The intrinsic kinetic models of the Langmuir-Hinshelwood type were investigated in terms of the reaction rates of CO hydrogenation and CO_2 hydrogenation in theform of reactant fugacity. The parameters were estimated ...The intrinsic kinetic models of the Langmuir-Hinshelwood type were investigated in terms of the reaction rates of CO hydrogenation and CO_2 hydrogenation in theform of reactant fugacity. The parameters were estimated by the Universal Global Optimization using the Marquardt method. Residual error distribution and statistic tests show thatthe intrinsic kinetic models are reliable and acceptable. The mathematic model of a combined converter formed by gas-cooled and water-cooled reactor was developed and thegas-cooled reactor and the water-cooled reactor were characterized with one-dimensionalmathematic model. The distributions of temperature and concentration in the catalytic bedof the gas-cooled reactor and the water-cooled reactor in a combined converter with ayield of 1.2 Mt/a were simulated. The parallel cross linking pore model was used to describe the transfer process of multi-component diffusion system in the catalyst. The calculated value computed by the internal diffusion efficiency factor calculation model established for methanol synthesis catalyst fit the experimental value very well.展开更多
While carbon dioxide(CO_(2))is a major greenhouse gas,it is also an important C1 resource.In the trend of energy conservation and emission reduction,electrocatalytic reduction has become a very promising strategy for ...While carbon dioxide(CO_(2))is a major greenhouse gas,it is also an important C1 resource.In the trend of energy conservation and emission reduction,electrocatalytic reduction has become a very promising strategy for CO_(2)utilization because it can convert CO_(2)directly to high-valued chemicals and fuels under mild conditions.In particular,the product CO and by-product H_(2)can be combined into syngas by an electrocatalytic CO_(2)reduction reaction(CO_(2)RR)in an aqueous medium.Different molar ratios of CO and H_(2)may be used to produce essential bulk chemicals or liquid fuels such as methanol,alkanes,and olefins through thermochemical catalysis,Fischer-Tropsch synthesis,microbial fermentation,and other techniques.This work discusses the latest strategies in controlling the molar ratio of CO/H_(2)and improving the yield of CO_(2)RR-to-syngas.The challenges of electrocatalytic syngas production are analyzed from an industrial application perspective,and the possible measures to overcome them are proposed in terms of new catalyst design,electrolyte innovation,flow reactor optimization,anodic reaction coupling,and operando technique application.展开更多
Radiant syngas cooler(RSC)is widely used as a waste heat recovery equipment in industrial gasification.In this work,an RSC with radiation screens is established and the impact of gaseous radiative property models,gas ...Radiant syngas cooler(RSC)is widely used as a waste heat recovery equipment in industrial gasification.In this work,an RSC with radiation screens is established and the impact of gaseous radiative property models,gas components,and ash particles on heat transfer is investigated by the numerical simulation method.Considering the syngas components and the pressure environment of the RSC,a modified weighted-sum-of-gray-gases model was developed.The modified model shows high accuracy in validation.In computational fluid dynamics simulation,the calculated steam production is only 0.63%in error with the industrial data.Compared with Smith's model,the temperature decay along the axial direction calculated by the modified model is faster.Syngas components are of great significance to heat recovery capacity,especially when the absorbing gas fraction is less than 10%.After considering the influence of particles,the outlet temperature and the proportion of radiative heat transfer are less affected,but the difference in steam output reaches 2.7 t·h^(-1).The particle deposition on the wall greatly reduces the heat recovery performance of an RSC.展开更多
The key to designing photocatalysts is to orient the migration of photogenerated electrons to the target active sites rather than dissipate at inert sites.Herein,we demonstrate that the doping of phosphorus(P)signific...The key to designing photocatalysts is to orient the migration of photogenerated electrons to the target active sites rather than dissipate at inert sites.Herein,we demonstrate that the doping of phosphorus(P)significantly enriches photogenerated electrons at Ni active sites and enhances the performance for CO_(2) reduction into syngas.During photocatalytic CO_(2) reduction,Ni single‐atom‐anchored P‐modulated carbon nitride showed an impressive syngas yield rate of 85μmol gcat^(−1)h^(−1) and continuously adjustable CO/H_(2) ratios ranging from 5:1 to 1:2,which exceeded those of most of the reported carbon nitride‐based single‐atom catalysts.Mechanistic studies reveal that P doping improves the conductivity of catalysts,which promotes photogenerated electron transfer to the Ni active sites rather than dissipate randomly at low‐activity nonmetallic sites,facilitating the CO_(2)‐to‐syngas photoreduction process.展开更多
Electrochemical reduction of CO_(2) to syngas(CO and H_(2))offers an efficient way to mitigate carbon emissions and store intermittent renewable energy in chemicals.Herein,the hierarchical one‐dimensional/three‐dime...Electrochemical reduction of CO_(2) to syngas(CO and H_(2))offers an efficient way to mitigate carbon emissions and store intermittent renewable energy in chemicals.Herein,the hierarchical one‐dimensional/three‐dimensional nitrogen‐doped porous carbon(1D/3D NPC)is prepared by carbonizing the composite of Zn‐MOF‐74 crystals in situ grown on a commercial melamine sponge(MS),for electrochemical CO_(2) reduction reaction(CO_(2)RR).The 1D/3D NPC exhibits a high CO/H_(2) ratio(5.06)and CO yield(31 mmol g^(−1)h^(−1))at−0.55 V,which are 13.7 times and 21.4 times those of 1D porous carbon(derived from Zn‐MOF‐74)and N‐doped carbon(carbonized by MS),respectively.This is attributed to the unique spatial environment of 1D/3D NPC,which increases the adsorption capacity of CO_(2) and promotes electron transfer from the 3D N‐doped carbon framework to 1D carbon,improving the reaction kinetics of CO_(2)RR.Experimental results and charge density difference plots indicate that the active site of CO_(2)RR is the positively charged carbon atom adjacent to graphitic N on 1D carbon and the active site of HER is the pyridinic N on 1D carbon.The presence of pyridinic N and pyrrolic N reduces the number of electron transfer,decreasing the reaction kinetics and the activity of CO_(2)RR.The CO/H_(2) ratio is related to the distribution of N species and the specific surface area,which are determined by the degree of spatial confinement effect.The CO/H_(2) ratios can be regulated by adjusting the carbonization temperature to adjust the degree of spatial confinement effect.Given the low cost of feedstock and easy strategy,1D/3D NPC catalysts have great potential for industrial application.展开更多
Despite diesel engines being highly efficient, with low fuel consumption and reduced carbon dioxide emissions, they emit relatively high levels of particulate matter and oxides of nitrogen (NOx) due to high exhaust ga...Despite diesel engines being highly efficient, with low fuel consumption and reduced carbon dioxide emissions, they emit relatively high levels of particulate matter and oxides of nitrogen (NOx) due to high exhaust gas temperatures. Engine emissions show the quality and completeness of combustion. This paper aims to present the results of a study comparing exhaust emissions from a diesel and syngas powered engine. Syngas was produced from co-firing coal and biomass in a gasifier then cleaned, cooled and applied as an alternative fuel in an engine operated from 0 - 100% load. Exhaust-emissions were monitored at this load conditions. The exhaust-temperature was measured using thermocouples and the emission gases were analyzed using Testo 350. The emissions were lower and decreased as the engine load increased, except for sulphur dioxide and NOx. The study shows that levels of carbon monoxide, were higher in a range of 46.5 - 80.2%, while carbon dioxide was 3.3 - 18% higher compared to those from diesel. Hydrocarbon emissions were 480 and 1250 ppm for diesel and syngas respectively. The study reveals that the engine operates optimally at higher loads since hydrocarbons and oxides of carbon are low due to complete combustion at higher temperatures. Exhaust gas temperature was higher in the syngas fuel and increased as the engine load increased in the range of 455.83 - 480.03˚C which influenced the formation of NOx. NOx from diesel was found to be higher, ranging from 32.5 - 40.5%, compared to those from syngas with an engine load of 75%. The study observed that relative to diesel, the emissions of sulfur dioxide at 50% engine load were lower in a range of 23.7 - 57.1%. Emissions of hydrocarbons depended on the degree of substitution of diesel and engine load. The study therefore shows that, relative to diesel, emissions decreased when syngas was used with upgraded syngas from Prosporis juliflora presenting as the best alternative followed by Hyphanae compressa, and lastly rice husk. For optimal performance of the syngas fuelled engine, the study reports that the engine should be operated at engine loads above 50% with strategies on NOx emissions considered.展开更多
The reduction behaviors of FeO·V2O3 and FeO·Cr2O3 during coal-based direct reduction have a decisive impact on the efficient utilization of high-chromium vanadium-bearing titanomagnetite concentrates. The ef...The reduction behaviors of FeO·V2O3 and FeO·Cr2O3 during coal-based direct reduction have a decisive impact on the efficient utilization of high-chromium vanadium-bearing titanomagnetite concentrates. The effects of molar ratio of C to Fe n(C)/n(Fe) and temperature on the behaviors of vanadium and chromium during direct reduction and magnetic separation were investigated. The reduced samples were characterized by X-ray diffraction(XRD), scanning election microscopy(SEM) and energy dispersive spectrometry(EDS) techniques. Experimental results indicate that the recoveries of vanadium and chromium rapidly increase from 10.0% and 9.6% to 45.3% and 74.3%, respectively, as the n(C)/n(Fe) increases from 0.8 to 1.4. At n(C)/n(Fe) of 0.8, the recoveries of vanadium and chromium are always lower than 10.0% in the whole temperature range of 1100-1250 °C. However, at n(C)/n(Fe) of 1.2, the recoveries of vanadium and chromium considerably increase from 17.8% and 33.8% to 42.4% and 76.0%, respectively, as the temperature increases from 1100 °C to 1250 °C. At n(C)/n(Fe) lower than 0.8, most of the FeO·V2O3 and FeO·Cr2O3 are not reduced to carbides because of the lack of carbonaceous reductants, and the temperature has little effect on the reduction behaviors of FeO·V2O3 and FeO·Cr2O3, resulting in very low recoveries of vanadium and chromium during magnetic separation. However, at higher n(C)/n(Fe), the reduction rates of FeO·V2O3 and FeO·Cr2O3 increase significatly because of the excess amount of carbonaceous reductants. Moreover, higher temperatures largely induce the reduction of FeO·V2O3 and FeO·Cr2O3 to carbides. The newly formed carbides are then dissolved in the γ(FCC) phase, and recovered accompanied with the metallic iron during magnetic separation.展开更多
A low-grade nickel laterite ore was reduced at different reduction temperatures. The morphology of metallic particles was investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS)...A low-grade nickel laterite ore was reduced at different reduction temperatures. The morphology of metallic particles was investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Experimental results indicate that the metallic nickel and iron gradually assemble and grow into larger spherical particles with increasing temperature and prolonging time. After reduction, the nickel laterite ore obviously changes into two parts of Fe-Ni metallic particles and slag matrix. An obvious relationship is found between the reduction of iron magnesium olivine and its crystal chemical properties. The nickel and iron oxides are reduced to metallic by reductant, and the lattice of olivine is destroyed. The entire reduction process is comprised of oxide reduction and metallic phase growth.展开更多
Pr0.7Zr0.3O2-δ solid solution was prepared by co-precipitation method and used as an oxygen carrier in the selective oxidation of methane to syngas(methane/air redox process). The evolution on the physicochemical pro...Pr0.7Zr0.3O2-δ solid solution was prepared by co-precipitation method and used as an oxygen carrier in the selective oxidation of methane to syngas(methane/air redox process). The evolution on the physicochemical properties of Pr0.7Zr0.3O2-δ during the redox process was studied by means of X-ray diffraction(XRD), H2 temperature-programmed reduction(H2-TPR), O2temperature-programmed desorption(O2-TPD), Brunauer-Emmett-Teller(BET) surface area measurement and X-ray photoelectron spectroscopy(XPS) technologies. The results indicated that Pr0.7Zr0.3O2-δ solid solution showed the high activity for the methane conversion to syngas with a high CO selectivity in the range of 83.5%-88.1%. Though Pr-Zr solid solution possessed high thermal stability, lattice oxygen was obviously reduced for the recycled sample due to decreased surface oxygen which promoted oxygen vacancies. The increased oxygen vacancies seemed to enhance the oxygen transfer ability in the redox process and provided sufficient oxygen for the methane selective oxidation, resulting in a satisfactory activity. The problem of hot pot was avoided by comparing fresh, aged and recycle sample in the reaction.展开更多
A dual-reactor, assembled with the on-line syngas conditioning and methanol synthesis, was successfully applied for high efficient conversion of rich CO2 bio-oil derived syngas to bio-methanol. In the forepart catalys...A dual-reactor, assembled with the on-line syngas conditioning and methanol synthesis, was successfully applied for high efficient conversion of rich CO2 bio-oil derived syngas to bio-methanol. In the forepart catalyst bed reactor, the catalytic conversion can effectively adjust the rich-CO2 crude bio-syngas into the CO-containing bio-syngas using the CuZnA1Zr catalyst. After the on-line syngas conditioning at 450℃, the CO2/CO ratio in the blo- syngas significantly decreased from 6.3 to 1.2. In the rearward catalyst bed reactor, the conversion of the conditioned bio-syngas to bio-methanol shows the maximum yield about 1.21 kg/(kgcatarh) MeOH with a methanol selectivity of 97.9% at 260 ~C and 5.05 MPa using conventional CuZnA1 catalyst, which is close to the level typically obtained in the conventional methanol synthesis process using natural gas. The influences of temperature, pressure and space velocity on the bio-methanol synthesis were also investigated in detail.展开更多
A series of noble metal catalysts (Ru, Rh, Ir, Pt, and Pd) supported on alumina-stabilized magnesia (Spinel) were used to produce syngas by methane reforming with carbon dioxide. The synthesized catalysts were cha...A series of noble metal catalysts (Ru, Rh, Ir, Pt, and Pd) supported on alumina-stabilized magnesia (Spinel) were used to produce syngas by methane reforming with carbon dioxide. The synthesized catalysts were characterized using BET, TPR, TPO, TPH, and H2S chemisorption techniques. The activity results showed high activity and stability for the Ru and Rh catalysts. The TPO and TPH analyses indicated that the main reason for lower activity and stability of the Pd catalyst was the formation of the less reactive deposited carbon and sintering of the catalyst.展开更多
Coral reef-like Ni/Al2O3 catalysts were prepared by co-precipitation of nickel acetate and aluminium nitrate with sodium carbonate aqueous solution in the medium of ethylene glycolye.Methanation of syngas was carried ...Coral reef-like Ni/Al2O3 catalysts were prepared by co-precipitation of nickel acetate and aluminium nitrate with sodium carbonate aqueous solution in the medium of ethylene glycolye.Methanation of syngas was carried out over coral reef-like Ni/Al2O3 catalysts in a continuous flow type fixed-bed reactor.The structure and properties of the fresh and used catalysts were studied by SEM,N2 adsorption-desorption,XRD,H2-TPR,O2-TPO,TG and ICP-AES techniques.The results showed that the coral reef-like Ni/Al2O3 catalysts exhibited better activity than the conventional Ni/Al2O3-H2O catalysts.The activities of coral reef-like catalysts were in the order of Ni/Al2O3-673Ni/Al2O3-573Ni/Al2O3- 473Ni/Al2O3-773.Ni/Al2O3-673-EG catalyst showed not only good activity and improved stability but also superior resistance to carbon deposition,sintering,and Ni loss.Under the reaction conditions of CO/H2(molar ratio)=1:3,593 K,atmospheric pressure and a GHSV of 2500 h-1,CH4 selectivity was 84.7%,and the CO conversion reached 98.2%.展开更多
Ni/Al2O3 catalysts with different amounts of manganese ranging from 1 to 3 wt% as promoter were prepared by co-impregnation method. The catalysts were characterized by N2 physisorption, XRD, TPR, SEM and TEM. Their ca...Ni/Al2O3 catalysts with different amounts of manganese ranging from 1 to 3 wt% as promoter were prepared by co-impregnation method. The catalysts were characterized by N2 physisorption, XRD, TPR, SEM and TEM. Their catalytic activity towards syngas methanation reaction was also investigated using a fixed-bed integral reactor. It was demonstrated that the addition of manganese to Ni/Al2O3 catalysts can increase the catalyst surface area and average pore volume, but decrease NiO crystallite size, leading to higher activity and stability. The effects of reaction temperature, pressure and weight hourly space velocity (WHSV) on carbon oxides conversion and CH4 formation rate were also studied. High carbon oxides conversion, CH4 selectivity and formation rate were achieved at the reaction temperature range of 280 300℃.展开更多
A series of Cu-based catalysts were developed for alkylation of benzene with syngas. The catalyst samples were prepared by the impregnation method, and were characterized by XRD, XRF, NH3-TPD, and TEM and evaluated in...A series of Cu-based catalysts were developed for alkylation of benzene with syngas. The catalyst samples were prepared by the impregnation method, and were characterized by XRD, XRF, NH3-TPD, and TEM and evaluated in a fixed bed reactor. The optimized reaction temperature of Cu/Al2O3/ZSM-5 catalyst was 350 ℃, while higher contents of copper were conducive to alkylation of benzene with syngas. The new medium strength acid centers in the catalyst created by Cu were beneficial to alkylation. Hydrogenation reaction of CO was executed on the metal centers without dissociation, Dimethyl ether(DME) was the major intermediate over Cu-based catalysts. Higher selectivity of methylation and lower selectivity of heavy aromatics were confirmed after the second metal(Zn, Mn, or V) was added to the copper catalyst. Cu was partly covered by Zn in the Cu-Zn/Al2O3/ZSM-5 catalyst leading to low dispersion and low activity of copper. Cu-Mn/Al2O3/ZSM-5 catalyst possessed the best yield of methylation product. Cu-Mn composite oxides were probably formed in fresh catalyst, which blocked the sintering of Cu in the reaction process. The loading of Cu decreased dramatically after the introduction of V, while causing an increase of the amount of medium strength acid centers at the same time. V prevented the sintering of copper particles during the reducing process and had a promoting effect on the activity of Cu.展开更多
Oxide-Zeolite(OX-ZEO) bifunctional catalyst design concept has been exemplified in several processes to direct conversion syngas to value-added chemicals and fuels such as mixed light olefins, ethylene, aromatics and ...Oxide-Zeolite(OX-ZEO) bifunctional catalyst design concept has been exemplified in several processes to direct conversion syngas to value-added chemicals and fuels such as mixed light olefins, ethylene, aromatics and gasoline.Herein we demonstrate that the product can be steered toward liquefied petroleum gas(LPG) with a selectivity up to 89% in hydrocarbons especially propane selectivity reaching 80% at CO conversion of 63% using ZnCrOx-H-SSZ-39 catalyst.Interestingly, the quantity of the acid sites of SSZ-39 does not influence obviously the hydrocarbon distribution but the strength is crucial for selective formation of propane.This finding provides an alternative route of LPG synthesis from a variety of carbon resources via syngas.展开更多
Cu-Co bi-metal catalysts derived from CuO/LaCoO3 perovskite structure were prepared by one-step citrate complexing method, and the structure evolution reaction from CuO/LaCoO3 to Cu-Co2C/La202CO3 under 1-12 pretreatme...Cu-Co bi-metal catalysts derived from CuO/LaCoO3 perovskite structure were prepared by one-step citrate complexing method, and the structure evolution reaction from CuO/LaCoO3 to Cu-Co2C/La202CO3 under 1-12 pretreatment was investigated by techniques of XRD, TPR and TEM. The results suggest that a much higher dispersion of copper significantly enhanced the reduction of cobalt, and a stronger interaction between copper and cobalt ions in LaCoO3 particles led to the formation of bi-metallic Cu-Co particles in the reduced catalysts and the enrichment of Co on the surface of bimetallic particles. The prepared catalysts were highly active and selective for the alcohol synthesis from syngas due to the presence of copper-modified C02C species.展开更多
In this work,syngas methanation over Ni-W/TiO2-SiO2catalyst was studied in a fluidized-bed reactor(FBR)and its performance was compared with a fixed-bed reactor(FIXBR).The effects of main operating variables including...In this work,syngas methanation over Ni-W/TiO2-SiO2catalyst was studied in a fluidized-bed reactor(FBR)and its performance was compared with a fixed-bed reactor(FIXBR).The effects of main operating variables including feedstock gases space velocity,coke content,bed temperature and sulfur-tolerant stability of 100 h life were investigated.The structure of the catalysts was characterized by XRD,N2adsorptiondesorption and TEM.It is found that under same space velocity from 5000 h 1to 25000 h 1FBR gave a higher CH4yield,lower coke content,and lower bed temperature than those obtained in FIXBR.Ni-W/TiO2-SiO2catalyst possessed excellent sulfur-tolerant stability on the feedstock gases less than 500 ppm H2S in FBR.The carbon deposits formed on the spent catalyst were in the form of carbon fibers in FBR,while in the form of dense accumulation distribution appearance in FIXBR.展开更多
The nanosheets structured K–Co–MoS_2 catalyst was prepared through a one-step hydrothermal synthesis combined with the wetness impregnation. The fresh catalyst has a high dispersion of Co–Mo–S active phase and no ...The nanosheets structured K–Co–MoS_2 catalyst was prepared through a one-step hydrothermal synthesis combined with the wetness impregnation. The fresh catalyst has a high dispersion of Co–Mo–S active phase and no Co_9S_8 is found. The pure H_2 activated catalyst shows a higher intrinsic activity, especially the C_(2+) OH selectivity for the higher alcohol synthesis compared to the one activated by 5% H_2/N_2 atmosphere. The reason is attributed to that the pure H_2 activation more effectively suppresses the formation of Co_9S_8 and stabilizes the Co–Mo–S active phase during the reaction due to the formation of SH species.展开更多
CeO2 oxygen carrier was prepared by precipitation method and tested by two-step steam reforming of methane (SRM). Two-step SRM for hydrogen and syngas generation is investigated in a fixed-bed reactor. Methane is di...CeO2 oxygen carrier was prepared by precipitation method and tested by two-step steam reforming of methane (SRM). Two-step SRM for hydrogen and syngas generation is investigated in a fixed-bed reactor. Methane is directly converted to syngas at a H2/CO ratio close to 2 : 1 at a high temperature (above 750 °C) by the lattice oxygen of CeO2; methane cracking is found when the reduction degree of CeO2 was above 5.0% at 850 °C in methane isothermal reaction. CeO2?δ obtained from methane isothermal reaction can split water to generate CO-free hydrogen and renew its lattice oxygen at 700 °C; simultaneously, deposited carbon is selectively oxidized to CO2 by steam following the reaction (C+2H2O→CO2+2H2). Slight deactivation in terms of amounts of desired products (syngas and hydrogen) is observed in ten repetitive two-step SRM process due to the carbon deposition on CeO2 surface as well as sintering of CeO2.展开更多
CO2 reforming of methane (CDRM) was carried out over MgO supported Ni catalysts with various Ni loadings. The preparation of MgO supported Ni catalysts via surfactant-assisted precipitation method led to the formati...CO2 reforming of methane (CDRM) was carried out over MgO supported Ni catalysts with various Ni loadings. The preparation of MgO supported Ni catalysts via surfactant-assisted precipitation method led to the formation of a nanocrystalline carrier for nickel catalysts. The synthesized samples were characterized by XRD, N2 adsorption-desorption, H2 chemisorption, TPR, TPO and SEM techniques. It was found that the high catalytic activity and stability of the prepared catalysts could be attributable to high dispersion of reduced Ni species and basicity of support surface. In addition, the effect of feed ratio, nickel loading and GHSV on the catalytic performance of CDRM over the catalysts were investigated.展开更多
基金Supported by the National Science & Technology Support Project Task of China(2006BAE02B02)
文摘The intrinsic kinetic models of the Langmuir-Hinshelwood type were investigated in terms of the reaction rates of CO hydrogenation and CO_2 hydrogenation in theform of reactant fugacity. The parameters were estimated by the Universal Global Optimization using the Marquardt method. Residual error distribution and statistic tests show thatthe intrinsic kinetic models are reliable and acceptable. The mathematic model of a combined converter formed by gas-cooled and water-cooled reactor was developed and thegas-cooled reactor and the water-cooled reactor were characterized with one-dimensionalmathematic model. The distributions of temperature and concentration in the catalytic bedof the gas-cooled reactor and the water-cooled reactor in a combined converter with ayield of 1.2 Mt/a were simulated. The parallel cross linking pore model was used to describe the transfer process of multi-component diffusion system in the catalyst. The calculated value computed by the internal diffusion efficiency factor calculation model established for methanol synthesis catalyst fit the experimental value very well.
基金the financial support from the National Natural Science Foundation of China(22233006,22273018)the Project of Henan International Joint Laboratory of Green Chemistrythe 111 Project(D17007)。
文摘While carbon dioxide(CO_(2))is a major greenhouse gas,it is also an important C1 resource.In the trend of energy conservation and emission reduction,electrocatalytic reduction has become a very promising strategy for CO_(2)utilization because it can convert CO_(2)directly to high-valued chemicals and fuels under mild conditions.In particular,the product CO and by-product H_(2)can be combined into syngas by an electrocatalytic CO_(2)reduction reaction(CO_(2)RR)in an aqueous medium.Different molar ratios of CO and H_(2)may be used to produce essential bulk chemicals or liquid fuels such as methanol,alkanes,and olefins through thermochemical catalysis,Fischer-Tropsch synthesis,microbial fermentation,and other techniques.This work discusses the latest strategies in controlling the molar ratio of CO/H_(2)and improving the yield of CO_(2)RR-to-syngas.The challenges of electrocatalytic syngas production are analyzed from an industrial application perspective,and the possible measures to overcome them are proposed in terms of new catalyst design,electrolyte innovation,flow reactor optimization,anodic reaction coupling,and operando technique application.
基金supported by the National Natural Science Foundation of China(21878082).
文摘Radiant syngas cooler(RSC)is widely used as a waste heat recovery equipment in industrial gasification.In this work,an RSC with radiation screens is established and the impact of gaseous radiative property models,gas components,and ash particles on heat transfer is investigated by the numerical simulation method.Considering the syngas components and the pressure environment of the RSC,a modified weighted-sum-of-gray-gases model was developed.The modified model shows high accuracy in validation.In computational fluid dynamics simulation,the calculated steam production is only 0.63%in error with the industrial data.Compared with Smith's model,the temperature decay along the axial direction calculated by the modified model is faster.Syngas components are of great significance to heat recovery capacity,especially when the absorbing gas fraction is less than 10%.After considering the influence of particles,the outlet temperature and the proportion of radiative heat transfer are less affected,but the difference in steam output reaches 2.7 t·h^(-1).The particle deposition on the wall greatly reduces the heat recovery performance of an RSC.
基金Fundamental Research Funds for the Central Universities,Grant/Award Number:WK2060000016National Natural Science Foundation of China,Grant/Award Numbers:12222508,U1932213+2 种基金Youth Innovation Promotion Association of the Chinese Academy of Sciences,Grant/Award Number:2020454USTC Research Funds of the Double First‐Class Initiative,Grant/Award Number:YD2310002005National Key R&D Program of China,Grant/Award Number:2023YFA1506304。
文摘The key to designing photocatalysts is to orient the migration of photogenerated electrons to the target active sites rather than dissipate at inert sites.Herein,we demonstrate that the doping of phosphorus(P)significantly enriches photogenerated electrons at Ni active sites and enhances the performance for CO_(2) reduction into syngas.During photocatalytic CO_(2) reduction,Ni single‐atom‐anchored P‐modulated carbon nitride showed an impressive syngas yield rate of 85μmol gcat^(−1)h^(−1) and continuously adjustable CO/H_(2) ratios ranging from 5:1 to 1:2,which exceeded those of most of the reported carbon nitride‐based single‐atom catalysts.Mechanistic studies reveal that P doping improves the conductivity of catalysts,which promotes photogenerated electron transfer to the Ni active sites rather than dissipate randomly at low‐activity nonmetallic sites,facilitating the CO_(2)‐to‐syngas photoreduction process.
基金National Natural Science Foundation of China,Grant/Award Numbers:51873085,52071171,52202248The Australian Government through the Cooperative Research Centres Projects,Grant/Award Number:CRCPⅩⅢ000077+10 种基金Linkage Project,Grant/Award Numbers:LP210100467,LP210200345,LP210200504,LP220100088Natural Science Foundation of Liaoning Province‐Outstanding Youth Foundation,Grant/Award Number:2022‐YQ‐14Discovery Project,Grant/Award Number:DP220100603China Scholarship Council(CSC Scholarship),Grant/Award Number:202006800009Liaoning Revitalization Talents Program,Grant/Award Number:XLYC2007056Australian Research Council(ARC)through Future Fellowship,Grant/Award Numbers:FT210100298,FT210100806Shenyang Science and Technology Project,Grant/Award Number:21‐108‐9‐04Industrial Transformation Training Centre schemes,Grant/Award Number:IC180100005Natural Science Foundation of Liaoning Province,Grant/Award Number:2020‐MS‐137Key Research Project of Department of Education of Liaoning Province,Grant/Award Number:LJKZZ20220015Liaoning BaiQianWan Talents Program,Grant/Award Number:LNBQW2018B0048。
文摘Electrochemical reduction of CO_(2) to syngas(CO and H_(2))offers an efficient way to mitigate carbon emissions and store intermittent renewable energy in chemicals.Herein,the hierarchical one‐dimensional/three‐dimensional nitrogen‐doped porous carbon(1D/3D NPC)is prepared by carbonizing the composite of Zn‐MOF‐74 crystals in situ grown on a commercial melamine sponge(MS),for electrochemical CO_(2) reduction reaction(CO_(2)RR).The 1D/3D NPC exhibits a high CO/H_(2) ratio(5.06)and CO yield(31 mmol g^(−1)h^(−1))at−0.55 V,which are 13.7 times and 21.4 times those of 1D porous carbon(derived from Zn‐MOF‐74)and N‐doped carbon(carbonized by MS),respectively.This is attributed to the unique spatial environment of 1D/3D NPC,which increases the adsorption capacity of CO_(2) and promotes electron transfer from the 3D N‐doped carbon framework to 1D carbon,improving the reaction kinetics of CO_(2)RR.Experimental results and charge density difference plots indicate that the active site of CO_(2)RR is the positively charged carbon atom adjacent to graphitic N on 1D carbon and the active site of HER is the pyridinic N on 1D carbon.The presence of pyridinic N and pyrrolic N reduces the number of electron transfer,decreasing the reaction kinetics and the activity of CO_(2)RR.The CO/H_(2) ratio is related to the distribution of N species and the specific surface area,which are determined by the degree of spatial confinement effect.The CO/H_(2) ratios can be regulated by adjusting the carbonization temperature to adjust the degree of spatial confinement effect.Given the low cost of feedstock and easy strategy,1D/3D NPC catalysts have great potential for industrial application.
文摘Despite diesel engines being highly efficient, with low fuel consumption and reduced carbon dioxide emissions, they emit relatively high levels of particulate matter and oxides of nitrogen (NOx) due to high exhaust gas temperatures. Engine emissions show the quality and completeness of combustion. This paper aims to present the results of a study comparing exhaust emissions from a diesel and syngas powered engine. Syngas was produced from co-firing coal and biomass in a gasifier then cleaned, cooled and applied as an alternative fuel in an engine operated from 0 - 100% load. Exhaust-emissions were monitored at this load conditions. The exhaust-temperature was measured using thermocouples and the emission gases were analyzed using Testo 350. The emissions were lower and decreased as the engine load increased, except for sulphur dioxide and NOx. The study shows that levels of carbon monoxide, were higher in a range of 46.5 - 80.2%, while carbon dioxide was 3.3 - 18% higher compared to those from diesel. Hydrocarbon emissions were 480 and 1250 ppm for diesel and syngas respectively. The study reveals that the engine operates optimally at higher loads since hydrocarbons and oxides of carbon are low due to complete combustion at higher temperatures. Exhaust gas temperature was higher in the syngas fuel and increased as the engine load increased in the range of 455.83 - 480.03˚C which influenced the formation of NOx. NOx from diesel was found to be higher, ranging from 32.5 - 40.5%, compared to those from syngas with an engine load of 75%. The study observed that relative to diesel, the emissions of sulfur dioxide at 50% engine load were lower in a range of 23.7 - 57.1%. Emissions of hydrocarbons depended on the degree of substitution of diesel and engine load. The study therefore shows that, relative to diesel, emissions decreased when syngas was used with upgraded syngas from Prosporis juliflora presenting as the best alternative followed by Hyphanae compressa, and lastly rice husk. For optimal performance of the syngas fuelled engine, the study reports that the engine should be operated at engine loads above 50% with strategies on NOx emissions considered.
基金Projects(2013CB632601,2013CB632604)supported by the National Basic Research Program of ChinaProject(51125018)supported by the National Science Foundation for Distinguished Young Scholars of China+1 种基金Project(KGZD-EW-201-2)supported by the Key Research Program of the Chinese Academy of SciencesProjects(51374191,21106167,51104139)supported by the National Natural Science Foundation of China
文摘The reduction behaviors of FeO·V2O3 and FeO·Cr2O3 during coal-based direct reduction have a decisive impact on the efficient utilization of high-chromium vanadium-bearing titanomagnetite concentrates. The effects of molar ratio of C to Fe n(C)/n(Fe) and temperature on the behaviors of vanadium and chromium during direct reduction and magnetic separation were investigated. The reduced samples were characterized by X-ray diffraction(XRD), scanning election microscopy(SEM) and energy dispersive spectrometry(EDS) techniques. Experimental results indicate that the recoveries of vanadium and chromium rapidly increase from 10.0% and 9.6% to 45.3% and 74.3%, respectively, as the n(C)/n(Fe) increases from 0.8 to 1.4. At n(C)/n(Fe) of 0.8, the recoveries of vanadium and chromium are always lower than 10.0% in the whole temperature range of 1100-1250 °C. However, at n(C)/n(Fe) of 1.2, the recoveries of vanadium and chromium considerably increase from 17.8% and 33.8% to 42.4% and 76.0%, respectively, as the temperature increases from 1100 °C to 1250 °C. At n(C)/n(Fe) lower than 0.8, most of the FeO·V2O3 and FeO·Cr2O3 are not reduced to carbides because of the lack of carbonaceous reductants, and the temperature has little effect on the reduction behaviors of FeO·V2O3 and FeO·Cr2O3, resulting in very low recoveries of vanadium and chromium during magnetic separation. However, at higher n(C)/n(Fe), the reduction rates of FeO·V2O3 and FeO·Cr2O3 increase significatly because of the excess amount of carbonaceous reductants. Moreover, higher temperatures largely induce the reduction of FeO·V2O3 and FeO·Cr2O3 to carbides. The newly formed carbides are then dissolved in the γ(FCC) phase, and recovered accompanied with the metallic iron during magnetic separation.
基金Project(51134002)supported by the National Natural Science Foundation of ChinaProject(2012BAB14B02)supported by the Ministry of Science and Technology of ChinaProject(12120113086600)supported by Ministry of Land and Resources of China
文摘A low-grade nickel laterite ore was reduced at different reduction temperatures. The morphology of metallic particles was investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Experimental results indicate that the metallic nickel and iron gradually assemble and grow into larger spherical particles with increasing temperature and prolonging time. After reduction, the nickel laterite ore obviously changes into two parts of Fe-Ni metallic particles and slag matrix. An obvious relationship is found between the reduction of iron magnesium olivine and its crystal chemical properties. The nickel and iron oxides are reduced to metallic by reductant, and the lattice of olivine is destroyed. The entire reduction process is comprised of oxide reduction and metallic phase growth.
基金Projects(51374004,51174105,51204083,51104074,51306084)supported by the National Natural Science Foundation of ChinaProjects(2012FD016,2014HB006)supported by the Applied Basic Research Program of Yunnan Province,ChinaProject(2010241)supported by the Analysis and Testing Foundation of Kunming University of Science and Technology,China
文摘Pr0.7Zr0.3O2-δ solid solution was prepared by co-precipitation method and used as an oxygen carrier in the selective oxidation of methane to syngas(methane/air redox process). The evolution on the physicochemical properties of Pr0.7Zr0.3O2-δ during the redox process was studied by means of X-ray diffraction(XRD), H2 temperature-programmed reduction(H2-TPR), O2temperature-programmed desorption(O2-TPD), Brunauer-Emmett-Teller(BET) surface area measurement and X-ray photoelectron spectroscopy(XPS) technologies. The results indicated that Pr0.7Zr0.3O2-δ solid solution showed the high activity for the methane conversion to syngas with a high CO selectivity in the range of 83.5%-88.1%. Though Pr-Zr solid solution possessed high thermal stability, lattice oxygen was obviously reduced for the recycled sample due to decreased surface oxygen which promoted oxygen vacancies. The increased oxygen vacancies seemed to enhance the oxygen transfer ability in the redox process and provided sufficient oxygen for the methane selective oxidation, resulting in a satisfactory activity. The problem of hot pot was avoided by comparing fresh, aged and recycle sample in the reaction.
基金This work was supported by the National High Tech Research and Development Program (No.2009AA05Z435), the National Basic Research Program of Ministry of Science and Technology of China (No.2007CB210206), and the National Natural Science Foundation of China (No.50772107).
文摘A dual-reactor, assembled with the on-line syngas conditioning and methanol synthesis, was successfully applied for high efficient conversion of rich CO2 bio-oil derived syngas to bio-methanol. In the forepart catalyst bed reactor, the catalytic conversion can effectively adjust the rich-CO2 crude bio-syngas into the CO-containing bio-syngas using the CuZnA1Zr catalyst. After the on-line syngas conditioning at 450℃, the CO2/CO ratio in the blo- syngas significantly decreased from 6.3 to 1.2. In the rearward catalyst bed reactor, the conversion of the conditioned bio-syngas to bio-methanol shows the maximum yield about 1.21 kg/(kgcatarh) MeOH with a methanol selectivity of 97.9% at 260 ~C and 5.05 MPa using conventional CuZnA1 catalyst, which is close to the level typically obtained in the conventional methanol synthesis process using natural gas. The influences of temperature, pressure and space velocity on the bio-methanol synthesis were also investigated in detail.
文摘A series of noble metal catalysts (Ru, Rh, Ir, Pt, and Pd) supported on alumina-stabilized magnesia (Spinel) were used to produce syngas by methane reforming with carbon dioxide. The synthesized catalysts were characterized using BET, TPR, TPO, TPH, and H2S chemisorption techniques. The activity results showed high activity and stability for the Ru and Rh catalysts. The TPO and TPH analyses indicated that the main reason for lower activity and stability of the Pd catalyst was the formation of the less reactive deposited carbon and sintering of the catalyst.
基金financially supported by Independent Research Subject from Ministry of Science and Technology of China(No.2008BWZ005)
文摘Coral reef-like Ni/Al2O3 catalysts were prepared by co-precipitation of nickel acetate and aluminium nitrate with sodium carbonate aqueous solution in the medium of ethylene glycolye.Methanation of syngas was carried out over coral reef-like Ni/Al2O3 catalysts in a continuous flow type fixed-bed reactor.The structure and properties of the fresh and used catalysts were studied by SEM,N2 adsorption-desorption,XRD,H2-TPR,O2-TPO,TG and ICP-AES techniques.The results showed that the coral reef-like Ni/Al2O3 catalysts exhibited better activity than the conventional Ni/Al2O3-H2O catalysts.The activities of coral reef-like catalysts were in the order of Ni/Al2O3-673Ni/Al2O3-573Ni/Al2O3- 473Ni/Al2O3-773.Ni/Al2O3-673-EG catalyst showed not only good activity and improved stability but also superior resistance to carbon deposition,sintering,and Ni loss.Under the reaction conditions of CO/H2(molar ratio)=1:3,593 K,atmospheric pressure and a GHSV of 2500 h-1,CH4 selectivity was 84.7%,and the CO conversion reached 98.2%.
基金supported by the National Science and Technology Supporting Plan (No. 2006BAE02B02)
文摘Ni/Al2O3 catalysts with different amounts of manganese ranging from 1 to 3 wt% as promoter were prepared by co-impregnation method. The catalysts were characterized by N2 physisorption, XRD, TPR, SEM and TEM. Their catalytic activity towards syngas methanation reaction was also investigated using a fixed-bed integral reactor. It was demonstrated that the addition of manganese to Ni/Al2O3 catalysts can increase the catalyst surface area and average pore volume, but decrease NiO crystallite size, leading to higher activity and stability. The effects of reaction temperature, pressure and weight hourly space velocity (WHSV) on carbon oxides conversion and CH4 formation rate were also studied. High carbon oxides conversion, CH4 selectivity and formation rate were achieved at the reaction temperature range of 280 300℃.
文摘A series of Cu-based catalysts were developed for alkylation of benzene with syngas. The catalyst samples were prepared by the impregnation method, and were characterized by XRD, XRF, NH3-TPD, and TEM and evaluated in a fixed bed reactor. The optimized reaction temperature of Cu/Al2O3/ZSM-5 catalyst was 350 ℃, while higher contents of copper were conducive to alkylation of benzene with syngas. The new medium strength acid centers in the catalyst created by Cu were beneficial to alkylation. Hydrogenation reaction of CO was executed on the metal centers without dissociation, Dimethyl ether(DME) was the major intermediate over Cu-based catalysts. Higher selectivity of methylation and lower selectivity of heavy aromatics were confirmed after the second metal(Zn, Mn, or V) was added to the copper catalyst. Cu was partly covered by Zn in the Cu-Zn/Al2O3/ZSM-5 catalyst leading to low dispersion and low activity of copper. Cu-Mn/Al2O3/ZSM-5 catalyst possessed the best yield of methylation product. Cu-Mn composite oxides were probably formed in fresh catalyst, which blocked the sintering of Cu in the reaction process. The loading of Cu decreased dramatically after the introduction of V, while causing an increase of the amount of medium strength acid centers at the same time. V prevented the sintering of copper particles during the reducing process and had a promoting effect on the activity of Cu.
基金supported by the Ministry of Science and Technology of China (No.2017YFB0602201)the Chinese Academy of Sciences (XDA21020400)+2 种基金the National Natural Science Foundation of China (Grant nos.91645204, 21425312 and 21621063)the Youth Innovation Promotion Association of Chinese Academy of Sciences (2019184)the INCOE (International Network of Centers of Excellence) project coordinated by BASF SE
文摘Oxide-Zeolite(OX-ZEO) bifunctional catalyst design concept has been exemplified in several processes to direct conversion syngas to value-added chemicals and fuels such as mixed light olefins, ethylene, aromatics and gasoline.Herein we demonstrate that the product can be steered toward liquefied petroleum gas(LPG) with a selectivity up to 89% in hydrocarbons especially propane selectivity reaching 80% at CO conversion of 63% using ZnCrOx-H-SSZ-39 catalyst.Interestingly, the quantity of the acid sites of SSZ-39 does not influence obviously the hydrocarbon distribution but the strength is crucial for selective formation of propane.This finding provides an alternative route of LPG synthesis from a variety of carbon resources via syngas.
基金supported by the Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Provincethe Ph.D.Programs Foundation of Liaocheng University(No.31805)the NSF of China(21263011,21376170)
文摘Cu-Co bi-metal catalysts derived from CuO/LaCoO3 perovskite structure were prepared by one-step citrate complexing method, and the structure evolution reaction from CuO/LaCoO3 to Cu-Co2C/La202CO3 under 1-12 pretreatment was investigated by techniques of XRD, TPR and TEM. The results suggest that a much higher dispersion of copper significantly enhanced the reduction of cobalt, and a stronger interaction between copper and cobalt ions in LaCoO3 particles led to the formation of bi-metallic Cu-Co particles in the reduced catalysts and the enrichment of Co on the surface of bimetallic particles. The prepared catalysts were highly active and selective for the alcohol synthesis from syngas due to the presence of copper-modified C02C species.
文摘In this work,syngas methanation over Ni-W/TiO2-SiO2catalyst was studied in a fluidized-bed reactor(FBR)and its performance was compared with a fixed-bed reactor(FIXBR).The effects of main operating variables including feedstock gases space velocity,coke content,bed temperature and sulfur-tolerant stability of 100 h life were investigated.The structure of the catalysts was characterized by XRD,N2adsorptiondesorption and TEM.It is found that under same space velocity from 5000 h 1to 25000 h 1FBR gave a higher CH4yield,lower coke content,and lower bed temperature than those obtained in FIXBR.Ni-W/TiO2-SiO2catalyst possessed excellent sulfur-tolerant stability on the feedstock gases less than 500 ppm H2S in FBR.The carbon deposits formed on the spent catalyst were in the form of carbon fibers in FBR,while in the form of dense accumulation distribution appearance in FIXBR.
基金supported by the National Natural Science Foundation of China(21673214,U1732272)
文摘The nanosheets structured K–Co–MoS_2 catalyst was prepared through a one-step hydrothermal synthesis combined with the wetness impregnation. The fresh catalyst has a high dispersion of Co–Mo–S active phase and no Co_9S_8 is found. The pure H_2 activated catalyst shows a higher intrinsic activity, especially the C_(2+) OH selectivity for the higher alcohol synthesis compared to the one activated by 5% H_2/N_2 atmosphere. The reason is attributed to that the pure H_2 activation more effectively suppresses the formation of Co_9S_8 and stabilizes the Co–Mo–S active phase during the reaction due to the formation of SH species.
基金supported by the National Natural Science Foundation of China (NO. 51004060)the Natural Science Foundation of Yunnan Province (NO. 2008E030M, 2010ZC108)+2 种基金the Research Foundation for the Doctoral Program of Higher Education of China (NO. 20095314120005)the Analysis and Test Foundation of Kunming University of Science and Technology (KUST)the 2010 Innovation Foundation of KUST
文摘CeO2 oxygen carrier was prepared by precipitation method and tested by two-step steam reforming of methane (SRM). Two-step SRM for hydrogen and syngas generation is investigated in a fixed-bed reactor. Methane is directly converted to syngas at a H2/CO ratio close to 2 : 1 at a high temperature (above 750 °C) by the lattice oxygen of CeO2; methane cracking is found when the reduction degree of CeO2 was above 5.0% at 850 °C in methane isothermal reaction. CeO2?δ obtained from methane isothermal reaction can split water to generate CO-free hydrogen and renew its lattice oxygen at 700 °C; simultaneously, deposited carbon is selectively oxidized to CO2 by steam following the reaction (C+2H2O→CO2+2H2). Slight deactivation in terms of amounts of desired products (syngas and hydrogen) is observed in ten repetitive two-step SRM process due to the carbon deposition on CeO2 surface as well as sintering of CeO2.
文摘CO2 reforming of methane (CDRM) was carried out over MgO supported Ni catalysts with various Ni loadings. The preparation of MgO supported Ni catalysts via surfactant-assisted precipitation method led to the formation of a nanocrystalline carrier for nickel catalysts. The synthesized samples were characterized by XRD, N2 adsorption-desorption, H2 chemisorption, TPR, TPO and SEM techniques. It was found that the high catalytic activity and stability of the prepared catalysts could be attributable to high dispersion of reduced Ni species and basicity of support surface. In addition, the effect of feed ratio, nickel loading and GHSV on the catalytic performance of CDRM over the catalysts were investigated.