Mesoporous activated carbons were prepared from direct coal liquefaction residue (CLR) by KOH activation method, and the experiments were carried out to investigate the effects of KOH/CLR ratio, solvent for mixing t...Mesoporous activated carbons were prepared from direct coal liquefaction residue (CLR) by KOH activation method, and the experiments were carried out to investigate the effects of KOH/CLR ratio, solvent for mixing the CLR and KOH, and carbonization procedure on the resultant carbon texture and catalytic activity for catalytic methane decomposition (CMD). The results showed that optimal KOH/CLR ratio of 2 : 1; solvent with higher solubility to KOH or the CLR, and an appropriate carbonization procedure are conductive to improving the carbon pore structure and catalytic activity for CMD. The resultant mesoporous carbons show higher and more stable activity than microporous carbons. Additionally, the relationship between the carbon textural properties and the catalytic activity for CMD was also discussed.展开更多
The rich coal-bed methane resources in the Turpan-Hami Basin are mainly located in the Shisanjianfang,Hami,Shanshan,Sha'erhu,Kekeya,Kerjian,Aidinghu inclines and the Dananhu coal-bed methane reservoirs. The big-ge...The rich coal-bed methane resources in the Turpan-Hami Basin are mainly located in the Shisanjianfang,Hami,Shanshan,Sha'erhu,Kekeya,Kerjian,Aidinghu inclines and the Dananhu coal-bed methane reservoirs. The big-ger coal-bed reservoirs are sitting at a depth of less than 1500 m. The coalbed methane generation,storage and confin-ing conditions of the Turpan-Hami basin can be indicated by eight key parameters. They are coal-bed thickness,coal rank,missing period,permeability,Langmuir volume,rock covering ability,structural confinement and hydrodynamic sealing environment. These parameters constitute a comprehensive appraisal index system of the coal-bed methane res-ervoir characteristics of the Turpan-Hami basin. In these parameters,the missing period of coal-bed methane is indi-cated by a stratum missing intensity factor. It reflects the relative exposure period of coal series. The results of a fuzzy comprehensive judgment showed that the Shisanjianfang coal-bed methane reservoir has the best prospects for exploita-tion and the Sha'erhu,Shanshan,Hami coal-bed methane reservoirs are next in line.展开更多
Coal-bed methane is accumulated in micro-fissures and cracks in coal seams. The coal seam is the source terrace and reservoir bed of the coal-bed methane (Qian et al., 1996). Anisotropy of coal seams is caused by the ...Coal-bed methane is accumulated in micro-fissures and cracks in coal seams. The coal seam is the source terrace and reservoir bed of the coal-bed methane (Qian et al., 1996). Anisotropy of coal seams is caused by the existence of fissures. Based on the theory of S wave splitting: an S wave will be divided into two S waves with nearly orthogonal polarization directions when passing through anisotropic media, i.e. the fast S wave with its direction of propagation parallel to that of the fissure and slow S wave with the direction of propagation perpendicular to that of the fissure.展开更多
This study presents the first demonstration project in China for treatment of coal-bed methane(CBM) co-produced water and recycling.The work aims to provide a research and innovation base for solving the pollution pro...This study presents the first demonstration project in China for treatment of coal-bed methane(CBM) co-produced water and recycling.The work aims to provide a research and innovation base for solving the pollution problem of CBM extraction water.The reverse osmosis(RO) unit is applied to the treatment of CBM co-produced water.The results indicate that system operation is stable,the removal efficiency of the total dissolved solids(TDS) is as high as 97.98%,and Fe,Mn,and F-are almost completely removed.There is no suspended solids(SS) detected in the treated water.Furthermore,a model for the RO membrane separation process is developed to describe the quantitative relationship between key physical quantities-membrane length,flow velocity,salt concentration,driving pressure and water recovery rate,and the water recovery restriction equation based on mass balance is developed.This model provides a theoretical support for the RO system design and optimization.The TDS in the CBM co-produced water are removed to meet the "drinking water standards" and "groundwater quality standards" of China and can be used as drinking water,irrigation water,and livestock watering.In addition,the cost for treatment of CBM co-produced water is assessed,and the RO technology is an efficient and cost-effective treatment method to remove pollutants.展开更多
As a new-replacement of energy resource, coal bed methane is the important gas resource with great strategic significance. There are several number of Mesozoic coal-bearing basins in Jiamusi landmass, eastern Heilongj...As a new-replacement of energy resource, coal bed methane is the important gas resource with great strategic significance. There are several number of Mesozoic coal-bearing basins in Jiamusi landmass, eastern Heilongjiang Province. Theresult of the resource assessment revealed that the total resource less than 1 500 m,s depth in the area is about 2 100×108m3. It shows that Jiamusi landmass has great potential of coal-bed gas and is one of the most prospecting districts for developing coal-bed gas in CBM-province Northeast China.展开更多
When the gas flow in the compact porous medium at low speed,it has slippage effect which is caused by the gas molecular collision whit the solidskeleton.Using the gas transfusion slippage effect at researching the coa...When the gas flow in the compact porous medium at low speed,it has slippage effect which is caused by the gas molecular collision whit the solidskeleton.Using the gas transfusion slippage effect at researching the coal bed transfusion rule,established the transfusion mathematical model of the coal bed which had considered the slippage effect. Observing the influence of the different toencircle presses,the different hole press and the different actual stress to the coal bed by using the three-axles permeameter.Thus sum- marized the transfusion rule of the coal bed.The experiment indicates that the bigger of the surrounding pressure,the more obvious of the slippage effect.At the same condition of axial pressure and the surrounding pressure,with the increase of the hole pressure,the coal permeability became bigger and then smaller.The coal body effective tress and the permeability curve nearly also has the same change tendency.Thus we can draws the conclusion that the transfusion of the gas in the coal bed generally has the slippage effect.展开更多
The present work dealt with the generation, purifying and liquefaction of biomethane to improve energy density using local materials for domestic applications. Cow dung was sourced at JKUAT dairy farm and experiments ...The present work dealt with the generation, purifying and liquefaction of biomethane to improve energy density using local materials for domestic applications. Cow dung was sourced at JKUAT dairy farm and experiments were conducted at JKUAT Bioenergy laboratory using biogas generated in laboratory scale 1 m<sup>3</sup> bioreactors. Experiments were done in triplicates and repeated under different conditions to get the optimal conditions. The results showed that enhanced cow dung substrate displayed an improved fermentation process with increased biogas yields. Purified biogas optimized methane content from 56% ± 0.18% for raw biogas to 95% ± 0.98% for biomethane which was ideal for liquefaction.展开更多
Wellbore instability is a key problem restricting efficient production of coal-bed methane. In order to perform thorough and systematic research regarding coal-bed wellbore stability problems, a new discrete element m...Wellbore instability is a key problem restricting efficient production of coal-bed methane. In order to perform thorough and systematic research regarding coal-bed wellbore stability problems, a new discrete element model which fully considers the features of cleat coal-beds is established based on the Kirsch equation. With this model, the safe pipe tripping speed, drilling fluid density window and coal- bed collapse/fracture pressure are determined; in addition, the relationships between pipe tripping speed and pipe size, cleat size, etc. and wellbore stability are analyzed in the coal-bed drilling and pipe tripping processes. The case studies show the following results: the wellbore collapses (collapse pressure: 4.33 MPa) or fractures (fracture pressure: 12.7 MPa) in certain directions as a result of swab or surge pressure when the pipe tripping speed is higher than a certain value; the cleat face size has a great influence on wellbore stability, and if the drilling fluid pressure is too low, the wellbore is prone to collapse when the ratio of the face cleat size to butt cleat size is reduced; however, if the drilling fluid pressure is high enough, the butt cleat size has no influence on the wellbore fracture; the factors influencing coal-bed stability include the movement length, pipe size, borehole size.展开更多
The purification of low-grade coal-bed methane is extremely important,but challenging,due to the very similar physical properties of CH_(4)and N2.Herein,we proposed a dual polarization strategy by employing triazine a...The purification of low-grade coal-bed methane is extremely important,but challenging,due to the very similar physical properties of CH_(4)and N2.Herein,we proposed a dual polarization strategy by employing triazine and polyfluoride sites to construct polar pores in COF materials,achieving the efficient separa-tion of CH_(4)from N2.As expected,the dual polarized F-CTF-1 and F-CTF-2 exhibit higher CH_(4)adsorption capacity and CH_(4)/N_(2)selectivity than CTF-1 and CTF-2,respectively.Especially,the CH4 uptake capacity and CH_(4)/N_(2)selectivity of F-CTF-2 is 1.76 and 1.42 times than that of CTF-2.This work not only developed promising COF materials for CH4/N_(2)separation,but also provided important guidance for the separation of other adsorbates with similar properties.展开更多
In the process of enriching CH4 from coal-bed methane,the separation of CH_(4)/N_(2)is very difficult to accomplish by an adsorption process due to the similar physico-chemical properties of the two molecules.A series...In the process of enriching CH4 from coal-bed methane,the separation of CH_(4)/N_(2)is very difficult to accomplish by an adsorption process due to the similar physico-chemical properties of the two molecules.A series of coconut-shell-based granular activated carbons(GACs)with different pore structures were prepared,which were characterized by different methods.The influence of the pore structure on the separation properties was investigated in detail.The results show that one of the carbons prepared(GAC-3)has high CH4 equilibrium adsorption capacity(3.28 mol·kg–1)at 298 K and equilibrium separation coefficient(3.95).The CH_(4)/N_(2)separation on the GACs is controlled by adsorption equilibrium as compared with the dynamic effect.Taking the specific surface area,for example,the common characterization index of the pore structure is not enough to judge the separation performance of the GACs.However,the microstructure of carbon materials plays a decisive role for CH_(4)/N_(2)separation.According to the pore-structure analysis,the effective pore size for the CH_(4)/N_(2)separation is from 0.4 to 0.9 nm,with the optimum effect occurring in the range of 0.6–0.7 nm,followed by the range of 0.7~0.9 nm.Also,a four-bed vacuum pressure swing adsorption process was adopted to evaluate the performance of GACs for the separation of CH4 from nitrogen.展开更多
基金supported by the National Natural Science Foundation of China(No.20906009)the Key Program Project of Joint Fund of Coal Research by NSFC and Shenhua Group(No.51134014)+2 种基金the Fundamental Research Funds for the Central Universities(No.DUT12JN05)the National Basic Research Program of China(973Program)the Ministry of Science and Technology,China(No.2011CB201301)
文摘Mesoporous activated carbons were prepared from direct coal liquefaction residue (CLR) by KOH activation method, and the experiments were carried out to investigate the effects of KOH/CLR ratio, solvent for mixing the CLR and KOH, and carbonization procedure on the resultant carbon texture and catalytic activity for catalytic methane decomposition (CMD). The results showed that optimal KOH/CLR ratio of 2 : 1; solvent with higher solubility to KOH or the CLR, and an appropriate carbonization procedure are conductive to improving the carbon pore structure and catalytic activity for CMD. The resultant mesoporous carbons show higher and more stable activity than microporous carbons. Additionally, the relationship between the carbon textural properties and the catalytic activity for CMD was also discussed.
基金Projects 2002CB211702 supported by the National Key Basic Research and Development Program of China2006AA06Z235 by the High Technology Research and Development Program of China
文摘The rich coal-bed methane resources in the Turpan-Hami Basin are mainly located in the Shisanjianfang,Hami,Shanshan,Sha'erhu,Kekeya,Kerjian,Aidinghu inclines and the Dananhu coal-bed methane reservoirs. The big-ger coal-bed reservoirs are sitting at a depth of less than 1500 m. The coalbed methane generation,storage and confin-ing conditions of the Turpan-Hami basin can be indicated by eight key parameters. They are coal-bed thickness,coal rank,missing period,permeability,Langmuir volume,rock covering ability,structural confinement and hydrodynamic sealing environment. These parameters constitute a comprehensive appraisal index system of the coal-bed methane res-ervoir characteristics of the Turpan-Hami basin. In these parameters,the missing period of coal-bed methane is indi-cated by a stratum missing intensity factor. It reflects the relative exposure period of coal series. The results of a fuzzy comprehensive judgment showed that the Shisanjianfang coal-bed methane reservoir has the best prospects for exploita-tion and the Sha'erhu,Shanshan,Hami coal-bed methane reservoirs are next in line.
文摘Coal-bed methane is accumulated in micro-fissures and cracks in coal seams. The coal seam is the source terrace and reservoir bed of the coal-bed methane (Qian et al., 1996). Anisotropy of coal seams is caused by the existence of fissures. Based on the theory of S wave splitting: an S wave will be divided into two S waves with nearly orthogonal polarization directions when passing through anisotropic media, i.e. the fast S wave with its direction of propagation parallel to that of the fissure and slow S wave with the direction of propagation perpendicular to that of the fissure.
基金Supported by the National Basic Research Program of China(2011ZX05060-0052009ZX05039-003)+2 种基金the National Natural Science Foundation of China(21106176)the President Fund of GUCAS(Y15101JY00)the National Science Foundation for Post-doctoral Scientists of China(20110490627)
文摘This study presents the first demonstration project in China for treatment of coal-bed methane(CBM) co-produced water and recycling.The work aims to provide a research and innovation base for solving the pollution problem of CBM extraction water.The reverse osmosis(RO) unit is applied to the treatment of CBM co-produced water.The results indicate that system operation is stable,the removal efficiency of the total dissolved solids(TDS) is as high as 97.98%,and Fe,Mn,and F-are almost completely removed.There is no suspended solids(SS) detected in the treated water.Furthermore,a model for the RO membrane separation process is developed to describe the quantitative relationship between key physical quantities-membrane length,flow velocity,salt concentration,driving pressure and water recovery rate,and the water recovery restriction equation based on mass balance is developed.This model provides a theoretical support for the RO system design and optimization.The TDS in the CBM co-produced water are removed to meet the "drinking water standards" and "groundwater quality standards" of China and can be used as drinking water,irrigation water,and livestock watering.In addition,the cost for treatment of CBM co-produced water is assessed,and the RO technology is an efficient and cost-effective treatment method to remove pollutants.
文摘As a new-replacement of energy resource, coal bed methane is the important gas resource with great strategic significance. There are several number of Mesozoic coal-bearing basins in Jiamusi landmass, eastern Heilongjiang Province. Theresult of the resource assessment revealed that the total resource less than 1 500 m,s depth in the area is about 2 100×108m3. It shows that Jiamusi landmass has great potential of coal-bed gas and is one of the most prospecting districts for developing coal-bed gas in CBM-province Northeast China.
基金the National Natural Sciences Fund Subsidization Project of China(50774041)National Important Item of the Natural Sciences Fund Subsidization Project of China(50490275)
文摘When the gas flow in the compact porous medium at low speed,it has slippage effect which is caused by the gas molecular collision whit the solidskeleton.Using the gas transfusion slippage effect at researching the coal bed transfusion rule,established the transfusion mathematical model of the coal bed which had considered the slippage effect. Observing the influence of the different toencircle presses,the different hole press and the different actual stress to the coal bed by using the three-axles permeameter.Thus sum- marized the transfusion rule of the coal bed.The experiment indicates that the bigger of the surrounding pressure,the more obvious of the slippage effect.At the same condition of axial pressure and the surrounding pressure,with the increase of the hole pressure,the coal permeability became bigger and then smaller.The coal body effective tress and the permeability curve nearly also has the same change tendency.Thus we can draws the conclusion that the transfusion of the gas in the coal bed generally has the slippage effect.
文摘The present work dealt with the generation, purifying and liquefaction of biomethane to improve energy density using local materials for domestic applications. Cow dung was sourced at JKUAT dairy farm and experiments were conducted at JKUAT Bioenergy laboratory using biogas generated in laboratory scale 1 m<sup>3</sup> bioreactors. Experiments were done in triplicates and repeated under different conditions to get the optimal conditions. The results showed that enhanced cow dung substrate displayed an improved fermentation process with increased biogas yields. Purified biogas optimized methane content from 56% ± 0.18% for raw biogas to 95% ± 0.98% for biomethane which was ideal for liquefaction.
文摘Wellbore instability is a key problem restricting efficient production of coal-bed methane. In order to perform thorough and systematic research regarding coal-bed wellbore stability problems, a new discrete element model which fully considers the features of cleat coal-beds is established based on the Kirsch equation. With this model, the safe pipe tripping speed, drilling fluid density window and coal- bed collapse/fracture pressure are determined; in addition, the relationships between pipe tripping speed and pipe size, cleat size, etc. and wellbore stability are analyzed in the coal-bed drilling and pipe tripping processes. The case studies show the following results: the wellbore collapses (collapse pressure: 4.33 MPa) or fractures (fracture pressure: 12.7 MPa) in certain directions as a result of swab or surge pressure when the pipe tripping speed is higher than a certain value; the cleat face size has a great influence on wellbore stability, and if the drilling fluid pressure is too low, the wellbore is prone to collapse when the ratio of the face cleat size to butt cleat size is reduced; however, if the drilling fluid pressure is high enough, the butt cleat size has no influence on the wellbore fracture; the factors influencing coal-bed stability include the movement length, pipe size, borehole size.
基金supported by National Key R&D Program of China(No.2022YFA1503300)National Natural Science Foundation of China(Nos.21978138,22035003)+1 种基金the Fundamental Research Funds for the Central Universities(Nankai University)the Haihe Laboratory of Sustainable Chemical Transformations(No.YYJC202101).
文摘The purification of low-grade coal-bed methane is extremely important,but challenging,due to the very similar physical properties of CH_(4)and N2.Herein,we proposed a dual polarization strategy by employing triazine and polyfluoride sites to construct polar pores in COF materials,achieving the efficient separa-tion of CH_(4)from N2.As expected,the dual polarized F-CTF-1 and F-CTF-2 exhibit higher CH_(4)adsorption capacity and CH_(4)/N_(2)selectivity than CTF-1 and CTF-2,respectively.Especially,the CH4 uptake capacity and CH_(4)/N_(2)selectivity of F-CTF-2 is 1.76 and 1.42 times than that of CTF-2.This work not only developed promising COF materials for CH4/N_(2)separation,but also provided important guidance for the separation of other adsorbates with similar properties.
文摘In the process of enriching CH4 from coal-bed methane,the separation of CH_(4)/N_(2)is very difficult to accomplish by an adsorption process due to the similar physico-chemical properties of the two molecules.A series of coconut-shell-based granular activated carbons(GACs)with different pore structures were prepared,which were characterized by different methods.The influence of the pore structure on the separation properties was investigated in detail.The results show that one of the carbons prepared(GAC-3)has high CH4 equilibrium adsorption capacity(3.28 mol·kg–1)at 298 K and equilibrium separation coefficient(3.95).The CH_(4)/N_(2)separation on the GACs is controlled by adsorption equilibrium as compared with the dynamic effect.Taking the specific surface area,for example,the common characterization index of the pore structure is not enough to judge the separation performance of the GACs.However,the microstructure of carbon materials plays a decisive role for CH_(4)/N_(2)separation.According to the pore-structure analysis,the effective pore size for the CH_(4)/N_(2)separation is from 0.4 to 0.9 nm,with the optimum effect occurring in the range of 0.6–0.7 nm,followed by the range of 0.7~0.9 nm.Also,a four-bed vacuum pressure swing adsorption process was adopted to evaluate the performance of GACs for the separation of CH4 from nitrogen.