期刊文献+
共找到29,819篇文章
< 1 2 250 >
每页显示 20 50 100
Experimental Study on Ammonia Co-Firing with Coal for Carbon Reduction in the Boiler of a 300-MW Coal-Fired Power Station
1
作者 Qifu Lin Wangping Sun +15 位作者 Haiyan Li Yangjiong Liu Yuwei Chen Chengzhou Liu Yiman Jiang Yu Cheng Ning Ma Huaqing Ya Longwei Chen Shidong Fang Hansheng Feng Guang-Nan Luo Jiangang Li Kaixin Xiang Jie Cong Cheng Cheng 《Engineering》 SCIE EI CAS CSCD 2024年第9期247-259,共13页
To reduce CO_(2) emissions from coal-fired power plants,the development of low-carbon or carbon-free fuel combustion technologies has become urgent.As a new zero-carbon fuel,ammonia(NH_(3))can be used to address the s... To reduce CO_(2) emissions from coal-fired power plants,the development of low-carbon or carbon-free fuel combustion technologies has become urgent.As a new zero-carbon fuel,ammonia(NH_(3))can be used to address the storage and transportation issues of hydrogen energy.Since it is not feasible to completely replace coal with ammonia in the short term,the development of ammonia-coal co-combustion technology at the current stage is a fast and feasible approach to reduce CO_(2) emissions from coal-fired power plants.This study focuses on modifying the boiler and installing two layers of eight pure-ammonia burners in a 300-MW coal-fired power plant to achieve ammonia-coal co-combustion at proportions ranging from 20%to 10%(by heat ratio)at loads of 180-to 300-MW,respectively.The results show that,during ammonia-coal co-combustion in a 300-MW coal-fired power plant,there was a more significant change in NO_(x) emissions at the furnace outlet compared with that under pure-coal combustion as the boiler oxygen levels varied.Moreover,ammonia burners located in the middle part of the main combustion zone exhibited a better high-temperature reduction performance than those located in the upper part of the main combustion zone.Under all ammonia co-combustion conditions,the NH_(3) concentration at the furnace outlet remained below 1 parts per million(ppm).Compared with that under pure-coal conditions,the thermal efficiency of the boiler slightly decreased(by 0.12%-0.38%)under different loads when ammonia co-combustion reached 15 t·h^(-1).Ammonia co-combustion in coal-fired power plants is a potentially feasible technology route for carbon reduction. 展开更多
关键词 coal-fired boiler Coal mixing with ammonia Ammonia-coal co-firing Nitrogen oxide(NO_(x)) CO_(2)reduction boiler thermal efficiency
下载PDF
Optimizing Two-Phase Flow Heat Transfer:DCS Hybrid Modeling and Automation in Coal-Fired Power Plant Boilers
2
作者 Ming Yan Caijiang Lu +3 位作者 Pan Shi Meiling Zhang Jiawei Zhang Liang Wang 《Frontiers in Heat and Mass Transfer》 EI 2024年第2期615-631,共17页
In response to escalating challenges in energy conservation and emission reduction,this study delves into the complexities of heat transfer in two-phase flows and adjustments to combustion processes within coal-fired ... In response to escalating challenges in energy conservation and emission reduction,this study delves into the complexities of heat transfer in two-phase flows and adjustments to combustion processes within coal-fired boilers.Utilizing a fusion of hybrid modeling and automation technologies,we develop soft measurement models for key combustion parameters,such as the net calorific value of coal,flue gas oxygen content,and fly ash carbon content,within theDistributedControl System(DCS).Validated with performance test data,thesemodels exhibit controlled root mean square error(RMSE)and maximum absolute error(MAXE)values,both within the range of 0.203.Integrated into their respective automatic control systems,thesemodels optimize two-phase flow heat transfer,finetune combustion conditions,and mitigate incomplete combustion.Furthermore,this paper conducts an in-depth exploration of the generationmechanismof nitrogen oxides(NOx)and low oxygen emission reduction technology in coal-fired boilers,demonstrating a substantial reduction in furnace exit NOx generation by 30%to 40%and the power supply coal consumption decreased by 1.62 g/(kW h).The research outcomes highlight the model’s rapid responsiveness,enabling prompt reflection of transient variations in various economic indicator parameters.This provides a more effective means for real-time monitoring of crucial variables in coal-fired boilers and facilitates timely combustion adjustments,underscoring notable achievements in boiler combustion.The research not only provides valuable and practical insights into the intricacies of two-phase flow heat transfer and heat exchange but also establishes a pioneering methodology for tackling industry challenges. 展开更多
关键词 Two-phase flow coal-fired boiler oxygen content of flue gas carbon content in fly ash hybrid modeling automation control
下载PDF
INTRODUCTION TO INCONEL ALLOY 740: AN ALLOY DESIGNED FOR SUPERHEATER TUBING IN COAL-FIRED ULTRA SUPERCRITICAL BOILERS 被引量:19
3
作者 S.J. Patel 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2005年第4期479-488,共10页
Chinese utilities as well as those worldwide are facing increased demand for additional electricity, reduced plant emissions and greater efficiency. To meet this challenge will require increasing boiler temperature, p... Chinese utilities as well as those worldwide are facing increased demand for additional electricity, reduced plant emissions and greater efficiency. To meet this challenge will require increasing boiler temperature, pressure and coal ash corrosion resistance of the materials of boiler construction of future coal-fired boilers. A new nickel-based tube alloy, INCONEL^R alloy 740, is described aiming at meeting this challenge. Emphasis will be on describing the alloy' s mechanical properties, coal-ash and steam corrosion resistance. Microstructural stability as a function of temperature and time is addressed as well as some of the early methodology em- ployed to arrive at the current chemical composition. 展开更多
关键词 ultrasupercritical boiler tubing INCONEL coal-fired
下载PDF
NO_x emission model for coal-fired boilers using partial least squares and extreme learning machine 被引量:4
4
作者 Dong Ze Ma Ning Li Changqing 《Journal of Southeast University(English Edition)》 EI CAS 2019年第2期179-184,共6页
To implement a real-time reduction in NOx,a rapid and accurate model is required.A PLS-ELM model based on the combination of partial least squares(PLS)and the extreme learning machine(ELM)for the establishment of the ... To implement a real-time reduction in NOx,a rapid and accurate model is required.A PLS-ELM model based on the combination of partial least squares(PLS)and the extreme learning machine(ELM)for the establishment of the NOx emission model of utility boilers is proposed.First,the initial input variables of the NOx emission model are determined according to the mechanism analysis.Then,the initial input data is extracted by PLS.Finally,the extracted information is used as the input of the ELM model.A large amount of real data was obtained from the distributed control system(DCS)historical database of a 1 000 MW power plant boiler to train and validate the PLS-ELM model.The modeling performance of the PLS-ELM was compared with that of the back propagation(BP)neural network,support vector machine(SVM)and ELM models.The mean relative errors(MRE)of the PLS-ELM model were 1.58%for the training dataset and 1.69%for the testing dataset.The prediction precision of the PLS-ELM model is higher than those of the BP,SVM and ELM models.The consumption time of the PLS-ELM model is also shorter than that of the BP,SVM and ELM models. 展开更多
关键词 NOx emission partial least squares extreme learning machine coal-fired boiler
下载PDF
Feasibility Analysis on the Integrated Application of Solar Energy, Biogas, Coal-fired Boiler and Radiant Floor Heating for Rural Residence 被引量:3
5
作者 JIN Junjie TANG Zhonghua +2 位作者 GAO Lifu TANG Li ZHANG Xiaodong 《Journal of Landscape Research》 2013年第4期12-14,共3页
The feasibility of adopting a balanced energy mix mode (domestic solar energy, biogas, coal-fired boiler and radiant floor heating) was proposed. Taking a typical rural residence in Zhengzhou City for example, the stu... The feasibility of adopting a balanced energy mix mode (domestic solar energy, biogas, coal-fired boiler and radiant floor heating) was proposed. Taking a typical rural residence in Zhengzhou City for example, the study through theoretical analysis and calculation showed that such a balanced energy mix is an economic way and efficient in saving energy and reducing air pollution, and elaborated the theoretical feasibility of popularizing such a heat supply mode in rural areas. 展开更多
关键词 Solar energy COLLECTOR BIOGAS coal-fired boiler Radiant FLOOR HEATING
下载PDF
Sliding Mode Predictive Control of Main Steam Pressure in Coal-fired Power Plant Boiler 被引量:4
6
作者 史元浩 王景成 章云锋 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第6期1107-1112,共6页
Since the combustion system of coal-fired boiler in thermal power plant is characterized as time varying, strongly coupled, and nonlinear, it is hard to achieve a satisfactory performance by the conventional proportio... Since the combustion system of coal-fired boiler in thermal power plant is characterized as time varying, strongly coupled, and nonlinear, it is hard to achieve a satisfactory performance by the conventional proportional integral derivative (PID) control scheme. For the characteristics of the main steam pressure in coal-fired power plant boiler, the sliding mode control system with Smith predictive structure is proposed to look for performance and robustness improvement. First, internal model control (IMC) and Smith predictor (SP) is used to deal with the time delay, and sliding mode controller (SMCr) is designed to overcome the model mismatch. Simulation results show the effectiveness of the proposed controller compared with conventional ones. 展开更多
关键词 coal fired power plant boiler combustion system main steam pressure sliding mode control Smith predictor internal model control
下载PDF
Investigation of the Effects of a Large Percentage of Dried Sludge on the Operation of a Coal-Fired Boiler 被引量:1
7
作者 Jialin Tong Yan Zhang +2 位作者 Ruikang Wu Xiaojuan Qi Xuemin Ye 《Fluid Dynamics & Materials Processing》 EI 2023年第4期1027-1041,共15页
A 600 MW coal-fired boiler with a four-corner tangential combustion mode is considered here to study the combustion features and pollutant emissions at different loads for large-percentages of blending dried sludges.T... A 600 MW coal-fired boiler with a four-corner tangential combustion mode is considered here to study the combustion features and pollutant emissions at different loads for large-percentages of blending dried sludges.The influence of the over-fired air(OFA)coefficient is examined and the impact of the blending ratio on the boiler operation is explored.The results show that for low blending ratios,a slight increase in the blending ratio can improve the combustion of bituminite,whereas a further increase leads to the deterioration of the combustion of blended fuels and thus reduces the boiler efficiency.Enhancing the supporting capability of the secondary air effectively reduces the slagging degree in the bottom ash hopper and improves the burnout rate of coals.For a large-percentage blending case at full load,it is found that the OFA coefficient must be reduced appropriately,otherwise,a secondary high-temperature combustion zone can be generated in the vicinity of the furnace arches,causing high temperature slagging and superheater tube bursting.Considering the influences of combustion and pollutant emissions,the recommended OFA coefficient is 0.2.Blending dried sludge under low loads increases the flue gas temperature at the furnace exit.While reducing the flue gas temperature in the main combustion region,which is beneficial to the safe operation of the denitrification system.Increasing the blending ratio and reducing load lead to an increase in NOx concentration at the furnace exit Sludges with low nitrogen content are suggested for the practical operation of boilers. 展开更多
关键词 Blending ratio boiler load COMBUSTION pollutant emission over-fired air(OFA)coefficient numerical simulation
下载PDF
System Performance and Pollution Emission of Biomass Gas Co-Firing in a Coal-Fired Boiler
8
作者 Sikandar Abid Xiaotao Zhang +3 位作者 Weidong Zhang Haoliang Mu Chengyu Zhang Aijun Wang 《Journal of Power and Energy Engineering》 2020年第10期18-25,共8页
To reduce greenhouse gases emission and increase the renewable energy uti</span><span style="font-family:Verdana;">lization portion in the world, the biomass gasification coupled with a coal-fire... To reduce greenhouse gases emission and increase the renewable energy uti</span><span style="font-family:Verdana;">lization portion in the world, the biomass gasification coupled with a coal-fired </span><span style="font-family:Verdana;">boiler power generation system is studied. It is a challenge to achieve optimum performance for the coupled system. The models of biomass gasification coupled with co-firing of coal in a boiler have been established. A comparative study of three kinds of biomass (Food Rubbish, Straw and Wood Pellets) has </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">been </span></span></span><span><span><span><span style="font-family:Verdana;">done. The syngas produced in a 10 t/h gasifier is fed to a 330 MWe coal-fired boiler for co-combustion, and the co-firing performances have been compared with pure coal combustion case under the conditions of constant boiler load. Results show that co-firing decreases the furnace combustion temperature and raises the flue gas temperature for Food Rubbish and Straw, while, flue gases temperature decrease in case of Wood Pellets. At the same time NO<sub>x</sub> and SO<sub>x</sub> emissions have reduced. The system efficiencies at constant load for Food Rubbish, Straw and Wood Pellets are 83.25%, </span><span style="font-family:Verdana;">83.88% and 82.56% when the optimum conditions of gasification and co-firing </span><span style="font-family:Verdana;">process are guaranteed. 展开更多
关键词 Biomass Gasification coal-fired boiler System Efficiency Optimal Air to Biomass Ratio
下载PDF
Critical materials selection for 700℃clean and high-efficiency coal-fired boiler
9
作者 WU Zhiying and CUI Zhengqiang Shanghai Power Equipment Research Institute,Shanghai 200240,China 《Baosteel Technical Research》 CAS 2010年第S1期70-,共1页
One of the pathways for achieving the goal of increasing the efficiency of coal-fired power plants and reducing the emission of pollutants and CO_2 is by improving the steam temperature and pressure.But the increase o... One of the pathways for achieving the goal of increasing the efficiency of coal-fired power plants and reducing the emission of pollutants and CO_2 is by improving the steam temperature and pressure.But the increase of steam parameters depend on the development of new high-temperature metal materials.This paper presented the constructive suggestions on critical materials selection for China's new generation of 700℃clean and high-efficiency coal-fired boiler by summarizing the research and development situation of critical materials for coal-fired boilers operating at 700℃/35 MPa of the Europe,Japan and USA. 展开更多
关键词 700℃ boiler critical materials SELECTION
下载PDF
Comprehensive evaluation for efficient development of coal-fired Industry boiler clearing
10
作者 WU Li-xin 《煤炭加工与综合利用》 CAS 2017年第10期I0001-I0001,共1页
The Paper has introduced development of domesticand foreign coal-fired industry boiler and has implementedcomprehensive comparison for several substitution technologies(coal powder boiler, coal water mixture boiler, ... The Paper has introduced development of domesticand foreign coal-fired industry boiler and has implementedcomprehensive comparison for several substitution technologies(coal powder boiler, coal water mixture boiler, coal-fired boiler,gas-fired boiler and biomass boiler, etc.) of backward coal-firedindustrial boiler in technology, economy and environment, etc.;has evaluated comprehensive effect and adaptiveconditions of coal-fired industry boiler technology and has put forward suggestion forefficient development of coal-fired industry boiler clearing. 展开更多
关键词 coal-fired industrial boiler CLEAR EFFICIENT COMPREHENSIVE evaluation
下载PDF
Numerical simulation of NO_x formation in a cyclone-opposed coal-fired utility boiler
11
作者 李芳芹 任建兴 魏敦崧 《Journal of Coal Science & Engineering(China)》 2005年第1期71-73,共3页
In this paper, FLUENT software was used to simulate the burning process in a utility boiler. Chose the kinetics/diffusion-limited as combustion model, two-competing-rates as devolatilization model, RNG k-εmodel as vi... In this paper, FLUENT software was used to simulate the burning process in a utility boiler. Chose the kinetics/diffusion-limited as combustion model, two-competing-rates as devolatilization model, RNG k-εmodel as viscous model, and PDF model as combustion turbulent flow model. Numerical calculation of NOx formation in a 330 MW cyclone-opposed coal-fired utility boiler with 32 double air registers was done. The distribution characteristics of temperature, NOx and oxygen concentration in furnace were studied. They were symmetrically distributed in furnace. In the combustion area, temperature and NOx concentration are high, while oxygen concentration is low. Temperature and NOx concentration are declined gradually along with furnace height, while oxygen concentration is raised. The higher the temperature is and the greater the excess air coefficient is, the more NOx formation. 展开更多
关键词 swirl-opposed boiler numerical simulation COMBUSTION NOx
下载PDF
Experimental investigation of NO_x emisssion in a coal-fired utility boiler
12
作者 李芳芹 任建兴 《Journal of Coal Science & Engineering(China)》 2006年第1期101-104,共4页
Based on the investigation of NOx formation mechanism, a coal-fired utility boiler whose capacity is 1 004 t/h was studied. Excessive air coefficient, inclination of burner and the way of coal supply were investigated... Based on the investigation of NOx formation mechanism, a coal-fired utility boiler whose capacity is 1 004 t/h was studied. Excessive air coefficient, inclination of burner and the way of coal supply were investigated through experimental method. Resuits indicated that under the condition of same boiler efficiency and burn-off rate, the operation conditions adopting the lower excessive air coefficient, upward burners' inclination and pyramid coal-supply could reduce NOx emission. 展开更多
关键词 NOx emission operation condition utility boiler
下载PDF
800-MW Supercritical Coal-Fired Boilers in Suizhong Power Plant
13
作者 ZouHaifeng LiZhishan LiuZhongqi 《Electricity》 2005年第2期30-33,共4页
This article reviews the problems of Russia-made 800-MW coal-fired supercritical boilers in Suizhong Power Plant, such as burner bumout, water-wall leakage, slag screenⅠexplosion, crack happened on the desuperheater ... This article reviews the problems of Russia-made 800-MW coal-fired supercritical boilers in Suizhong Power Plant, such as burner bumout, water-wall leakage, slag screenⅠexplosion, crack happened on the desuperheater outlet of reheater and welding defect of economizer; tells the process of renovating these units by modifying the original design and adjusting the operation parameters. After several years' effort, all the problems have been well solved. The experience may be useful for other imported units in China. 展开更多
关键词 supercritical boiler boiler operation boiler tube leakage
下载PDF
Influence of Recirculated Flue Gas Distribution on Combustion and NOx Formation Characteristics in S-CO_(2) Coal-fired Boiler
14
作者 Peipei WANG Mingyan GU +3 位作者 Yao FANG Boyu JIANG Mingming WANG Ping CHEN 《Mechanical Engineering Science》 2021年第2期42-52,共11页
Supercritical carbon dioxide(S-CO_(2))Brayton power cycle power generation technology,has attracted more and more scholars'attention in recent years because of its advantages of high efficiency and flexibility.Com... Supercritical carbon dioxide(S-CO_(2))Brayton power cycle power generation technology,has attracted more and more scholars'attention in recent years because of its advantages of high efficiency and flexibility.Compared with conventional steam boilers,S-CO_(2) has different heat transfer characteristics,it is easy to cause the temperature of the cooling wall of the boiler to rise,which leads to higher combustion gas temperature in the furnace,higher NOX generation concentration.The adoption of flue gas recirculation has a significance impact on the combustion process of pulverized coal in the boiler,and it is the most effective ways to reduce the emission of NOX and the combustion temperature in the boiler.This paper takes 1000MW S-CO_(2) T-type coal-fired boiler as the research target to investigate the combustion and NOX generation characteristics of S-CO_(2) coal-fired boilers under flue gas recirculation condition,the influence of recirculated flue gas distribution along the furnace height on the characteristics of NOX formation and the combustion of pulverized coal.The results show that the recirculated flue gas distribution has the great impact on the concentration of NOX at the boiler outlet.When the bottom recirculation flue gas rate is gradually increased,the average temperature of the lower boiler decreases and the average temperature of the upper boiler increases slightly;The concentration of NOx at the furnace outlet increases. 展开更多
关键词 S-CO_(2)boiler Pulverized coal combustion NOX emission Flue gas recirculation Recirculated flue gas distribution
下载PDF
Considerations on FGD in Coal-Fired Power Plants 被引量:9
15
作者 赵鹏高 《Electricity》 2004年第4期36-40,共5页
Aiming at issues on flue gas des-ulfurization facing coal-fired power plants inChina, such as process selection, whetheradopting flue gas desulfurization (FGD) or not,qualification of flue gas desulfurization en-ginee... Aiming at issues on flue gas des-ulfurization facing coal-fired power plants inChina, such as process selection, whetheradopting flue gas desulfurization (FGD) or not,qualification of flue gas desulfurization en-gineering company, the localization of technicalequipment, charge for SO2 emission andnormalized management, this article makes acomprehensive analysis and puts forwardconstructive suggestions. These will providesome references for those being engaged in fluegas desulfurization in coal-fired power plants.[ 展开更多
关键词 coal-fired power plant FGD process selection charge for SO2 emission
下载PDF
A novel carbon trap sampling system for coal-fired flue gas mercury measurement
16
作者 汤红健 段钰锋 +3 位作者 朱纯 周强 佘敏 蔡亮 《Journal of Southeast University(English Edition)》 EI CAS 2015年第2期244-248,共5页
A novel carbon trap sampling system for gas-phase mercury measurement in flue gas is developed, including the high efficient sorbents made of modified biomass cokes and high precision sorbent traps for measuring parti... A novel carbon trap sampling system for gas-phase mercury measurement in flue gas is developed, including the high efficient sorbents made of modified biomass cokes and high precision sorbent traps for measuring particle-bound and total vapor-phase mercury in flue gas. A dedusting device is installed to collect fine fly ash for reducing the measurement errors. The thorough comparison test of mercury concentration in flue gas is conducted between the novel sampling system and the Ontario hydro method (OHM) in a 6 kW circulating fluidized bed combustor. Mercury mass balance rates of the OHM range from 95.47% to 104.72%. The mercury breakthrough rates for the second section of the sorbent trap are all below 2%. The relative deviations in the two test cases are in the range of 15. 96% to 17. 56% under different conditions. The verified data suggest that this novel carbon trap sampling system can meet the standards of quality assurance and quality control required by EPA Method 30B and can be applied to the coal-fired flue gas mercury sampling system. 展开更多
关键词 mercury sorbent trap coal-fired flue gas mercury sampling unit
下载PDF
Influence of flue gas cleaning system on characteristics of PM_(2.5)emission from coal-fired power plants 被引量:18
17
作者 Ao Wang Qiang Song +3 位作者 Gongming Tu Hui Wang Yong Yue Qiang Yao 《International Journal of Coal Science & Technology》 EI CAS 2014年第1期4-12,共9页
This study investigated the influence of precipitators and wet flue gas desulfurization equipment on characteristics of PM_(2.5)emission from coal-fired power stations.We measured size distribution and removal efficie... This study investigated the influence of precipitators and wet flue gas desulfurization equipment on characteristics of PM_(2.5)emission from coal-fired power stations.We measured size distribution and removal efficiencies,including hybrid electrostatic precipitator/bag filters(ESP/BAGs)which have rarely been studied.A bimodal distribution of particle concentrations was observed at the inlet of each precipitator.After the precipitators,particle concentrations were significantly reduced.Although a bimodal distribution was still observed,all peak positions shifted to the smaller end.The removal efficiencies of hybrid ESP/BAGs reached 99%for PM_(2.5),which is considerably higher than those for other types of precipitators.In particular,the influence of hybrid ESP/BAG operating conditions on the performance of dust removal was explored.The efficiency of hybrid ESP/BAGs decreased by 1.9%when the first electrostatic field was shut down.The concentrations and distributions of particulate matter were also measured in three coal-fired power plants before and after desulfurization devices.The results showed diverse removal efficiencies for different desulfurization towers.The reason for the difference requires further research.We estimated the influence of removal technology for particulate matter on total emissions in China.Substituting ESPs with hybrid ESP/BAGs could reduce the total emissions to 104.3 thousand tons,with 47.48 thousand tons of PM_(2.5). 展开更多
关键词 coal-fired power station PRECIPITATION PM_(2.5) Emission characteristics Electrostatic precipitator ESP/BAG
下载PDF
Environmental life cycle assessment of Indian coal-fired power plants 被引量:6
18
作者 Udayan Singh Naushita Sharma Siba Sankar Mahapatra 《International Journal of Coal Science & Technology》 EI 2016年第2期215-225,共11页
Coal is the backbone of the Indian power sector. The coal-fired power plants remain the largest emitters of carbon dioxide, sulfur dioxide and substantial amounts of nitrogen oxides, which are associated with climate ... Coal is the backbone of the Indian power sector. The coal-fired power plants remain the largest emitters of carbon dioxide, sulfur dioxide and substantial amounts of nitrogen oxides, which are associated with climate and health impacts. Various CO2 mitigation technologies (carbon capture and storage--CCS) and SO2/NOx mitigation technologies (flue gas desulfurization and selective catalytic reduction) have been employed to reduce the environmental impacts of the coal-fired power plants. Therefore, it is imperative to understand the feasibility of various mitigation technologies employed. This paper attempts to perform environmental life cycle assessment (LCA) of Indian coal-fired power plant with and without CO2, SO2 and NOx mitigation controls. The study develops new normalization factors for India in various damage categories, using the Indian emissions and energy consumption data, coupled with the emissions and particulate emission to come up with a final environmental impact of coal-fired electricity. The results show a large degree of dependence on the perspective of assessment used. The impact of sensitivities of individual substances and the effect of plant efficiency on the final LCA results is also studied. 展开更多
关键词 Lifeinventory Fluecycle assessment coal-fired power plants - Carbon capture and storage Environmental impact Plantgas desulfurization
下载PDF
Progress and prospects of innovative coal-fired power plants within the energy internet 被引量:7
19
作者 Yongping Yang Chengzhou Li +1 位作者 Ningling Wang Zhiping Yang 《Global Energy Interconnection》 2019年第2期160-179,共20页
The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy ... The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy internet. Progressive penetration of intermittent renewable energy sources into the energy system has led to unprecedented challenges to the currently wide use of coal-fired power generation technologies. Here, the applications and prospects of advanced coal-fired power generation technologies are analyzed. These technologies can be summarized into three categories:(1) large-scale and higher parameters coal-fired power generation technologies, including 620/650/700 oC ultra-supercritical thermal power and double reheat ultra-supercritical coal-fired power generation technologies;(2) system innovation and specific, highefficiency thermal cycles, which consist of renewable energy-aided coal-fired power generation technologies, a supercritical CO_2 Brayton cycle for coal-fired power plants, large-scale air-cooling coal-fired power plant technologies, and innovative layouts for waste heat utilization and enhanced energy cascade utilization;(3) coal-fired power generation combined with poly-generation technologies, which are represented by integrated gasification combined cycle(IGCC) and integrated gasification fuel cell(IGFC) technologies. Concerning the existing coal-fired power units, which are responsible for peak shaving, possible strategies for enhancing flexibility and operational stability are discussed. Furthermore, future trends for coal-fired power plants coupled with cyber-physical system(CPS) technologies are introduced. The development of advanced, coal-fired power generation technologies demonstrates the progress of science and is suitable for the sustainable development of human society. 展开更多
关键词 En ergy In ternet coal-fired POWER GEN eration FLEXIBILITY Cyber-physical system Smart POWER plant
下载PDF
Formation and emission characteristics of VOCs from a coal-fired power plant 被引量:3
20
作者 Jingying Xu Yue Lyu +3 位作者 Jiankun Zhuo Yishu Xu Zijian Zhou Qiang Yao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第7期256-264,共9页
On-site measurements of volatile organic compounds(VOCs)in different streams of flue gas were carried out on a real coal-fired power plant using sampling bags and SUMMA canisters to collect gas samples,filters to coll... On-site measurements of volatile organic compounds(VOCs)in different streams of flue gas were carried out on a real coal-fired power plant using sampling bags and SUMMA canisters to collect gas samples,filters to collect particle samples.Gas chromatography-flame ionization detector/mass spectrometry and gas chromatography-mass spectrometry was the offline analysis method.We found that the total mass concentration of the tested 102 VOC species at the outlet of wet flue gas desulfuration device was(13456±47)μg·m^(-3),which contained aliphatic hydrocarbons(57.9%),aromatic hydrocarbons(26.8%),halogen-containing species(14.5%),and a small amount of oxygen-containing and nitrogencontaining species.The most abundant species were 1-hexene,n-hexane and 2-methylpentane.The top ten species in terms of mass fraction(with a total mass fraction of 75.3%)were mainly hydrocarbons with a carbon number of 6 or higher and halogenated hydrocarbons with a lower carbon number.The mass concentration of VOC species in the particle phase was significantly lower than that in the gas phase.The change of VOC mass concentrations along the air pollution control devices indicates that conventional pollutant control equipment had a limited effect on VOC reduction.Ozone formation potential calculations showed that aromatic hydrocarbons contributed the highest ozone formation(46.4%)due to their relatively high mass concentrations and MIR(maximum increment reactivity)values. 展开更多
关键词 Volatile organic compounds Coal combustion Ozone formation potential coal-fired power plant On-site measurement
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部