期刊文献+
共找到18,228篇文章
< 1 2 250 >
每页显示 20 50 100
Investigation of oxy-fuel combustion for methane and acid gas in a diffusion flame
1
作者 Songling Guo Xun Tao +5 位作者 Fan Zhou Mengyan Yu Yufan Wu Yunfei Gao Lu Ding Fuchen Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期106-116,共11页
Co-combustion of methane(CH4)and acid gas(AG)is required to sustain the temperature in Claus reaction furnace.In this study,oxy-fuel combustion of methane and acid gas has been experimentally studied in a diffusion fl... Co-combustion of methane(CH4)and acid gas(AG)is required to sustain the temperature in Claus reaction furnace.In this study,oxy-fuel combustion of methane and acid gas has been experimentally studied in a diffusion flame.Three equivalence ratios(ER=1.0,1.5,2.0)and CH_(4)-addition ratios(CH_(4)/AG=0.3,0.5,0.7)were examined and the flame was interpreted by analyzing the distributions of the temperature and species concentration along central axial.CH_(4)-AG diffusion flame could be classified into three sections namely initial reaction,oxidation and complex reaction sections.Competitive oxidation of CH_(4)and H_(2)S was noted in the first section wherein H_(2)S was preferred and both were mainly proceeding decomposition and partial oxidation.SO_(2)was formed at oxidation section together with obvious presence of H2 and CO.However,H2 and CO were inclined to be sustained under fuel rich condition in the complex reaction section.Reducing ER and increasing CH4/AG contributed to higher temperature,H_(2)S and CH_(4)oxidation and CO_(2)reactivity.Hence a growing trend for CH_(4)and AG to convert into H_(2),CO and SO_(2)could be witnessed.And this factor enhanced the generation of CS2 and COS in the flame inner core by interactions of CH4 and CO_(2)with sulfur species.COS was formed through the interactions of CO and CO_(2)with sulfur species.The CS_(2)production directly relied on reaction of CH_(4)with sulfur species.The concentration of COS was greater than CS_(2)since CS_(2)was probably inhibited due to the presence of H_(2).COS and CS_(2)could be consumed by further oxidation or other complex reactions. 展开更多
关键词 Acid gas methane Oxy-fuel combustion OXIDATION Chemical analysis Carbon sulfides
下载PDF
Methane Emission from Rice Fields:Necessity for Molecular Approach for Mitigation
2
作者 Sujeevan RAJENDRAN Hyeonseo PARK +6 位作者 Jiyoung KIM Soon Ju PARK Dongjin SHIN Jong-Hee LEE Young Hun SONG Nam-Chon PAEK Chul Min KIM 《Rice science》 SCIE CSCD 2024年第2期159-178,共20页
Anthropogenic methane emissions are a leading cause of the increase in global averagetemperatures,often referred to as global warming.Flooded soils play a significant role in methaneproduction,where the anaerobic cond... Anthropogenic methane emissions are a leading cause of the increase in global averagetemperatures,often referred to as global warming.Flooded soils play a significant role in methaneproduction,where the anaerobic conditions promote the production of methane by methanogenicmicroorganisms.Rice fields contribute a considerable portion of agricultural methane emissions,as riceplants provide both factors that enhance and limit methane production.Rice plants harbor both methaneproducingand methane-oxidizing microorganisms.Exudates from rice roots provide source for methaneproduction,while oxygen delivered from the root aerenchyma enhances methane oxidation.Studies haveshown that the diversity of these microorganisms depends on rice cultivars with some genes characterizedas harboring specific groups of microorganisms related to methane emissions.However,there is still aneed for research to determine the balance between methane production and oxidation,as rice plantspossess the ability to regulate net methane production.Various agronomical practices,such as fertilizerand water management,have been employed to mitigate methane emissions.Nevertheless,studiescorrelating agronomic and chemical management of methane with productivity are limited.Moreover,evidences for breeding low-methane-emitting rice varieties are scattered largely due to the absence ofcoordinated breeding programs.Research has indicated that phenotypic characteristics,such as rootbiomass,shoot architecture,and aerenchyma,are highly correlated with methane emissions.This reviewdiscusses available studies that involve the correlation between plant characteristics and methaneemissions.It emphasizes the necessity and importance of breeding low-methane-emitting rice varieties inaddition to existing agronomic,biological,and chemical practices.The review also delves into the idealphenotypic and physiological characteristics of low-methane-emitting rice and potential breeding techniques,drawing from studies conducted with diverse varieties,mutants,and transgenic plants. 展开更多
关键词 methane emission rice breeding AERENCHYMA greenhouse gas radial oxygen loss
下载PDF
Ca and Sr co-doping induced oxygen vacancies in 3DOM La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts for boosting low-temperature oxidative coupling of methane
3
作者 Tongtong Wu Yuechang Wei +5 位作者 Jing Xiong Yitao Yang Zhenpeng Wang Dawei Han Zhen Zhao Jian Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期331-344,共14页
It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(... It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(A_(2)B_(2)O_(7)-type)catalysts with disordered defective cubic fluorite phased structure were successfully prepared by a colloidal crystal template method.3DOM structure promotes the accessibility of the gaseous reactants(O2and CH4)to the active sites.The co-doping of Ca and Sr ions in La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts improved the formation of oxygen vacancies,thereby leading to increased density of surface-active oxygen species(O_(2)^(-))for the activation of CH4and the formation of C2products(C2H6and C2H4).3DOM La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts exhibit high catalytic activity for OCM at low temperature.3DOM La1.7Sr0.3Ce1.7Ca0.3O7-δcatalyst with the highest density of O_(2)^(-)species exhibited the highest catalytic activity for low-temperature OCM,i.e.,its CH4conversion,selectivity and yield of C2products at 650℃are 32.2%,66.1%and 21.3%,respectively.The mechanism was proposed that the increase in surface oxygen vacancies induced by the co-doping of Ca and Sr ions boosts the key step of C-H bond breaking and C-C bond coupling in catalyzing low-temperature OCM.It is meaningful for the development of the low-temperature and high-efficient catalysts for OCM reaction in practical application. 展开更多
关键词 3DOM catalysts Ca ions Sr ions Low-temperature oxidative couplingof methane Oxygen vacancies O_(2)^(-) species
下载PDF
Application of Seismic Anisotropy Caused by Fissures in Coal Seams to the Detection of Coal-bed Methane Reservoirs 被引量:2
4
作者 LIU Mei GOU Jingwei +1 位作者 YU Guangming LIN Jiandong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2000年第2期425-428,共4页
Coal-bed methane is accumulated in micro-fissures and cracks in coal seams. The coal seam is the source terrace and reservoir bed of the coal-bed methane (Qian et al., 1996). Anisotropy of coal seams is caused by the ... Coal-bed methane is accumulated in micro-fissures and cracks in coal seams. The coal seam is the source terrace and reservoir bed of the coal-bed methane (Qian et al., 1996). Anisotropy of coal seams is caused by the existence of fissures. Based on the theory of S wave splitting: an S wave will be divided into two S waves with nearly orthogonal polarization directions when passing through anisotropic media, i.e. the fast S wave with its direction of propagation parallel to that of the fissure and slow S wave with the direction of propagation perpendicular to that of the fissure. 展开更多
关键词 coal-bed methane coal-seam fissure ANISOTROPY splitting of S wave
下载PDF
Coal-Bed Methane Resource of Mesozoic Basins in Jiamusi Landmass 被引量:3
5
作者 Cao Chengrun Wu Wei Zheng Qingdao 《Global Geology》 2002年第2期138-141,共4页
As a new-replacement of energy resource, coal bed methane is the important gas resource with great strategic significance. There are several number of Mesozoic coal-bearing basins in Jiamusi landmass, eastern Heilongj... As a new-replacement of energy resource, coal bed methane is the important gas resource with great strategic significance. There are several number of Mesozoic coal-bearing basins in Jiamusi landmass, eastern Heilongjiang Province. Theresult of the resource assessment revealed that the total resource less than 1 500 m,s depth in the area is about 2 100×108m3. It shows that Jiamusi landmass has great potential of coal-bed gas and is one of the most prospecting districts for developing coal-bed gas in CBM-province Northeast China. 展开更多
关键词 coal-bed methane Basin Mesozoic . Jiamusi landmass
下载PDF
A Comprehensive Appraisal on the Characteristics of Coal-Bed Methane Reservoir in Turpan-Hami Basin 被引量:10
6
作者 TANG Shu-heng WANG Yan-bin ZHANG Dai-sheng 《Journal of China University of Mining and Technology》 EI 2007年第4期521-525,545,共6页
The rich coal-bed methane resources in the Turpan-Hami Basin are mainly located in the Shisanjianfang,Hami,Shanshan,Sha'erhu,Kekeya,Kerjian,Aidinghu inclines and the Dananhu coal-bed methane reservoirs. The big-ge... The rich coal-bed methane resources in the Turpan-Hami Basin are mainly located in the Shisanjianfang,Hami,Shanshan,Sha'erhu,Kekeya,Kerjian,Aidinghu inclines and the Dananhu coal-bed methane reservoirs. The big-ger coal-bed reservoirs are sitting at a depth of less than 1500 m. The coalbed methane generation,storage and confin-ing conditions of the Turpan-Hami basin can be indicated by eight key parameters. They are coal-bed thickness,coal rank,missing period,permeability,Langmuir volume,rock covering ability,structural confinement and hydrodynamic sealing environment. These parameters constitute a comprehensive appraisal index system of the coal-bed methane res-ervoir characteristics of the Turpan-Hami basin. In these parameters,the missing period of coal-bed methane is indi-cated by a stratum missing intensity factor. It reflects the relative exposure period of coal series. The results of a fuzzy comprehensive judgment showed that the Shisanjianfang coal-bed methane reservoir has the best prospects for exploita-tion and the Sha'erhu,Shanshan,Hami coal-bed methane reservoirs are next in line. 展开更多
关键词 煤床 瓦斯 储蓄量 盆地
下载PDF
The experiment study on slippage effect of the coal-bed methane transfusion
7
作者 彭晓华 潘一山 +1 位作者 肖晓春 陈长华 《Journal of Coal Science & Engineering(China)》 2008年第4期530-533,共4页
When the gas flow in the compact porous medium at low speed,it has slippage effect which is caused by the gas molecular collision whit the solidskeleton.Using the gas transfusion slippage effect at researching the coa... When the gas flow in the compact porous medium at low speed,it has slippage effect which is caused by the gas molecular collision whit the solidskeleton.Using the gas transfusion slippage effect at researching the coal bed transfusion rule,established the transfusion mathematical model of the coal bed which had considered the slippage effect. Observing the influence of the different toencircle presses,the different hole press and the different actual stress to the coal bed by using the three-axles permeameter.Thus sum- marized the transfusion rule of the coal bed.The experiment indicates that the bigger of the surrounding pressure,the more obvious of the slippage effect.At the same condition of axial pressure and the surrounding pressure,with the increase of the hole pressure,the coal permeability became bigger and then smaller.The coal body effective tress and the permeability curve nearly also has the same change tendency.Thus we can draws the conclusion that the transfusion of the gas in the coal bed generally has the slippage effect. 展开更多
关键词 煤层 透气性系数 测定 低渗透气藏 数值模拟
下载PDF
Probing deactivation by coking in catalyst pellets for dry reforming of methane using a pore network model 被引量:2
8
作者 Yu Wang Qunfeng Zhang +3 位作者 Xinlei Liu Junqi Weng Guanghua Ye Xinggui Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期293-303,共11页
Dry reforming of methane(DRM) is an attractive technology for utilizing the greenhouse gases(CO_(2) and CH_(4)) to produce syngas. However, the catalyst pellets for DRM are heavily plagued by deactivation by coking, w... Dry reforming of methane(DRM) is an attractive technology for utilizing the greenhouse gases(CO_(2) and CH_(4)) to produce syngas. However, the catalyst pellets for DRM are heavily plagued by deactivation by coking, which prevents this technology from commercialization. In this work, a pore network model is developed to probe the catalyst deactivation by coking in a Ni/Al_(2)O_(3) catalyst pellet for DRM. The reaction conditions can significantly change the coking rate and then affect the catalyst deactivation. The catalyst lifetime is higher under lower temperature, pressure, and CH_(4)/CO_(2) molar ratio, but the maximum coke content in a catalyst pellet is independent of these reaction conditions. The catalyst pellet with larger pore diameter, narrower pore size distribution and higher pore connectivity is more robust against catalyst deactivation by coking, as the pores in this pellet are more difficult to be plugged or inaccessible.The maximum coke content is also higher for narrower pore size distribution and higher pore connectivity, as the number of inaccessible pores is lower. Besides, the catalyst pellet radius only slightly affects the coke content, although the diffusion limitation increases with the pellet radius. These results should serve to guide the rational design of robust DRM catalyst pellets against deactivation by coking. 展开更多
关键词 Deactivation by coking Dry reforming of methane Pore network model Diffusion limitation Catalyst pellet
下载PDF
High surface area biocarbon monoliths for methane storage 被引量:1
9
作者 Elizabeth Michaelis Renfeng Nie +1 位作者 Douglas Austin Yanfeng Yue 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第5期1308-1324,共17页
New energy sources that reduce the volume of harmful gases such as SO_(x)and NO_(x)released into the atmosphere are in constant development.Natural gas,primarily made up of methane,is being widely used as one reliable... New energy sources that reduce the volume of harmful gases such as SO_(x)and NO_(x)released into the atmosphere are in constant development.Natural gas,primarily made up of methane,is being widely used as one reliable energy source for heating and electricity generation due to its high combustion value.Currently,natural gas accounts for a large portion of electricity generation and chemical feedstock in manufacturing plastics and other commercially important organic chemicals.In the near future,natural gas will be widely used as a fuel for vehicles.Therefore,a practical storage device for its storage and transportation is very beneficial to the deployment of natural gas as an energy source for new technologies.In this tutorial review,biomaterials-based carbon monoliths(CMs),one kind of carbonaceous material,was reviewed as an adsorbent for natural gas(methane)adsorption and storage. 展开更多
关键词 Activated carbon Carbon monolith methane storage High surface area Activation agent
下载PDF
The status and development strategy of coalbed methane industry in China 被引量:1
10
作者 XU Fengyin HOU Wei +11 位作者 XIONG Xianyue XU Borui WU Peng WANG Hongya FENG Kun YUN Jian LI Shuguang ZHANG Lei YAN Xia FANG Huijun LU Qian MAO Delei 《Petroleum Exploration and Development》 SCIE 2023年第4期765-783,共19页
To achieve the goals of carbon peaking and carbon neutrality under the backgrounds of poor resource endowments, weak theoretical basis and other factors, the development of the coalbed methane industry of China faces ... To achieve the goals of carbon peaking and carbon neutrality under the backgrounds of poor resource endowments, weak theoretical basis and other factors, the development of the coalbed methane industry of China faces many bottlenecks and challenges. This paper systematically analyzes the coalbed methane resources, key technologies and progress, exploration effect and production performance in China and abroad. The main problems are summarized as low exploration degree, low technical adaptability, low return on investment and small development scale. This study suggests that the coalbed methane industry in China should follow the “two-step”(short-term and long-term) development strategy. The short-term action before 2030, can be divided into two stages:(1) From the present to 2025, to achieve new breakthroughs in theory and technology, and accomplish the target of annual production of 10 billion cubic meters;(2) From 2025 to 2030, to form the technologies suitable for most geological conditions, further expand the industry scale, and achieve an annual output of 30 billion cubic meters, improving the proportion of coalbed methane in the total natural gas production. The long-term action after 2030 is to gradually realize an annual production of 100 billion cubic meters. The strategic countermeasure to achieve the above goals is to adhere to “technology+management dual wheel drive”, realize the synchronous progress of technology and management, and promote the high-quality development of the coalbed methane industry. Technically, the efforts will focus on fine and effective development of coalbed methane in the medium to shallow layers of mature fields, effective development of coalbed methane in new fields, extensive and beneficial development of deep coalbed methane, three-dimensional comingled development of coalbed methane, applying new technologies such as coalbed methane displacement by carbon dioxide, microwave heating and stimulation technology, ultrasonic stimulation, high-temperature heat injection stimulation, rock breaking by high-energy laser. In terms of management, the efforts will focus on coordinative innovation of resource, technology, talent, policy and investment, with technological innovation as the core, to realize an all-round and integrated management and promote the development of coalbed methane industry at a high level. 展开更多
关键词 coalbed methane industry status strategic goal development countermeasures combined gas mining enhanced recovery in-situ conversion
下载PDF
Methanation of CO/CO_(2)for power to methane process:Fundamentals,status,and perspectives
11
作者 Jie Ren Hao Lou +3 位作者 Nuo Xu Feng Zeng Gang Pei Zhandong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期182-206,I0005,共26页
Power-to-methane(P2M)processes,by converting electricity from renewable energy to H2and then into other high value-added and energy-intense chemicals in the presence of active catalysts,have become an effective soluti... Power-to-methane(P2M)processes,by converting electricity from renewable energy to H2and then into other high value-added and energy-intense chemicals in the presence of active catalysts,have become an effective solution for energy storage.However,the fluctuating electricity from intermittent renewable energy leads to a dynamic composition of reactants for downstream methanation,which requires an excellent heterogeneous catalyst to withstand the harsh conditions.Based on these findings,the objective of this review is to classify the fundamentals and status of CO/CO_(2)methanation and identify the pathways in the presence of various catalysts for methane production.In addition,this review sheds insight into the future development and challenges of CO_(2)or CO methanation,including the deactivation mechanisms and catalyst performance under dynamically harsh conditions.Finally,we elaborated on the advantages and development prospects of P2M,and then we summarized the current stage and ongoing industrialization projects of P2M. 展开更多
关键词 Power-to-methane CO methanation CO_(2)methanation Heterogeneous catalyst methanation mechanism
下载PDF
Effect of silicon carbide-based iron catalyst on reactor optimization for non-oxidative direct conversion of methane
12
作者 Eun-hae Sim Sung Woo Lee +6 位作者 Jin Ju Lee Seung Ju Han Jung Ho Shin Gracia Lee Sungrok Ko Kwan-Young Lee Yong Tae Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期519-532,I0012,共15页
The conversion of methane to olefins,aromatics,and hydrogen(MTOAH)can be used to stably obtain hydrocarbons when the effect of the catalytic surface is optimized from the reaction engineering perspective.In this study... The conversion of methane to olefins,aromatics,and hydrogen(MTOAH)can be used to stably obtain hydrocarbons when the effect of the catalytic surface is optimized from the reaction engineering perspective.In this study,Fe/Si C catalysts were packed into a quartz tube reactor.The catalytic surfaces of Si C and the impregnated Fe species decreased the apparent activation energies(E_a)of methane consumption in the blank reactor between 965 and 1020℃.Consequently,the hydrocarbon yield increased by 2.4times at 1020℃.Based on the model reactions of ethane,ethylene,and acetylene mixed with hydrogen in the range of 500-1020℃,an excess amount of Fe in the reactor favored the C-C coupling reaction over the selective hydrogenation of acetylene;consequently,coke formation was favored over the hydrogenation reaction.The gas-phase reactions and catalyst properties were optimized to increase hydrocarbon yields while reducing coke selectivity.The 0.2Fe catalyst-packed reactor(0.26 wt%Fe)resulted in a hydrocarbon yield of 7.1%and a coke selectivity of<2%when the ratio of the void space of the postcatalyst zone to the catalyst space was adjusted to be≥2.Based on these findings,the facile approach of decoupling the reaction zone between the catalyst surface and the gas-phase reaction can provide insights into catalytic reactor design,thereby facilitating the scale-up from the laboratory to the commercial scale. 展开更多
关键词 Non-oxidative methane conversion Ethylene AROMATIC methane pyrolysis Fe/SiC Coke resistance Catalytic reactor
下载PDF
Characteristics of vertical distributions of methane and dimethylsulphoniopropionate in the southern Yap Trench
13
作者 Yuhuan HUANG Chengjun SUN +4 位作者 Lina Lü Neal Xiangyu DING Liangmin YU Guipeng YANG Haibing DING 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第6期2101-2116,共16页
Methane(CH_(4) )and dimethylsulphoniopropionate(DMSP)are major carbon and sulfur sources for bacterioplankton in the ocean.We investigated the characteristics of CH_(4) and DMSP in the southern Yap Trench from sea sur... Methane(CH_(4) )and dimethylsulphoniopropionate(DMSP)are major carbon and sulfur sources for bacterioplankton in the ocean.We investigated the characteristics of CH_(4) and DMSP in the southern Yap Trench from sea surface to hadal zone in June 2017.We found that concentrations of CH_(4) varied from 1.5 to 4.5 nmol/L with saturation between 94% and 204% in the euphotic layer.Concentrations of dissolved DMSP(DMSPd)ranged from 0.5 to 3.7 nmol/L with higher values in surface water and decreased with depth.Concentrations of particulate DMSP(DMSPp)varied from 0 to 13.6 nmol/L.Concentrations of total DMSP(DMSPt)ranged 2.0-15.2 nmol/L.Their concentrations decreased slightly and reached consistent levels in 200-3000-m depth due probably to heterotrophic bacterial production in marine aphotic and high-pressure environments.An exception occurred around 4000-m depth where their concentrations increased considerably and then decreased in deeper water.This previously unrecognized phenomenon sheds light on the elevated concentrations of DMSP in the abyssal layer that might be affected by the Lower Circumpolar Deep Water(LCPW).Concentrations of CH_(4) in seawater of the Benthic Boundary Layer of the southern Yap Trench were slightly higher than those in the water column at approximate depth,and concentrations of DMSP in seawater of the Benthic Boundary Layer of the southern Yap Trench were not much higher than those in the water column at the approximate depth,indicating that sediment was a weak source of CH_(4) but was not a source of DMSP for seawater in the study area.This study presented clear correlations between CH_(4) and DMSP from sea surface to sea bottom,proving that DMSP might be a potential substrate for CH_(4) not only in oxic surface seawater but also in deep water. 展开更多
关键词 methane dimethylsulphoniopropionate(DMSP) hadal zone Jiaolong submersible Yap Trench oceanic methane paradox
下载PDF
Reaction characteristics of maximizing light olefins and decreasing methane in C_(5) hydrocarbons catalytic pyrolysis
14
作者 Mei-Jia Liu Gang Wang +3 位作者 Shun-Nian Xu Tao-Ran Zheng Zhong-Dong Zhang Sheng-Bao He 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1909-1921,共13页
When converting C_(5) hydrocarbons to light olefins by catalytic pyrolysis,the generation of low value-added methane will affect the atomic utilization efficiency of C_(5) hydrocarbons.To improve the atomic utilizatio... When converting C_(5) hydrocarbons to light olefins by catalytic pyrolysis,the generation of low value-added methane will affect the atomic utilization efficiency of C_(5) hydrocarbons.To improve the atomic utilization efficiency,different generation pathways of light olefins and methane in the catalytic pyrolysis of C_(5) hydrocarbons were analyzed,and the effects of reaction conditions and zeolite types were inves-tigated.Results showed that light olefins were mainly formed by breaking the C_(2)-C_(3) bond in the middle position,while methane was formed by breaking the C_(1)-C_(2) bond at the end.Meanwhile,it was discovered that the hydrogen transfer reaction could be reduced by about 90%by selecting MTT zeolite with 1D topology and FER zeolite with 2D topology under high weight hourly space velocity(WHSV)and high temperature operations,thus leading to the improvement of the light olefins selectivity for the catalytic pyrolysis of n-pentane and 1-pentene to 55.12% and 74.60%,respectively.Moreover,the fraction ratio of terminal C_(1)-C_(2) bond cleavage was reduced,which would reduce the selectivity of methane to 6.63%and 1.83%.Therefore,zeolite with low hydrogen transfer activity and catalytic pyrolysis process with high WHsV will be conducive to maximize light olefins and to decrease methane. 展开更多
关键词 N-PENTANE 1-Pentene Catalytic pyrolysis Light olefins methane
下载PDF
Prediction of geotemperatures in coal-bearing strata and implications for coal bed methane accumulation in the Bide-Santang basin,western Guizhou,China 被引量:4
15
作者 Chen Guo Yong Qin +2 位作者 Dongmin Ma Zhaobiao Yang Lingling Lu 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第2期235-242,共8页
The geothermal fields of coal-bearing strata have become a key topic in geological research into coal and coal bed methane(CBM).Based on temperature data from 135 boreholes that penetrate the Upper Permian coal-bearin... The geothermal fields of coal-bearing strata have become a key topic in geological research into coal and coal bed methane(CBM).Based on temperature data from 135 boreholes that penetrate the Upper Permian coal-bearing strata in the Bide-Santang basin,western Guizhou,the precisions of geothermal predictions made using a geothermal gradient model and a gray sequence GM(1,1)model are analyzed and compared.The results indicate that the gray sequence GM(1,1)model is more appropriate for the prediction of geothermal fields.The GM(1,1)model is used to predict the geothermal field at three levels with depths of 500,1000,and 1500 m,as well as within the No.6,No.16,and No.27 coal seams.The results indicate that the geotemperatures of the 500 m depth level are between 21.0 and 30.0°C,indicating no heat damage;the geotemperatures of the 1000 m depth level are between 29.4 and 44.7°C,indicating the first level of heat damage;and the geotemperatures of the 1500 m depth level are between35.6 and 63.4°C,indicating the second level of heat damage.The CBM contents are positively correlated with the geotemperatures of the coal seams.The target area for CBM development is identified. 展开更多
关键词 Geotemperature GRAY sequence GEOTHERMAL gradient Heat damage COAL COAL BED methane
下载PDF
Oxygen vacancies enriched Ni-Co/SiO_(2)@CeO_(2) redox catalyst for cycling methane partial oxidation and CO_(2) splitting
16
作者 Chang Yang Juping Zhang +3 位作者 Jiakai Wang Dongfang Li Kongzhai Li Xing Zhu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第11期235-245,共11页
Redox catalysts play a vital role in the interconversion of two significant greenhouse gases,CO_(2)and CH_(4),via chemical looping methane dry reforming technology.Herein,a series of transition metals-alloyed and core... Redox catalysts play a vital role in the interconversion of two significant greenhouse gases,CO_(2)and CH_(4),via chemical looping methane dry reforming technology.Herein,a series of transition metals-alloyed and core-shell structured Ni-M/SiO_(2)@CeO_(2)(M=Fe,Co,Cu,Mn,Zr)redox catalyst were fabricated and evaluated in a gas-solid fixed-bed reactor for cycling CH_(4)partial oxidation(PO_(x))and CO_(2)splitting.The catalysts are composed of spherical SiO_(2)core and CeO_(2)shell,and the highly dispersed Ni alloy nanoparticles are the interlayer between core and shell.The oxygen vacancy concentration of Ni-M/SiO_(2)@CeO_(2)followed the order of Co>Cu>Fe>Mn>Zr,and Ni alloying with transition metals significantly enhanced oxygen storage capacity(OSC).Ni-Co/SiO_(2)@CeO_(2)catalyst with abundant oxygen vacancies and a high OSC showed the lowest temperatures of CH_(4)activation(610℃)and CO_(2)decomposition(590℃),thus demonstrating excellent redox reactivity.The catalyst exhibited superior activity and structural stability in the continuous CH_(4)/CO_(2)redox cycles at 615℃,achieving 87%CH_(4)conversion and 83%CO selectivity.The proposed catalyst shows great potential for the utilization of CH_(4)and CO_(2)in a redox mode,providing a new sight for design redox catalyst in chemical looping or related fields. 展开更多
关键词 Chemical looping methane Dry reforming CATALYST Partial Oxidation
下载PDF
Molecular Simulation of Methane Adsorption in Different Micro Porous Activated Carbons at Different Temperatures
17
作者 Rugarabamu John Rwiza 赵东风 +1 位作者 SONG Kunli LI Shi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期1-11,共11页
We employed the previously developed micro porous activated carbon models of different pore sizes ranges of 9-11?,10-12?,and 13-16?that were constructed by molecular simulation method based on a random packing of plat... We employed the previously developed micro porous activated carbon models of different pore sizes ranges of 9-11?,10-12?,and 13-16?that were constructed by molecular simulation method based on a random packing of platelets of carbon sheets,functionalized with oxygen containing groups,to study the adsorption behavior of methane molecules.In studying methane adsorption behavior,we used Grand Canonical Monte Carlo and Molecular Dynamics methods at different temperatures of 273.15,298.15 and303.15 K.Adsorption isotherms,isosteric heats of adsorption,adsorption energy distributions and porosity changes of the models during adsorption process were analyzed and discussed.Furthermore,radial distribution Functions,relative distribution and diffusion coefficients of methane molecules in activated carbon models at different temperatures were studied.After the analysis,the main results indicated that large micro pores activated carbons were favorable for storing methane at lower temperatures and small micro pores were the most favorable for adsorbing methane molecules at higher temperatures.Interestingly,the developed model structures showed high capacities to store methane molecule at ambient temperatures and low pressure. 展开更多
关键词 Molecular simulation activated carbon methane adsorption MD GCMC
下载PDF
Negligible Warming Caused by Nord Stream Methane Leaks
18
作者 Xiaolong CHEN Tianjun ZHOU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第4期549-552,共4页
Unanticipated sabotage of two underwater pipelines in the Baltic Sea(Nord Stream 1 and 2)happened on 26September 2022.Massive quantities of natural gas,primarily methane,were released into the atmosphere,which lasted ... Unanticipated sabotage of two underwater pipelines in the Baltic Sea(Nord Stream 1 and 2)happened on 26September 2022.Massive quantities of natural gas,primarily methane,were released into the atmosphere,which lasted for about one week.As a more powerful greenhouse gas than CO_(2),the potential climatic impact of methane is a global concern.Using multiple methods and datasets,a recent study reported a relatively accurate magnitude of the leaked methane at 0.22±0.03 million tons(Mt),which was lower than the initial estimate in the immediate aftermath of the event.Under an energy conservation framework used in IPCC AR6,we derived a negligible increase in global surface air temperature of 1.8×10^(-5)℃ in a 20-year time horizon caused by the methane leaks with an upper limit of 0.25 Mt.Although the resultant warming from this methane leak incident was minor,future carbon release from additional Earth system feedbacks,such as thawing permafrost,and its impact on the methane mitigation pathways of the Paris Agreement,warrants investigation. 展开更多
关键词 Nord Stream methane leak global warming potential climatic impact
下载PDF
Selective Hydrogenation of Polycyclic Aromatics to Monocyclic Aromatics over NiMoC/HβCatalysts in a Methane and Hydrogen Environment
19
作者 Shen Zhibing Fu Rao +7 位作者 Zhang Shangli Wang Shunmei Zhang Wu Tang Ruiyuan Liang Shengrong Zhang Juntao Yuan Shibao Jiang Haiyan 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第2期92-100,共9页
To obtain high yields of monocyclic aromatic hydrocarbons with methyl side chains,such as toluene and xylene,methane(CH_(4))can be introduced into the hydrocracking of polycyclic aromatic hydrocarbons.CH_(4)can partic... To obtain high yields of monocyclic aromatic hydrocarbons with methyl side chains,such as toluene and xylene,methane(CH_(4))can be introduced into the hydrocracking of polycyclic aromatic hydrocarbons.CH_(4)can participate in the reaction,supply methyl side chains to the product,and improve product distribution.In this study,the hydrogenation reaction of polycyclic aromatic hydrocarbons over a carbonized NiMo/Hβcatalyst in a CH_(4)and hydrogen(H_(2))environment was investigated to study the promotional effect of CH_(4)on the hydrocracking of polycyclic aromatics.Under conditions of 3.5 MPa,380℃,volume air velocity of 4 h^(-1),gas-oil volume ratio of 800,and H_(2):CH_(4)molar ratio of 1:1,the conversion rate of naphthalene was 99.97%,the liquid phase yield was 93.62%,and the selectivity of BTX were 17.76%,25.17%,and 20.47%,respectively.In comparison to the use of a H_(2)atmosphere,the selectivity of benzene was significantly decreased,whereas the selectivity of toluene and xylene were increased.It was shown that CH_(4)can participate in the hydrocracking of naphthalene and improve the selectivity of toluene and xylene in the liquid product.The carbonized NiMo/Hβcatalyst was characterized by a range of analytical methods(such as X-ray diffraction(XRD),ammonia-temperature-programmed desorption(NH3-TPD),hydrogen-temperature-programmed reduction(H_(2)-TPR),and X-ray photoelectron spectroscopy(XPS)).The results indicated that Ni and Mo carbides were the major species in the carbonized NiMo/Hβcatalyst and were considered to be active sites for the activation of CH_(4)and H_(2).After loading the metal components,the catalyst displayed prominent weak acidic sites,which may be suitable locations for cracking,alkylation,and other related reactions.Therefore,the carbonized NiMo/Hβcatalyst displayed multiple functions during the hydrocracking of polycyclic aromatic hydrocarbons in a CH_(4)and H_(2)environment.These results could be used to develop a new way to efficiently utilize polycyclic aromatic hydrocarbons and natural gas resources. 展开更多
关键词 methane polycyclic aromatic hydrocarbons HYDROCRACKING NiMoC/Hβ TOLUENE XYLENE
下载PDF
Dietary supplementation with xylooligosaccharides and exogenous enzyme improves milk production,energy utilization efficiency and reduces enteric methane emissions of Jersey cows
20
作者 Lifeng Dong Lei Zhao +5 位作者 Bowei Li Yanhua Gao Tianhai Yan Peter Lund Zhuofan Liu Qiyu Diao 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第6期2514-2524,共11页
Background Sustainable strategies for enteric methane(CH_(4))mitigation of dairy cows have been extensively explored to improve production performance and alleviate environmental pressure.The present study aimed to in... Background Sustainable strategies for enteric methane(CH_(4))mitigation of dairy cows have been extensively explored to improve production performance and alleviate environmental pressure.The present study aimed to investigate the effects of dietary xylooligosaccharides(XOS)and exogenous enzyme(EXE)supplementation on milk production,nutrient digestibility,enteric CH_(4) emissions,energy utilization efficiency of lactating Jersey dairy cows.Forty-eight lactating cows were randomly assigned to one of 4 treatments:(1)control diet(CON),(2)CON with 25 g/d XOS(XOS),(3)CON with 15 g/d EXE(EXE),and(4)CON with 25 g/d XOS and 15 g/d EXE(XOS+EXE).The 60-d experimental period consisted of a 14-d adaptation period and a 46-d sampling period.The enteric CO_(2)and CH_(4) emissions and O2 consumption were measured using two GreenFeed units,which were further used to determine the energy utilization efficiency of cows.Results Compared with CON,cows fed XOS,EXE or XOS+EXE significantly(P<0.05)increased milk yield,true protein and fat concentration,and energy-corrected milk yield(ECM)/DM intake,which could be reflected by the significant improvement(P<0.05)of dietary NDF and ADF digestibility.The results showed that dietary supplementation of XOS,EXE or XOS+EXE significantly(P<0.05)reduced CH_(4) emission,CH_(4)/milk yield,and CH_(4)/ECM.Furthermore,cows fed XOS demonstrated highest(P<0.05)metabolizable energy intake,milk energy output but lowest(P<0.05)of CH_(4) energy output and CH_(4) energy output as a proportion of gross energy intake compared with the remaining treatments.Conclusions Dietary supplementary of XOS,EXE or combination of XOS and EXE contributed to the improvement of lactation performance,nutrient digestibility,and energy utilization efficiency,as well as reduction of enteric CH_(4) emissions of lactating Jersey cows.This promising mitigation method may need further research to validate its long-term effect and mode of action for dairy cows. 展开更多
关键词 Energy utilization efficiency Enteric methane emissions Exogenous enzyme Jersey cows XYLOOLIGOSACCHARIDES
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部