209240)。
文摘Using lignite-based hypercoal as raw material, KOH as activator and CuO as microwave absorber, we prepared hypercoal-based activated carbons by microwave-assisted activation. The pore structure and the electrochemical performance of the activated carbons were tested, and the effects of adding CuO in the activation reaction process were also investigated. The activated carbons prepared were characterized by nitrogen adsorption-desorption, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The specific surface area and mesoporous ratio of the hypercoal-based activated carbon are 1257 m2/g and 55.4%, respectively. When the activated carbons are used as the electrode materials, the specific capacitance reaches 309 F/g in 3 M KOH electrolyte. In comparison with those prepared without CuO absorber, the specific capacitance increases by 11.6%. It was proved that the addition of microwave absorber in microwave-assisted activation was a low-cost method for rapidly preparing activated carbon, and it could effectively promote the development of the pore structure and improve its electrochemical performance.
基金Projects 50672025 and 50730003 supported by the National Natural Science Foundation of China
文摘Nitrogen-containing carbons were prepared by modification of activated carbons.The modified carbons were used as electrode materials with improved electrochemical performance.Precursor anthracite was activated by KOH(KOH:anthracite= 1:1), modified by melamine or urea and then treated at 1173 K to obtain the modified carbons.The porous structure, the chemical composition and the electrochemical characteristics of the carbons were investigated by nitrogen sorption, XPS and electrochemical methods respectively.Electrochemical experiments were performed in an organic electrolytic solution of 1 M(C2H5)4NBF4/PC.The samples modified by the different methods showed differences in chemical composition that introduced varying degrees of electrochemical performance enhancement.The presence of nitrogen enhanced the electron donor properties and the surface wettability of the activated carbons:this ensured a sufficient utilization of the exposed surface for charge storage.
基金Project(50908110) supported by the National Natural Science Foundation of ChinaProject(2008AA062602) supported by the National High-Tech Research and Development Program of China+1 种基金Project(20090451431) supported by China Postdoctoral Science FoundationProject(2007PY01-10) supported by Young and Middle-aged Academic and Technical Back-up Personnel Program of Yunnan Province,China
文摘A novel type of metal oxide/activated carbon catalyst was prepared by sol-gel method for the hydrolysis of carbonyl sulfide (COS). The influences of the calcination temperature, additive content (2.5%-10.0% Fe2O3, mass fraction) and the basic density of the activation process were thoroughly investigated. The surface of catalysts was characterized by Boehm titration. The products were characterized by scanning electron microscopy (SEM), X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS). The results show that catalysts with 2.5%-5.0% Fe2O3 after calcining at 500 ℃ have superior activity. The conversion rate of COS increases with increasing the relative density of basic capacity loaded onto activated carbon(AC), and the activity follows the order: KOH〉Na2CO3 〉NaHCO3. Boehm titration data clearly show that the total acidity increases (from 0.06 to 0.48 mmol/g) and the basic groups decrease (from 0.78 to 0.56 mmol/g) after COS hydrolysis and H2S adsorption. The XPS results show that the product of HzS may be absorbed by the interaction with metal compounds and 02 to form sulfate (171.28 eV) and element sulfur (164.44 eV), which lead to catalysts poisoning.
基金supported by the National Natural Science Foundation of China(52276195)Program for Supporting Innovative Research from Jinan(202228072)Program of Agricultural Development from Shandong(SD2019NJ015)。
文摘Development of pore structures of activated carbon(AC)from activation of biomass with ZnCl_(2) relies on content and structure of cellulose/hemicellulose in the feedstock.Thermal pretreatment of biomass could induce dehydration and/or aromatization to change the structure of cellulose/hemicellulose.This might interfere with evolution of structures of AC,which was investigated herein via thermal pretreatment of willow branch(WB)from 200 to 360℃and the subsequent activation with ZnCl_(2) at 550℃.The results showed that thermal pretreatment at 360℃(WB-360)could lead to substantial pyrolysis to form biochar,with a yield of 31.9%,accompanying with nearly complete destruction of cellulose crystals and remarkably enhanced aromatic degree.However,cellulose residual in WB-360 could still be activated to form AC-360 with specific surface area of 1837.9 m~2·g^(-1),which was lower than that in AC from activation of untreated WB(AC-blank,2077.8 m~2·g^(-1)).Nonetheless,the AC-200 from activation of WB-200 had more developed pores(2113.9 m~2·g^(-1))and superior capability for adsorption of phenol,due to increased permeability of ZnCl_(2) to the largely intact cellulose structure in WB-200.The thermal pretreatment did increase diameters of micropores of AC but reduced the overall yield of AC(26.8%for AC-blank versus 18.0%for AC-360),resulting from accelerated cracking but reduced intensity of condensation.In-situ infrared characterization of the activation showed that ZnCl_(2) mainly catalyzed dehydration,dehydrogenation,condensation,and aromatization but not cracking,suppressing the formation of derivatives of cellulose and lignin in bio-oil.The thermal pretreatment formed phenolic-OH and C=O with higher chemical innerness,which changed the reaction network in activation,shifting morphology of fibrous structures in AC-blank to“melting surface”in AC-200 or AC-280.
基金financially supported by the Key Research&Development program of Zhejiang Province(2021C03196)the National Key Research and Development Program of China(2022YFE0128600)the Natural Science Foundation of Zhejiang Province(LY22B060011).
文摘Cyanobacteria-based activated carbon(CBAC)was successfully prepared by pyrolysis-activation of Taihu cyanobacteria.When the impregnation ratio and activated temperature were 2 and 800-C,respectively,the optimal CBACs possessed an ultra-high specific surface(2178.90 m^(2)·g^(-1))and plenty of micro-and meso-pores,as well as a high pore volume(1.01 cm^(3)·g^(-1)).Ascribed to ultra-high surface area,π-π interaction,electrostatic interaction,as well as hydrogen-bonding interactions,the CBACs displayed huge superiority in efficient dye removal.The saturated methylene blue adsorption capacity by CBACs could be as high as 1143.4 mg·g^(-1),superior to that of other reported biomass-activated carbons.The adsorption was endothermic and modeled well by the pseudo-second-order kinetic,intra-particle diffusion,and Langmuir models.This work presented the effectiveness of Taihu cyanobacteria adsorbent ascribed to its super large specific surface area and high adsorption ability.
基金supported by the renewable energy and hydrogen projects in National Key Research and Development Plan of China(2019YFB1505000).
文摘Flue gas and coal bed methane are two important sources of greenhouse gases.Pressure swing adsorption process has a wide range of application in the field of gas separation,and the selection of adsorbent is crucial.In this regard,in order to assess the better adsorbent for separating CO_(2) from flue gas and CH_(4) from coal bed methane,adsorption isotherms of CO_(2),CH_(4) and N_(2) on activated carbon and carbon molecular sieve are measured at 303.15,318.15 and 333.15 K,and up to 250 kPa.The experimental data fit better with Langmuir 2 compared to Langmuir 3 and Langmuir-Freundlich models,and Clausius-Clapeyron equation was used to calculate the isosteric heat.Both the order of the adsorbed amount and the adsorption heat on the two adsorbents are CO_(2)>CH_(4)>N_(2).The adsorption kinetics are calculated by the pseudo-first kinetic model,and the order of adsorption rates on activated carbon is N_(2)-CH_(4)>CO_(2),while on carbon molecular sieve,it is CO_(2)-N_(2)>CH_(4).It is shown that relative molecular mass and adsorption heat are the primary effect on kinetics for activated carbon,while kinetic diameter is the main resistance factor for carbon molecular sieve.Moreover,the adsorption selectivity of CH_(4)/N_(2) and CO_(2)/N_(2) were estimated with the ideal adsorption solution theory,and carbon molecular sieve performed best at 318.15 K for both CO_(2) and CH_(4) separation.The study suggested that activated carbon is a better choice for separating flue gas and carbon molecular sieve can be a strong candidate for separating coal bed methane.
文摘The accessibility of tetracycline resistance gene (tetG) into the pores of activated carbon (AC), as well as the impact of the pore size distribution (PSD) of AC on the uptake capacity of tetG, were investigated using eight types of AC (four coal-based and four wood-based). AC showed the capability to admit tetG and the average reduction of tetG for coal-based and wood-based ACs at the AC dose of 1 g·L<sup>-1</sup> was 3.12 log and 3.65 log, respectively. The uptake kinetic analysis showed that the uptake of the gene followed the pseudo-second-order kinetics reaction, and the uptake rate constant for the coal-based and wood-based ACs was in the range of 5.97 × 10<sup>-12</sup> - 4.64 × 10<sup>-9</sup> and 7.02 × 10<sup>-11</sup> - 1.59 × 10<sup>-8</sup> copies·mg<sup>-1</sup>·min<sup>-1</sup>, respectively. The uptake capacity analysis by fitting the obtained experiment data with the Freundlich isotherm model indicated that the uptake constant (K<sub>F</sub>) values were 1.71 × 10<sup>3</sup> - 8.00 × 10<sup>9</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for coal-based ACs and 7.00 × 10<sup>8</sup> - 3.00 × 10<sup>10</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for wood-based ones. In addition, the correlation analysis between K<sub>F</sub> values and pore volume as well as pore surface at different pore size regions of ACs showed that relatively higher positive correlation was found for pores of 50 - 100 Å, suggesting ACs with more pores in this size region can uptake more tetG. The findings of this study are valuable as reference for optimizing the adsorption process regarding antibiotic resistance-related concerns in drinking water treatment.
基金supported by the National Natural Science Foundation of China (50908110)Research Fund for the Postdoctoral Program of China (20090451431)+1 种基金National High Technology Research and Development Program of China (2008AA062602)Education Department Scientific Research Foundation of Yunnan Province (07C11400)
文摘Fe/Cu/Ce modified coal-based activated carbon(AC) was prepared by the sol-gel method,and the effect of Fe/Cu/Ce on catalytic properties of Fe/AC,Fe-Cu/AC and Fe-Cu-Ce/AC was investigated in the hydrolysis of carbonyl sulfide(COS) at 50 °C.Their surface properties were evaluated by means of nitrogen adsorption and were characterized by using scanning electron microscopy(SEM),X-ray diffracto-metry(XRD) and X-ray photoelectron spectroscopy(XPS).The catalytic activities results showed that addition of Cu and Ce...
基金the funding support from the National Natural Science Foundation of China(21906072,22006057)the Natural Science Foundation of Jiangsu Province(BK20190982)“Doctor of Mass entrepreneurship and innovation”Project in Jiangsu Province。
文摘The synergistic reaction of photocatalysis and advanced oxidation is a valid strategy for the degradation of harmful antibiotic wastewater.Herein,carbon dots(CDs)modified MIL-101(Fe)octahedrons to form CDs/MIL-101(Fe)composite photocatalyst was synthesized for visible light-driven photocatalytic/persulfate(PS)-activated tetracycline(TC)degradation.The electron spin resonance(ESR)spectra,scavenging experiment and electrochemical analysis were carried out to reveal that the high visible light-driven photocatalytic degradation activity of TC over CDs/MIL-101(Fe)photocatalysts is not only ascribed to the production of free active radicals in the CDs/MIL-101(Fe)/PS system(·OH,·SO_(4-),^(1)O_(2),h^(+)and·O_(2)^(-))but also attributed to the consumption of electrons caused by the PS,which can suppress the recombination of photo-generated carriers as well as strong light scattering and electron trapping effects of CDs.Finally,the possible degradation pathways were proposed by analyzing intermediates via liquid chromatography-mass spectrometry technique.This research presents a rational design conception to construct a CDs/PS-based photocatalysis/advanced oxidation technology with high-efficient degradation activity for the remediation of organic antibiotic pollutant wastewater and for the improvement of carrier transport kinetics of photocatalysts.
基金funding from the Key Research and Development Projects of Zhejiang Province(2022C01236)and the Ningbo Top Talent Project.
文摘Lignin-derived porous carbons have emerged as promising electrode materials for supercapacitors.However,the challenge remains in designing and controlling their structure to achieve ideal electrochemical performance due to the complex molecular structure of lignin and its intricate chemical reactions during the activation process.In this study,three porous carbons were synthesized from lignin by spray drying and chemical activation with vary-ing KOH ratios.The specific surface area and structural order of the prepared porous carbon continued to increase with the increase of the KOH ratio.Thermogravimetric-mass spectrometry(TG-MS)was employed to track the molecular fragments generated during the pyrolysis of KOH-activated lignin,and the mechanism of the thermochemical conversion was investigated.During the thermochemical conversion of lignin,KOH facili-tated the removal of H2 and CO,leading to the formation of not only more micropores and mesopores,but also more ordered carbon structures.The pore structure exhibited a greater impact than the carbon structure on the electrochemical performance of porous carbon.The optimized porous carbon exhibited a capacitance of 256 F g-1 at a current density of 0.2 A g-1,making it an ideal electrode material for high-performance supercapacitors.
文摘In this research,activated carbon from mangosteen peel has been synthesized using sulfuric acid as an activator.The adsorption performance of the activated carbon was optimized using malachite green dye as absorbate.Mala-chite green dye waste is a toxic and non-biodegradable material that damages the environment.Optimization of adsorption processes was carried out using Response Surface Methodology(RSM)with a Box-Behnken Design(BBD).The synthesized activated carbon was characterized using FTIR and SEM instruments.The FTIR spectra confirmed the presence of a sulfonate group(-SO_(3)H)in the activated carbon,indicating that the activation pro-cess using sulfuric acid was successful.SEM characterization shows that activated carbon has porous morphology.Optimization was carried out for three adsorption parameters,namely contact time(20,60,and 120 min),adsor-bent mass(0.005,0.025,and 0.05 g),and initial concentration of malachite green solution(5,50,and 100 mg·L^(-1)).The concentration of the malachite green solution was determined using a UV-Vis spectrophotometer at the max-imum wavelength of malachite green,618 nm.The optimum of malachite green adsorption using mangosteen peel activated carbon was obtained at a contact time of 80 min,an adsorbent mass of 0.032 g,and malachite green initial concentration of 25 mg·L^(-1),with a maximum removal percentage and maximum adsorption capacity of 93.66%and 19.345 mg·g^(-1),respectively.
文摘The baobab, Adansonia digitata L., plays an important role in the economy of local populations. Nowadays, baobab seed oil is highly prized for its many cosmetic and therapeutic applications, and for its composition of unsaturated fatty acids, sterols, and tocopherols. However, it undergoes numerous reactions during production, processing, transport, and storage, leading to undesirable products that make it unstable. The aim of this study was to provide local processors with innovative solutions for the treatment of unrefined vegetable oils. To this end, an experimental device for filtering crude oil on activated carbon made from fruit capsules was designed. The results obtained after the treatment show a significant decrease at (p < 5%) in acid value (1.62 to 0.58 mg KOH/g), peroxide value (4.40a to 0.50c mEqO<sub>2</sub>/Kg), chlorophyll concentration (1.81 to 0.50 mg/Kg) and primary and secondary oxidation products. According to these results, activated carbon’s adsorptive power eliminates oxidation products and certain pro-oxidants such as chlorophyll, resulting in a cleaner, more stable and better storable oil.
文摘The goal of this work is to improve the simultaneous removal of Pb2+, Cu2+, Zn2+, and Cd2+ ions from synthetic wastewater in a fixed bed column by incorporating sodium dodecyl sulfate (SDS) onto the surface of activated carbon made from coconut shells. The activated carbons were characterized using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy-energy dispersive x-ray (SEM-EDX). The adsorption column dynamics were studied by varying the flow rates (5, 10 and 15 mL/min), bed heights (10, 15 and 20 cm), and initial concentrations (50, 150, and 250 mg/L). The activated carbon has a pore volume of 0.715 cm3/g and a BET-specific surface area of 1410 m2/g. Sodium dodecyl sulfate (SDS) surfactant incorporation onto the surface of the activated carbon enhances its capacity for simultaneous adsorption of Pb2+, Cu2+, Zn2+, and Cd2+ from the aqueous medium. The affinity of the heavy metals to both unmodified (AC) and modified (AC-SDS) activated carbons followed the order of Pb2+ > Cu2+ > Zn2+ > Cd2+. The dynamic adsorption of the column depends on the flow rate, bed height, initial metal concentration, and SDS surface modification. With a 5 mL/min flow rate, a 20 cm bed height, and a 50 mg/L initial metal concentration, a maximum break-through time of 150 minutes for the unmodified activated carbon (AC) and 180 minutes for the SDS-modified activated carbon (AC-SDS) was reached.
文摘The purpose of this study is to compare the results of chemical analysis of two types of activated from the pyrolysis of bull horn and that of cow. Six samples were used to measure pH, carbon, calcium and to determine adsorbent power. The pH was measured at a temperature of 20˚C using an “ANION 7010 ionomer” pH meter, the carbon (C) content was analyzed using a “EURO EA 3000” analyzer. and the electronic balance: “Sartorius CP-2P”, calcium (Ca) was analyzed using a DFS-8 spectrograph. For the adsorbency test, the 0.15% methylene blue R solution was used. At the end of this study, we found that the activated carbon from the bull horn demonstrated a carbon content that is higher than that of the cow horn (20.79% against 15.63%), activated carbon of cow horn is richer in calcium than that of bull horn (16.27% against 3.69%) and then the pH. The cow horn is higher than that of the bull horn (7.43 versus 6.5). For the adsorbent power, the sample (75% bull horn and 25% cow horn) was recorded with the greatest adsorbent power. Thus, from this study, it can be recommended as an activated carbon antidote to be used for poisonings treatment.
基金Funded by Natural Science Foundation of Shandong Province(No.ZR201702150018)China Postdoctoral Science Foundation Funding Scheme(No.2018M632747)+1 种基金the Fundamental Research Funds for the Central Universities(Nos.18CX02143A,17CX05017)New Faculty Start-up Funding from China University of Petroleum(No.YJ20170019).
文摘We employed the previously developed micro porous activated carbon models of different pore sizes ranges of 9-11?,10-12?,and 13-16?that were constructed by molecular simulation method based on a random packing of platelets of carbon sheets,functionalized with oxygen containing groups,to study the adsorption behavior of methane molecules.In studying methane adsorption behavior,we used Grand Canonical Monte Carlo and Molecular Dynamics methods at different temperatures of 273.15,298.15 and303.15 K.Adsorption isotherms,isosteric heats of adsorption,adsorption energy distributions and porosity changes of the models during adsorption process were analyzed and discussed.Furthermore,radial distribution Functions,relative distribution and diffusion coefficients of methane molecules in activated carbon models at different temperatures were studied.After the analysis,the main results indicated that large micro pores activated carbons were favorable for storing methane at lower temperatures and small micro pores were the most favorable for adsorbing methane molecules at higher temperatures.Interestingly,the developed model structures showed high capacities to store methane molecule at ambient temperatures and low pressure.
基金the support of the National Natural Science Foundation of China (20222809, 21978146)TsinghuaFoshan Innovation Special Fund (2021THFS0214)。
文摘Suzuki-Miyaura reaction of aryl halides with phenylboronic acid using a heterogeneous palladium catalyst based on activated carbons(AC) was systematically investigated in this work. Two different reaction modes(batch procedure and continuous-flow procedure) were used to study the variations of reaction processing. The heterogeneous catalysts presented excellent reactivity and recyclability for iodobenzene and bromobenzene substrates in batch mode, which can be attributed to stabilization of Pd nanoparticles by the thiol and amino groups on the AC supports. However, significant dehalogenation in the reaction mixture and Pd leaching from the heterogeneous catalysts were observed in continuous-flow mode.This unique phenomenon in continuous-flow mode resulted in a dramatic decline in reaction selectivity and durability of heterogeneous catalysts comparing with that of batch mode. In addition, the heterogeneous Pd catalysts with thiol-and amino-modified AC supports exhibited different reactivity and durability in batch and continuous-flow mode owing to the difference of interaction between Pd species and AC supports.
文摘Activated carbons calcined at 400˚C and 600˚C (AC-400 and AC-600), prepared using palm nuts, collected in the town of Franceville in Gabon, were used to study the dynamic adsorption of MnO<sub>4</sub>-</sup> ions in acidic media on fixed bed column and on the kinetic modeling of experimental data of breakthrough curves of MnO<sub>4</sub>-</sup> ions obtained. Results on the adsorption of MnO<sub>4</sub>-</sup> ions in fixed-bed dynamics obtained on AC-400 and AC-600 adsorbents beds indicated that the AC-400 bed appears to be the most efficient in removing MnO<sub>4</sub>-</sup> ions in acidic media. Indeed, the adsorbed amounts, the adsorbed capacities at saturation and the elimination percentage of MnO<sub>4</sub>-</sup> ions obtained with AC-400 (31.24 mg;52.06 mg·g<sup>-1</sup> and 41.65% respectively) were higher compared to those obtained with AC-600 (9.87 mg;16.45 mg·g<sup>-1</sup> and 17.79% respectively). The breakthrough curves kinetic modeling revealed that the Thomas model and the pseudo-first-order kinetic model were the most suitable models to describe the adsorption of MnO<sub>4</sub>-</sup> ions on adsorbents studied in our experimental conditions. The results of the intraparticle diffusion model showed that intraparticle diffusion was involved in the adsorption mechanism of MnO<sub>4</sub>-</sup> ions on investigated adsorbents and was not the limiting step and the only process controlling MnO<sub>4</sub>-</sup> ions adsorption. In contrast to AC-400, the intraparticle diffusion on AC-600 bed plays an important role in the adsorption mechanism of MnO<sub>4</sub>-</sup> ions.
基金The authors thank the National Natural Science Foundation of China(No.51906130)the Natural Science Foundation of Shandong Province(No.ZR2019BEE053)+1 种基金the Key R&D and Development Plan of Shandong Province(2020CXGC011401)the Foundation of Shandong Key Lab of Energy Carbon Reduction and Resource Utilization,Shandong University(No.ECRRU201804)for the financial support.
文摘In this study,the Heishan coal was used to prepare a series of activated carbon(AC)samples via a vapor deposition method.The effects of the Fe(NO_(3))3/coal weight ratio on the physicochemical properties of the activated carbon were systematically investigated,and the AC samples were analyzed by the N2 adsorption-desorption technique,the scanning electron microscopy,the X-ray diffraction,the Raman spectroscopy,and the Fourier transform infrared spectroscopy.Furthermore,the adsorption properties of ethyl acetate were investigated.The results indicated that as the Fe(NO_(3))3/coal mass ratio increased from 1:8 to 1:2,the specific surface area,the total pore volume and the micropore volume initially increased and then decreased.The specific surface area increased from 560.86 m^(2)/g to 685.90 m^(2)/g,and then decreased to 299.56 m^(2)/g.The total pore volume and micropore volume increased from 0.29 cm^(3)/g and 0.17 cm^(3)/g to 0.30 cm^(3)/g and 0.22 cm^(3)/g,and then decreased to 0.16 cm^(3)/g and 0.10 cm^(3)/g,respectively.The optimized ratio was 1:8.During the activation process,iron ions infiltrated the activated carbon to promote the development of the pore structure,the pore size of which was between 2.5 nm and 3 nm in daimeter.This approach could enhance the capacity for adsorption of ethyl acetate.It is worth noting that the ACs displaying the largest specific surface area and total pore volume(685.90 m^(2)/g and 0.30 cm^(3)/g)were formed under the optimized activation conditions(950℃,20%(volume)of CO_(2),ratio 1:5),and the maximum AC capacity for adsorption of ethyl acetate was 962.62 mg/g.After seven repeated thermal regeneration experiments,the saturated AC adsorption capacity was still above 90%.
基金support by the National Natural Science Foundation of China (No. 20776150)the National Hi-Tech Research and Development Program of China(No. 2008AA05Z308)the Special Fund for Basic Scientific Research of Central Colleges (No. 2009QH15)
文摘The role of Nil(NO3)2 in the preparation of a magnetic activated carbon is reported in this paper. Magnetic coal-based activated carbons (MCAC) were prepared from Taixi anthracite with low ash content in the presence of Ni(NO3)2. The MCAC materials were characterized by a vibrating sample magnetometer (VSM), X-ray diffraction (XRD), a scanning electric microscope (SEM), and by N2 adsorption. The cylindri- cal precursors and derived char were also subjected to thermogravimetric analysis to compare their behavior of weight losses during carbonization. The results show that MCAC has a larger surface area (1074 m21g) and a higher pore volume (0.5792 cm3/g) with enhanced mesopore ratio (by about 10~). It also has a high saturation magnetization (1.6749 emu/g) and low coercivity (43.26 Oe), which allows the material to be magnetically separated. The MCAC is easily magnetized because the nickel salt is con- vetted into Ni during carbonization and activation. Metallic Ni has a strong magnetism on account of electrostatic interaction. Added Ni(NO3)2 catalyzes the carbonization and activation process by accelerat- ing burn off of the carbon, which contributes to the development of mesopores and macropores in the activated carbon.
文摘Fe/C-based magnetically activated carbon(MAC) was obtained by carbonizing and activating its precursor, that was prepared by co-precipitation of anthracite coal impregnated in ferric chloride solution. The effect of the concentrations of FeCl3 and pH of solution on BET surface area, pore volume and magnetic properties of the MAC was studied by BET N2 adsorption and VSM method. The results indicated that the magnetization of MAC gradually increases with increasing concentration of FeCl3 and pH value of solution, and BET surface area was inclined to fluctuation. The largest BET surface area and magnetization of MAC were 1327.5 m2/g and 35.56 emu/g, respectively. The form of magnetic matter in the magnetically activated carbon was mainly Fe3C by X-ray powder diffraction(XRD) and magnetic attraction test.