期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Geochemical Characteristics and Sedimentary Control of Pinghu Formation(Eocene)Coal-bearing Source Rocks in Xihu Depression,East China Sea Basin 被引量:4
1
作者 SHEN Yulin QIN Yong +5 位作者 CUI Min XIE Guoliang GUO Yinghai QU Zhenghui YANG Tianyang YANG Liu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第1期91-104,共14页
Coal-bearing source rocks of the Pinghu Formation in the Xihu Depression comprise an important material basis of oil and gas resources in the East China Sea Basin.Based on drilling core observation results combined wi... Coal-bearing source rocks of the Pinghu Formation in the Xihu Depression comprise an important material basis of oil and gas resources in the East China Sea Basin.Based on drilling core observation results combined with the analysis and test results of macerals,trace/rare earth elements,and rock pyrolysis,the geochemical characteristics and sedimentary control of coal-bearing source rocks formation are discussed in a high-frequency sequence framework.The results indicate that the macerals composition of the coal-bearing source rocks of the Eocene Pinghu Formation in the Xihu Depression is dominated by vitrinite,with low-medium abundance of exinite and almost no inertinite.The coals and carbonaceous mudstones display higher amounts of total organic carbon(TOC)(14.90%-65.10%),S1+S2(39.24-136.52 mg/g),and IH(191-310 HC/g TOC)respectively,as compared to the mudstones.Organic matter is plotted in typeⅢkerogens and partially in typeⅡ;it is mainly in the low maturity stage.The trace elements results imply that the samples were deposited in a weakly reducing to weakly oxidizing environment and were occasionally affected by seawater.The coal-bearing source rocks were deposited in a relatively oxygen-containing environment.The coal-bearing source rocks development is jointly controlled by the coal accumulation environment,the water conditions affected by ocean currents in offshore basins in China,oxidation-reduction cycles of aqueous media and paleoclimate evolution in a high-frequency sequence framework. 展开更多
关键词 geochemical characteristics coal-bearing source rock high-frequency sequence Pinghu Formation Xihu Depression
下载PDF
Identification methods of coal-bearing source rocks for Yacheng Formation in the western deepwater area of South China Sea
2
作者 REN Jinfeng ZHANG Yingzhao +5 位作者 WANG Hua WANG Yahui GAN Huajun HE Weijun SUN Ming SONG Guangzeng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第4期19-31,共13页
Owing to the fact that the coal-beds are with the characteristics of multi-beds, thin single-bed, rapid lateral changes and deep burial, coal-bearing source rocks are difficult to be identified and predicted, especial... Owing to the fact that the coal-beds are with the characteristics of multi-beds, thin single-bed, rapid lateral changes and deep burial, coal-bearing source rocks are difficult to be identified and predicted, especially in the lower exploration deepwater area. In this paper, a new integrative process utilizing geology and geophysics is proposed for better predicting the distribution of coal-bearing source rocks. Coal-beds were identified by the logging responses of“three higher, three lower, and one expand”and carbargilite were recognized by the characteristics of“four higher and one lower”. Based on the above logical decision, coal-beds and carbargilite can be distinguished automatically by cluster analysis of logging curves in verticality. Within the constraints of well-seismic calibration, the coal-beds group also can be detected in horizontality by the integrated representation of“negative phase, higher Q, lower impedance and lower frequency”within the seismic data. However, the distribution of coal-bearing source rocks utilizing geophysical methodology may do not conform to the geological rules of coal accumulation. And then the main geological controlling factors of coal accumulation are comprehensively analyzed as follows:(1) Paleotopography and tectonic subsidence determine the planar range of terrestrial-marine transitional facies markedly;(2) The relative sea level changes affect the accommodation space and shoreline migration, and limit the vertical range of coal-beds. More specifically, the relationship between the accommodation creation rate and the peat accumulation rate is a fundamental control on coal accumulation. The thickest and most widespread coals form where those two factors reached a state of balance;(3) The supply of autochthonous clasts and the distance between deposition places and paleovegetation accumulated area are the critical factor to form abundant coal, which means that if deposition area is close to paleouplift, there would be sufficient organic matters to form abundant source rocks. The results show that the integrated methods can significantly improve prediction accuracy of coal-bearing source rocks, which is suitable for early exploration of western deepwater area of South China Sea. 展开更多
关键词 Qiongdongnan Basin deepwater area coal-bearing source rocks geological and geophysical methods
下载PDF
Hydrocarbon Generation Characteristics of Coal-measure Source Rocks and their Contribution to Natural Gas:A Case Study of Middle and Lower Jurassic Targets from the Southern Junggar Basin Margin
3
作者 YU Miao GAO Gang +6 位作者 LIU Miao MA Wanyun TIAN Anqi FAN Keting GUO Liulinbo HE Dan ZHANG Youjin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第5期1270-1284,共15页
In order to study the hydrocarbon generation(HCGE)characteristics of coal-bearing basins,the coal-measure source rocks of the Middle Jurassic-Lower Jurassic(MLJ)of the piedmont thrust belt in the southern margin of th... In order to study the hydrocarbon generation(HCGE)characteristics of coal-bearing basins,the coal-measure source rocks of the Middle Jurassic-Lower Jurassic(MLJ)of the piedmont thrust belt in the southern margin of the Junggar Basin in Northwest China are taken as research objects.More than 60 MLJ samples were collected from outcrops and wells.Total organic carbon(TOC),rock pyrolysis(Rock-Eval),organic petrological,vitrinite reflectance(%Ro),and hydrous pyrolysis were performed to analyze the relevant samples.The pyrolysis gases and liquid products were measured,and then the chemical composition,as well as carbon isotopes of the gases,were analyzed.The results indicate that the MLJ source rocks have the capacity for large-scale gas generation.In addition,for coal-measure source rocks,the heavier the carbon isotope of kerogen(δ^(13)C_(kerogen)),the lower the liquid hydrocarbon and hydrocarbon gas yield,and the easier it is to produce non-hydrocarbon gas.It is worth noting that when theδ^(13)C_(kerogen)in organic matter(OM)is relatively heavier,the fractionation of its products may become weaker in the evolutionary process.The vital contribution of the MLJ source rock to natural gas resources in the study area was further confirmed by comparing it with the Jurassic source gas. 展开更多
关键词 upstream natural resources/energy coal-bearing basins source rock hydrous pyrolysis carbon isotope JURASSIC Xinjiang province
下载PDF
Piston mechanism of interaction of non-linear geomechanical and physicochemical gas exchange and mass transfer processes in coal-bearing rocks
4
作者 T.A.Kiryaeva 《Geohazard Mechanics》 2023年第2期110-118,共9页
The article focuses on a theoretical and experimental framework for the quantification of interaction between nonlinear geomechnical and physicochemical processes in high-stress coal-bearing rock mass during mining un... The article focuses on a theoretical and experimental framework for the quantification of interaction between nonlinear geomechnical and physicochemical processes in high-stress coal-bearing rock mass during mining under high seismic risk due to large-scale blasting and earthquakes,as well as because of structural and temperature effects.The tests were aimed to examine and study comprehensively the piston mechanism of gas exchange and mass transfer processes,revealed recently at the Institute of Mining,SB RAS,as well as to explain the fact that the earthquake-induced low-velocity(quasi-meter range)pendulum waves(velocity to 1 m/s and frequency of 0.5–5 Hz)could stimulate an increase in the gas content in coal mines.In order to perform laboratory investigation at the Institute of Mining SB RAS,special-purpose stand for analyzing gas exchange and mass transfer processes in coal-bearing geomaterials under various thermodynamic conditions(P,V,T)and gas composition was constructed in cooperation with the Institute of Semiconductors Physics SB RAS.Matching of air flow rate with compression pressures allowed to obtain relations showing that air flow rate increases at the uncertain time interval under the increasing of the compression pressure.The same measurements was carried out with another gases such as Hydrogen H_(2),Helium He,methane CH_(4),carbon dioxide CO_(2) and carbon oxide CO.The laboratory tests aimed to detailed investigation of the previously revealed“piston mechanism”of gas exchange and mass transfer processes in the coal specimens and their quantitative description in terms of theory of the pendulum waves were carried in the first time.Consequently,there are some arguments for the testing of the opportunity of quantitative description of the“piston mechanism”related to gas exchange and mass transfer processes in the scale of coal mines.It is relevant when pendulum waves induced by powerful earthquakes and technical blasting reaches the mine. 展开更多
关键词 coal-bearing rock mass Non-linear geomechanical and physicochemical gas exchange and mass transfer processes Low-velocity pendulum waves Gas-dynamic activity Coal mines
原文传递
Geological constraints of giant and medium-sized gas fields in Kuqa Depression 被引量:20
5
作者 JIA Chengzao GU Jiayu ZHANG Guangya 《Chinese Science Bulletin》 SCIE EI CAS 2002年第S1期47-54,共8页
There is a gas-rich and well-charged petroleumsystem in the Kuqa Depression where Triassic and Jurassicsource rocks play important roles. Distributed in an area ofmore than 10000 km and with a thickness of up to 1000 ... There is a gas-rich and well-charged petroleumsystem in the Kuqa Depression where Triassic and Jurassicsource rocks play important roles. Distributed in an area ofmore than 10000 km and with a thickness of up to 1000 m,they are composed of dark mudstones, carbonaceous mud-stones and coal seams containing 6%, 40% and 90% of TOC,respectively, and are mainly the humic organic matter. Ashigh-quality regional cap rocks, the Neogene and Eogenegypsum rocks and gypseous mudstones matched well withthe underlying Neogene and Cretaceous-Eogene sandstones.They have formed the most favorable reservoir-seal assem-blages in the Kuqa Depression. Also the Jurassic sandstonesand mudstones formed another favorable reservoir-seal as-semblage. The traps are shaped late in the fold-thrust belt,mainly fixed in the Tertiary-Quaternary, where ten structurestyles have been distinguished. These traps spread as a zonein N-S, are scattered like a segmental line in W-E and showtier-styled vertically. The best traps are gypsum-salt coveredfault-bend anticlines related to the passive roof duplex. Thispetroleum system is characterized by late accumulation. Inthe early Himalayan Movement, mainly gas condensate andoil accumulated and were distributed in the outer circularregion of the kitchen; whereas in the middle and late Hima-layan the gas accumulations mainly formed and were dis-tributed in the inner circular region near the kitchen. Theoverpressure of gas pools is common and is formed by sealcapacity of thick gypsum layers, extensive tectonic compres-sion and large uplift. The well-preserved anticline traps un-derlying the high-quality regional cap rocks of the Tertiarygypsum rocks and gypseous mudstones are the main targetsfor the discovery of giant and medium-sized gas fields. Aboveconclusions are important for the petroleum geology theoryand the exploration of the fold-thrust belt in foreland basinsin central and western China. 展开更多
关键词 coal-bearing source rock fault-related FOLD oil and GAS POOL GIANT and medium-sized GAS field KUQA Depression.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部