Extensive in vitro corrosion test systems have been carried out to simulate the in vivo corrosion behavior of biodegradable metallic materials. Various methods have their own unique benefits and limitations. The corro...Extensive in vitro corrosion test systems have been carried out to simulate the in vivo corrosion behavior of biodegradable metallic materials. Various methods have their own unique benefits and limitations. The corrosion mechanism of biodegradable alloys and in vitro corrosion test systems on biodegradable metallic materials are reviewed, to build a reasonable simulated in vitro test system for mimicking the in vivo animal test from the aspects of electrolyte solution selection, surface roughness influence, test methods and evaluation methodology of corrosion rate. Buffered simulated body fluid containing similar components to human blood plasma should be applied as electrolyte solution, such as simulated body fluid (SBF) and culture medium with serum. Surface roughness of samples and ratio of solution volume to sample surface area should be adopted based on the real implant situation, and the dynamic corrosion is preferred. As to the evaluation methodology of corrosion rate, different methods may complement one another.展开更多
The biodegradation of polymeric biocomposites formed from epoxidized linseed oil and various types of fillers(pine needles,pine bark,grain mill waste,rapeseed cake)and a control sample without filler was studied durin...The biodegradation of polymeric biocomposites formed from epoxidized linseed oil and various types of fillers(pine needles,pine bark,grain mill waste,rapeseed cake)and a control sample without filler was studied during 180 days of exposure to two types of forest soil:deciduous and coniferous.The weight loss,morphological,and structural changes of polymer composites were noticed after 180 days of the soil burial test.The greatest weight loss of all tested samples was observed in coniferous forest soil(41.8%–63.2%),while in deciduous forest soil,it ranged between 37.7%and 42.3%.The most significant changes in the intensities of the signals evaluated by attenuated total reflectance infrared spectroscopy,as well as morphological changes determined by scanning electron microscopy,were assessed for polymer composite with rapeseed cake and specimen without filler in coniferous forest soil and are in a good agreement with weight loss results.Whereas significantly lower changes in weight loss,morphology,and structure of polymeric film with pine bark were noticed in both soils.It was suggested that fungi of Trichoderma,Penicillium,Talaromyces and Clonostachys genera are the possible soil microorganisms that degrade linseed oil-based cross-linked polymer composites.Moreover,the novel polymer composites have the potential to be an environmentally friendly alternative to petroleum-based mulching films.展开更多
As one type of environment-friendly polymer, biodegradable starch-based materials have been widely explored in recent years and considered one of the most promising plastics in the future. Currently, either synthetic ...As one type of environment-friendly polymer, biodegradable starch-based materials have been widely explored in recent years and considered one of the most promising plastics in the future. Currently, either synthetic biodegradable aliphatic polyesters or certain natural polymers are usually blended with thermoplastic starch to enhance hydrophobicity and service performance of starch-based materials. The main deficiency lies in the low compatibility between starch and polyester phases. Therefore amphiphilic compatibilizers, such as hydroxyl functioned polyesters, need to be developed in the future. Moreover, multi-phase blending systems including two or more polyester phases are also supposed to be designed.展开更多
Compared with non-degradable materials,biodegradable biomaterials play an increasingly important role in the repairing of severe bone defects,and have attracted extensive attention from researchers.In the treatment of...Compared with non-degradable materials,biodegradable biomaterials play an increasingly important role in the repairing of severe bone defects,and have attracted extensive attention from researchers.In the treatment of bone defects,scaffolds made of biodegradable materials can provide a crawling bridge for new bone tissue in the gap and a platform for cells and growth factors to play a physiological role,which will eventually be degraded and absorbed in the body and be replaced by the new bone tissue.Traditional biodegradable materials include polymers,ceramics and metals,which have been used in bone defect repairing for many years.Although these materials have more or fewer shortcomings,they are still the cornerstone of our development of a new generation of degradable materials.With the rapid development of modern science and technology,in the 21 st century,more and more kinds of new biodegradable materials emerge in endlessly,such as new intelligent micro-nano materials and cell-based products.At the same time,there are many new fabrication technologies of improving biodegradable materials,such as modular fabrication,3 D and 4 D printing,interface reinforcement and nanotechnology.This review will introduce various kinds of biodegradable materials commonly used in bone defect repairing,especially the newly emerging materials and their fabrication technology in recent years,and look forward to the future research direction,hoping to provide researchers in the field with some inspiration and reference.展开更多
Increasingly global there is an interest to develop a new method by replacing fungicides in packaging fresh fruit by using environment-friendly bio-pesti-cides, such as use of botanicals or biological control. Five et...Increasingly global there is an interest to develop a new method by replacing fungicides in packaging fresh fruit by using environment-friendly bio-pesti-cides, such as use of botanicals or biological control. Five ethanol extracts (concentrations 500 - 5000 ppm) of Cerbera odollam L. (Pong-pong), Capsicum frutescence L. (Chili), Azadirachta indica L. (Neem), Cymbopogon nardus L. (Lemon grass), Zingiber officinale L. (Ginger), were tested for their anti-fungal activity for citrus green mold, black and brown rot, compared with the control fungicide (Guazatine). Efficacy of the selected plant extract in cooperated with biodegradable materials wrappers (Polylactic acid, Pectin and Newspaper) was determined during storage at room temperature (±25℃) to control fruit-pathogen decay under modified atmosphere packaging (MAP) to increase shelf life and improve the fruit quality. Crude extracts from pong-pong and chili showed fungal inhibition zone at 3000 ppm (c.100%), and increased shelf life and decreased weigh loss for fruits wrapped and stored at room temperature compared with untreated fruit.展开更多
This paper focuses on the possibility of using the biodegradable materials as binders(or parts of binders' compositions) for foundry moulding and core sands. Results showed that there is a great possibility of usi...This paper focuses on the possibility of using the biodegradable materials as binders(or parts of binders' compositions) for foundry moulding and core sands. Results showed that there is a great possibility of using available biodegradable materials as foundry moulding sand binders. Using biodegradable materials as partial content of new binders, or additives to moulding sands may not only decrease the toxicity and increase reclamation ability of tested moulding sands, but also accelerate the biodegradation rate of used binders, and the new biodegradable additive(PCL) did not decrease the strength and thermal properties. In addition, using polycaprolactone(PCL) as a biodegradable material may improve the flexibility of moulding sands with polymeric binder and reduce toxicity.展开更多
Organic optoelectronic materials have received considerable attention due to their great potentials in electronic devices,such as organic field-effect transistors(OFETs),organic light-emit-ting diodes(OLED)and organic...Organic optoelectronic materials have received considerable attention due to their great potentials in electronic devices,such as organic field-effect transistors(OFETs),organic light-emit-ting diodes(OLED)and organic photovoltaic cells(OPV).Besides,their fascinating properties of flexibility,biocompatibility,molecular diversity,low-cost and solution processability bring new opportunities in bioelectronics in the past decade.While almost all known organic optoelectronic materials are obtained from unrenewable fossil resources and nondegradable,a new family of organic optoelectronic materials is now emerging,which can be obtained from green plants and are biodegradable.Meanwhile,they exhibit excellent optoelectronic properties.This review summarized the synthesis and important molecular properties of this new class of biodegradable organic opto-electronic materials:α-oligofurans.Recent progress of furan-based materials and the existing chal-lenges are also discussed to stimulate further advances in the study of this class of materials.展开更多
Benefits achieved by the biodegradable magnesium(Mg) and zinc(Zn) implants could be suppressed due to the invasion of infectious microbial, common bacteria, and fungi. Postoperative medications and the antibacterial p...Benefits achieved by the biodegradable magnesium(Mg) and zinc(Zn) implants could be suppressed due to the invasion of infectious microbial, common bacteria, and fungi. Postoperative medications and the antibacterial properties of pure Mg and Zn are insufficient against biofilm and antibiotic-resistant bacteria, bringing osteomyelitis, necrosis, and even death. This study evaluates the antibacterial performance of biodegradable Mg and Zn alloys of different reinforcements, including silver(Ag), copper(Cu), lithium(Li), and gallium(Ga). Copper ions(Cu^(2+)) can eradicate biofilms and antibiotic-resistant bacteria by extracting electrons from the cellular structure. Silver ion(Ag^(+)) kills bacteria by creating bonds with the thiol group. Gallium ion(Ga^(3+)) inhibits ferric ion(Fe^(3+)) absorption, leading to nutrient deficiency and bacterial death. Nanoparticles and reactive oxygen species(ROS) can penetrate bacteria cell walls directly, develop bonds with receptors, and damage nucleotides. Antibacterial action depends on the alkali nature of metal ions and their degradation rate, which often causes cytotoxicity in living cells. Therefore, this review emphasizes the insight into degradation rate, antibacterial mechanism, and their consequent cytotoxicity and observes the correlation between antibacterial performance and oxidation number of metal ions.展开更多
3D printing is a versatile technology capable of rapidly fabricating intricate geometric structures and enhancing the performance of flexible devices in comparison to conventional fabrication methods.However,3D-printe...3D printing is a versatile technology capable of rapidly fabricating intricate geometric structures and enhancing the performance of flexible devices in comparison to conventional fabrication methods.However,3D-printed devices are susceptible to failure as a result of minuscule structural impairments,thereby impacting their overall durability.The utilization of self-healing,biodegradable materials in 3D printing holds immense potential for increasing the longevity and safety of devices,thereby expanding the application prospects for such devices.Nevertheless,enhancing the self-repairing capability of devices and refining the 3D printing performance of self-healing materials are still considerable challenges that need to be addressed to achieve optimal outcomes.This paper reviews recent developments in the field of advancements in 3D printing using self-healing and biodegradable materials.First,it investigates self-healing and biodegradable materials that are compatible with 3D printing techniques,discussing their printability,material properties,and factors that influence print quality.Then,it explores practical applications of selfhealing and biodegradable 3D printing technology in depth.Finally,it critically offers practical perspectives on this topic.展开更多
Drawbacks associated with permanent metallic implants lead to the search for degradable metallic biomaterials. Magnesium alloys have been highly considered as Mg has a high biocorrosion potential and is essential to b...Drawbacks associated with permanent metallic implants lead to the search for degradable metallic biomaterials. Magnesium alloys have been highly considered as Mg has a high biocorrosion potential and is essential to bodies. In this study, corrosion behaviour of pure magnesium and magnesium alloy AZ31 in both static and dynamic physiological conditions (Hank's solution) has been investigated. It is found that the materials degrade fast at beginning, then stabilize after 5 days of immersion. High purity in the materials reduces the corrosion rate while the dynamic condition accelerates the degradation process. In order to slow down the degradation process to meet the requirement for their bio-applications, an anodized coating is applied and is proved as effective in controlling the biodegradation rate.展开更多
Binary Mg-Gd (up to 5% Gd in mass fraction), Mg-Nd (up to 9% Nd in mass fraction) and ternary Mg-Gd-Y (up to 5% Gd, 1% Y) alloys with precisely determined contents of cathodic impurities (Fe, Ni, Cu, Co) were ...Binary Mg-Gd (up to 5% Gd in mass fraction), Mg-Nd (up to 9% Nd in mass fraction) and ternary Mg-Gd-Y (up to 5% Gd, 1% Y) alloys with precisely determined contents of cathodic impurities (Fe, Ni, Cu, Co) were studied. The alloys were studied in the as-cast state (cooling rate of 500 K/min) and after solution heat treatment (T4). Structures were investigated by optical and scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction and glow discharge spectrometry. Structural investigation was completed by Vickers hardness measurements. Corrosion behavior in the simulated physiological solution (9 g/L NaCl) was assessed by immersion tests and potentiodynamic measurements. It was found that the structures of the as-cast alloys were dominated by fine a-Mg dendrites and eutectic Mg-RE phases. The dendrites exhibited RE-concentration gradients which were most pronounced in the Mg-Gd alloys. For this reason, the T4 heat treatment of the Mg-Gd alloy led to the formation of a new cuboidal Mg5Gd phase. The corrosion resistance was significantly improved by Gd. The effect of Nd was weak and the addition of Y to Mg-Gd alloys had harmful effect on the corrosion resistance. The T4 heat treatment strongly accelerated the corrosion of Mg-Gd alloys. Its effect on the corrosion of Mg-Nd alloys was not significant. The observed corrosion behavior of the alloys was discussed in relation to their structural states and contents of cathodic impurities.展开更多
A process of purification of coal-based coke powder as anode the treatment of coke powder with dilute hydrofluoric acid solution, for Li-ion batteries was attempted. The process started with followed by united-acid-le...A process of purification of coal-based coke powder as anode the treatment of coke powder with dilute hydrofluoric acid solution, for Li-ion batteries was attempted. The process started with followed by united-acid-leaching using sulfuric acid and hydrochloric acid. The effects of altering the hydrofluoric acid addition, hydrofluoric acid concentration, contact time, temperature and acid type were investigated. A minimum ash content of 0.35% was obtained when proper conditions were applied. The electrochemical performance of purified coke powder shows greatly improved electrochemical performance. The as-purified coke powder presented an initial reversible capacity of 257.4 mAh/g and a retention rate of 95% after 50 cycles. The proposed purification process paves a way to prepare a promising anode material with good performance with low cost of coke powder for Li-ion batteries.展开更多
In the current shift from conventional fossil-fuel-based materials to renewable energy,ecofriendly materials have attracted extensive research interest due to their sustainability and biodegradable properties.The inte...In the current shift from conventional fossil-fuel-based materials to renewable energy,ecofriendly materials have attracted extensive research interest due to their sustainability and biodegradable properties.The integration of sustainable materials in electronics provides industrial benefits from wasted bio-origin resources and preserves the environment.This review covers the use of sustainable materials as components in organic electronics,such as substrates,insulators,semiconductors,and conductors.We hope this review will stimulate interest in the potential and practical applications of sustainable materials for green and sustainable industry.展开更多
Endoluminal stents for reinforcement and regeneration of human trachea have been developed by weft-knitting method on a small-diameter circular knitting machine. The constituent materials of the stent are Polyglactin,...Endoluminal stents for reinforcement and regeneration of human trachea have been developed by weft-knitting method on a small-diameter circular knitting machine. The constituent materials of the stent are Polyglactin, Polypropylene and Chitosan with Polyglactin and Polypropylene plate-stitched fabric acting as backbone while chitosan as matrix, respectively. The fabrication procedures including knitting and coating are described in this paper. Mechanical and animal tests have been carried out to evaluate the mechanical properties of the stents.展开更多
Material efficiency is nowadays an essential topic to promote the sustainable use of natural resources, waste materials and industrial by-products, in agreement with the principle of sustainable development and LCA (l...Material efficiency is nowadays an essential topic to promote the sustainable use of natural resources, waste materials and industrial by-products, in agreement with the principle of sustainable development and LCA (life cycle assessment). In this research it was determined the biodegradation of used vegetable oil based products and their important physico- chemical properties for their suitability in different applications such as chain oil in the forestry equipment and mold oil in concrete casting etc. Biodegradability is a measure of the ecological nature of products, and thus from an environ- mental point of view, is the most important evaluated property in this research. As a result, all measured properties of the studied recycled vegetable oils show that the products are environmentally friendly. Two types of vegetable oil were studied;three chain oils and two mold oils. The degree of biodegradation (BOD28) of the mold oils, was about 77 % and the biodegradation of chain oils was about 60% - 62%. In addition, this paper also presents a process outline for manu- facturing recycling vegetable oils.展开更多
基金Project(2012CB619102) supported by National Basic Research Program of ChinaProject(31070847) supported by National Natural Science Foundation of China
文摘Extensive in vitro corrosion test systems have been carried out to simulate the in vivo corrosion behavior of biodegradable metallic materials. Various methods have their own unique benefits and limitations. The corrosion mechanism of biodegradable alloys and in vitro corrosion test systems on biodegradable metallic materials are reviewed, to build a reasonable simulated in vitro test system for mimicking the in vivo animal test from the aspects of electrolyte solution selection, surface roughness influence, test methods and evaluation methodology of corrosion rate. Buffered simulated body fluid containing similar components to human blood plasma should be applied as electrolyte solution, such as simulated body fluid (SBF) and culture medium with serum. Surface roughness of samples and ratio of solution volume to sample surface area should be adopted based on the real implant situation, and the dynamic corrosion is preferred. As to the evaluation methodology of corrosion rate, different methods may complement one another.
文摘The biodegradation of polymeric biocomposites formed from epoxidized linseed oil and various types of fillers(pine needles,pine bark,grain mill waste,rapeseed cake)and a control sample without filler was studied during 180 days of exposure to two types of forest soil:deciduous and coniferous.The weight loss,morphological,and structural changes of polymer composites were noticed after 180 days of the soil burial test.The greatest weight loss of all tested samples was observed in coniferous forest soil(41.8%–63.2%),while in deciduous forest soil,it ranged between 37.7%and 42.3%.The most significant changes in the intensities of the signals evaluated by attenuated total reflectance infrared spectroscopy,as well as morphological changes determined by scanning electron microscopy,were assessed for polymer composite with rapeseed cake and specimen without filler in coniferous forest soil and are in a good agreement with weight loss results.Whereas significantly lower changes in weight loss,morphology,and structure of polymeric film with pine bark were noticed in both soils.It was suggested that fungi of Trichoderma,Penicillium,Talaromyces and Clonostachys genera are the possible soil microorganisms that degrade linseed oil-based cross-linked polymer composites.Moreover,the novel polymer composites have the potential to be an environmentally friendly alternative to petroleum-based mulching films.
文摘As one type of environment-friendly polymer, biodegradable starch-based materials have been widely explored in recent years and considered one of the most promising plastics in the future. Currently, either synthetic biodegradable aliphatic polyesters or certain natural polymers are usually blended with thermoplastic starch to enhance hydrophobicity and service performance of starch-based materials. The main deficiency lies in the low compatibility between starch and polyester phases. Therefore amphiphilic compatibilizers, such as hydroxyl functioned polyesters, need to be developed in the future. Moreover, multi-phase blending systems including two or more polyester phases are also supposed to be designed.
基金supported by grants from the National Natural Science Foundation of China(11772226,81871777 and 81572154)the Tianjin Science and Technology Plan Project(18PTLCSY00070,16ZXZNGX00130)grants awarded to Xiao-Song Gu by the National Natural Science Foundation of China(31730031 and L1924064)。
文摘Compared with non-degradable materials,biodegradable biomaterials play an increasingly important role in the repairing of severe bone defects,and have attracted extensive attention from researchers.In the treatment of bone defects,scaffolds made of biodegradable materials can provide a crawling bridge for new bone tissue in the gap and a platform for cells and growth factors to play a physiological role,which will eventually be degraded and absorbed in the body and be replaced by the new bone tissue.Traditional biodegradable materials include polymers,ceramics and metals,which have been used in bone defect repairing for many years.Although these materials have more or fewer shortcomings,they are still the cornerstone of our development of a new generation of degradable materials.With the rapid development of modern science and technology,in the 21 st century,more and more kinds of new biodegradable materials emerge in endlessly,such as new intelligent micro-nano materials and cell-based products.At the same time,there are many new fabrication technologies of improving biodegradable materials,such as modular fabrication,3 D and 4 D printing,interface reinforcement and nanotechnology.This review will introduce various kinds of biodegradable materials commonly used in bone defect repairing,especially the newly emerging materials and their fabrication technology in recent years,and look forward to the future research direction,hoping to provide researchers in the field with some inspiration and reference.
文摘Increasingly global there is an interest to develop a new method by replacing fungicides in packaging fresh fruit by using environment-friendly bio-pesti-cides, such as use of botanicals or biological control. Five ethanol extracts (concentrations 500 - 5000 ppm) of Cerbera odollam L. (Pong-pong), Capsicum frutescence L. (Chili), Azadirachta indica L. (Neem), Cymbopogon nardus L. (Lemon grass), Zingiber officinale L. (Ginger), were tested for their anti-fungal activity for citrus green mold, black and brown rot, compared with the control fungicide (Guazatine). Efficacy of the selected plant extract in cooperated with biodegradable materials wrappers (Polylactic acid, Pectin and Newspaper) was determined during storage at room temperature (±25℃) to control fruit-pathogen decay under modified atmosphere packaging (MAP) to increase shelf life and improve the fruit quality. Crude extracts from pong-pong and chili showed fungal inhibition zone at 3000 ppm (c.100%), and increased shelf life and decreased weigh loss for fruits wrapped and stored at room temperature compared with untreated fruit.
基金financially supported by AGH Research Project No.11.11.170.318-3
文摘This paper focuses on the possibility of using the biodegradable materials as binders(or parts of binders' compositions) for foundry moulding and core sands. Results showed that there is a great possibility of using available biodegradable materials as foundry moulding sand binders. Using biodegradable materials as partial content of new binders, or additives to moulding sands may not only decrease the toxicity and increase reclamation ability of tested moulding sands, but also accelerate the biodegradation rate of used binders, and the new biodegradable additive(PCL) did not decrease the strength and thermal properties. In addition, using polycaprolactone(PCL) as a biodegradable material may improve the flexibility of moulding sands with polymeric binder and reduce toxicity.
文摘Organic optoelectronic materials have received considerable attention due to their great potentials in electronic devices,such as organic field-effect transistors(OFETs),organic light-emit-ting diodes(OLED)and organic photovoltaic cells(OPV).Besides,their fascinating properties of flexibility,biocompatibility,molecular diversity,low-cost and solution processability bring new opportunities in bioelectronics in the past decade.While almost all known organic optoelectronic materials are obtained from unrenewable fossil resources and nondegradable,a new family of organic optoelectronic materials is now emerging,which can be obtained from green plants and are biodegradable.Meanwhile,they exhibit excellent optoelectronic properties.This review summarized the synthesis and important molecular properties of this new class of biodegradable organic opto-electronic materials:α-oligofurans.Recent progress of furan-based materials and the existing chal-lenges are also discussed to stimulate further advances in the study of this class of materials.
基金support by Universiti Teknologi PETRONAS (UTP),Malaysia,under Grant No.015LC0-336。
文摘Benefits achieved by the biodegradable magnesium(Mg) and zinc(Zn) implants could be suppressed due to the invasion of infectious microbial, common bacteria, and fungi. Postoperative medications and the antibacterial properties of pure Mg and Zn are insufficient against biofilm and antibiotic-resistant bacteria, bringing osteomyelitis, necrosis, and even death. This study evaluates the antibacterial performance of biodegradable Mg and Zn alloys of different reinforcements, including silver(Ag), copper(Cu), lithium(Li), and gallium(Ga). Copper ions(Cu^(2+)) can eradicate biofilms and antibiotic-resistant bacteria by extracting electrons from the cellular structure. Silver ion(Ag^(+)) kills bacteria by creating bonds with the thiol group. Gallium ion(Ga^(3+)) inhibits ferric ion(Fe^(3+)) absorption, leading to nutrient deficiency and bacterial death. Nanoparticles and reactive oxygen species(ROS) can penetrate bacteria cell walls directly, develop bonds with receptors, and damage nucleotides. Antibacterial action depends on the alkali nature of metal ions and their degradation rate, which often causes cytotoxicity in living cells. Therefore, this review emphasizes the insight into degradation rate, antibacterial mechanism, and their consequent cytotoxicity and observes the correlation between antibacterial performance and oxidation number of metal ions.
基金supported by the National Key R&D Program of China(Grant No.2022YFB4601601)the Key R&D Program of Guangxi Province,China(Grant No.GKAB23026101)Guangxi Natural Science Foundation,China(Grant No.2023GXNSFBA026287).
文摘3D printing is a versatile technology capable of rapidly fabricating intricate geometric structures and enhancing the performance of flexible devices in comparison to conventional fabrication methods.However,3D-printed devices are susceptible to failure as a result of minuscule structural impairments,thereby impacting their overall durability.The utilization of self-healing,biodegradable materials in 3D printing holds immense potential for increasing the longevity and safety of devices,thereby expanding the application prospects for such devices.Nevertheless,enhancing the self-repairing capability of devices and refining the 3D printing performance of self-healing materials are still considerable challenges that need to be addressed to achieve optimal outcomes.This paper reviews recent developments in the field of advancements in 3D printing using self-healing and biodegradable materials.First,it investigates self-healing and biodegradable materials that are compatible with 3D printing techniques,discussing their printability,material properties,and factors that influence print quality.Then,it explores practical applications of selfhealing and biodegradable 3D printing technology in depth.Finally,it critically offers practical perspectives on this topic.
文摘Drawbacks associated with permanent metallic implants lead to the search for degradable metallic biomaterials. Magnesium alloys have been highly considered as Mg has a high biocorrosion potential and is essential to bodies. In this study, corrosion behaviour of pure magnesium and magnesium alloy AZ31 in both static and dynamic physiological conditions (Hank's solution) has been investigated. It is found that the materials degrade fast at beginning, then stabilize after 5 days of immersion. High purity in the materials reduces the corrosion rate while the dynamic condition accelerates the degradation process. In order to slow down the degradation process to meet the requirement for their bio-applications, an anodized coating is applied and is proved as effective in controlling the biodegradation rate.
基金the Czech Science Foundation (P108/12/G043)the Academy of Sciences of the Czech Republic(KAN300100801)for the financial support
文摘Binary Mg-Gd (up to 5% Gd in mass fraction), Mg-Nd (up to 9% Nd in mass fraction) and ternary Mg-Gd-Y (up to 5% Gd, 1% Y) alloys with precisely determined contents of cathodic impurities (Fe, Ni, Cu, Co) were studied. The alloys were studied in the as-cast state (cooling rate of 500 K/min) and after solution heat treatment (T4). Structures were investigated by optical and scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction and glow discharge spectrometry. Structural investigation was completed by Vickers hardness measurements. Corrosion behavior in the simulated physiological solution (9 g/L NaCl) was assessed by immersion tests and potentiodynamic measurements. It was found that the structures of the as-cast alloys were dominated by fine a-Mg dendrites and eutectic Mg-RE phases. The dendrites exhibited RE-concentration gradients which were most pronounced in the Mg-Gd alloys. For this reason, the T4 heat treatment of the Mg-Gd alloy led to the formation of a new cuboidal Mg5Gd phase. The corrosion resistance was significantly improved by Gd. The effect of Nd was weak and the addition of Y to Mg-Gd alloys had harmful effect on the corrosion resistance. The T4 heat treatment strongly accelerated the corrosion of Mg-Gd alloys. Its effect on the corrosion of Mg-Nd alloys was not significant. The observed corrosion behavior of the alloys was discussed in relation to their structural states and contents of cathodic impurities.
基金Projects(51274240,51204209) supported by the National Natural Science Foundation of ChinaProject(2012M521545) supported by the National Postdoctoral Science Foundation of China
文摘A process of purification of coal-based coke powder as anode the treatment of coke powder with dilute hydrofluoric acid solution, for Li-ion batteries was attempted. The process started with followed by united-acid-leaching using sulfuric acid and hydrochloric acid. The effects of altering the hydrofluoric acid addition, hydrofluoric acid concentration, contact time, temperature and acid type were investigated. A minimum ash content of 0.35% was obtained when proper conditions were applied. The electrochemical performance of purified coke powder shows greatly improved electrochemical performance. The as-purified coke powder presented an initial reversible capacity of 257.4 mAh/g and a retention rate of 95% after 50 cycles. The proposed purification process paves a way to prepare a promising anode material with good performance with low cost of coke powder for Li-ion batteries.
基金This work was supported by a grant from the National Research Foundation(NRF)funded by the Korean Government(MSIT,2017R1E1A1A01072798 and 2019K1A3A1A14065772).
文摘In the current shift from conventional fossil-fuel-based materials to renewable energy,ecofriendly materials have attracted extensive research interest due to their sustainability and biodegradable properties.The integration of sustainable materials in electronics provides industrial benefits from wasted bio-origin resources and preserves the environment.This review covers the use of sustainable materials as components in organic electronics,such as substrates,insulators,semiconductors,and conductors.We hope this review will stimulate interest in the potential and practical applications of sustainable materials for green and sustainable industry.
文摘Endoluminal stents for reinforcement and regeneration of human trachea have been developed by weft-knitting method on a small-diameter circular knitting machine. The constituent materials of the stent are Polyglactin, Polypropylene and Chitosan with Polyglactin and Polypropylene plate-stitched fabric acting as backbone while chitosan as matrix, respectively. The fabrication procedures including knitting and coating are described in this paper. Mechanical and animal tests have been carried out to evaluate the mechanical properties of the stents.
文摘Material efficiency is nowadays an essential topic to promote the sustainable use of natural resources, waste materials and industrial by-products, in agreement with the principle of sustainable development and LCA (life cycle assessment). In this research it was determined the biodegradation of used vegetable oil based products and their important physico- chemical properties for their suitability in different applications such as chain oil in the forestry equipment and mold oil in concrete casting etc. Biodegradability is a measure of the ecological nature of products, and thus from an environ- mental point of view, is the most important evaluated property in this research. As a result, all measured properties of the studied recycled vegetable oils show that the products are environmentally friendly. Two types of vegetable oil were studied;three chain oils and two mold oils. The degree of biodegradation (BOD28) of the mold oils, was about 77 % and the biodegradation of chain oils was about 60% - 62%. In addition, this paper also presents a process outline for manu- facturing recycling vegetable oils.
基金National Key Research and Development Program of China(2021YFB3800800)National Natural Science Foundation of China(32000960)Shanghai Science and Technology Innovation Action Plan(22S31906500)。