期刊文献+
共找到3,451篇文章
< 1 2 173 >
每页显示 20 50 100
Influence of Recirculated Flue Gas Distribution on Combustion and NOx Formation Characteristics in S-CO_(2) Coal-fired Boiler
1
作者 Peipei WANG Mingyan GU +3 位作者 Yao FANG Boyu JIANG Mingming WANG Ping CHEN 《Mechanical Engineering Science》 2021年第2期42-52,共11页
Supercritical carbon dioxide(S-CO_(2))Brayton power cycle power generation technology,has attracted more and more scholars'attention in recent years because of its advantages of high efficiency and flexibility.Com... Supercritical carbon dioxide(S-CO_(2))Brayton power cycle power generation technology,has attracted more and more scholars'attention in recent years because of its advantages of high efficiency and flexibility.Compared with conventional steam boilers,S-CO_(2) has different heat transfer characteristics,it is easy to cause the temperature of the cooling wall of the boiler to rise,which leads to higher combustion gas temperature in the furnace,higher NOX generation concentration.The adoption of flue gas recirculation has a significance impact on the combustion process of pulverized coal in the boiler,and it is the most effective ways to reduce the emission of NOX and the combustion temperature in the boiler.This paper takes 1000MW S-CO_(2) T-type coal-fired boiler as the research target to investigate the combustion and NOX generation characteristics of S-CO_(2) coal-fired boilers under flue gas recirculation condition,the influence of recirculated flue gas distribution along the furnace height on the characteristics of NOX formation and the combustion of pulverized coal.The results show that the recirculated flue gas distribution has the great impact on the concentration of NOX at the boiler outlet.When the bottom recirculation flue gas rate is gradually increased,the average temperature of the lower boiler decreases and the average temperature of the upper boiler increases slightly;The concentration of NOx at the furnace outlet increases. 展开更多
关键词 S-CO_(2)boiler Pulverized coal combustion NOX emission Flue gas recirculation Recirculated flue gas distribution
下载PDF
Experimental Study on Ammonia Co-Firing with Coal for Carbon Reduction in the Boiler of a 300-MW Coal-Fired Power Station
2
作者 Qifu Lin Wangping Sun +15 位作者 Haiyan Li Yangjiong Liu Yuwei Chen Chengzhou Liu Yiman Jiang Yu Cheng Ning Ma Huaqing Ya Longwei Chen Shidong Fang Hansheng Feng Guang-Nan Luo Jiangang Li Kaixin Xiang Jie Cong Cheng Cheng 《Engineering》 SCIE EI CAS CSCD 2024年第9期247-259,共13页
To reduce CO_(2) emissions from coal-fired power plants,the development of low-carbon or carbon-free fuel combustion technologies has become urgent.As a new zero-carbon fuel,ammonia(NH_(3))can be used to address the s... To reduce CO_(2) emissions from coal-fired power plants,the development of low-carbon or carbon-free fuel combustion technologies has become urgent.As a new zero-carbon fuel,ammonia(NH_(3))can be used to address the storage and transportation issues of hydrogen energy.Since it is not feasible to completely replace coal with ammonia in the short term,the development of ammonia-coal co-combustion technology at the current stage is a fast and feasible approach to reduce CO_(2) emissions from coal-fired power plants.This study focuses on modifying the boiler and installing two layers of eight pure-ammonia burners in a 300-MW coal-fired power plant to achieve ammonia-coal co-combustion at proportions ranging from 20%to 10%(by heat ratio)at loads of 180-to 300-MW,respectively.The results show that,during ammonia-coal co-combustion in a 300-MW coal-fired power plant,there was a more significant change in NO_(x) emissions at the furnace outlet compared with that under pure-coal combustion as the boiler oxygen levels varied.Moreover,ammonia burners located in the middle part of the main combustion zone exhibited a better high-temperature reduction performance than those located in the upper part of the main combustion zone.Under all ammonia co-combustion conditions,the NH_(3) concentration at the furnace outlet remained below 1 parts per million(ppm).Compared with that under pure-coal conditions,the thermal efficiency of the boiler slightly decreased(by 0.12%-0.38%)under different loads when ammonia co-combustion reached 15 t·h^(-1).Ammonia co-combustion in coal-fired power plants is a potentially feasible technology route for carbon reduction. 展开更多
关键词 coal-fired boiler Coal mixing with ammonia Ammonia-coal co-firing Nitrogen oxide(NO_(x)) CO_(2)reduction boiler thermal efficiency
下载PDF
Numerical Simulation of Combustion in 660MWTangentially Fired Pulverized Coal Boiler on Ultra-Low Load Operation
3
作者 Xuehui Jing Junchen Guo Zhiyun Wang 《Frontiers in Heat and Mass Transfer》 EI 2024年第3期919-937,共19页
In this paper,the combustion conditions in the boiler furnace of a 660 MWtangential fired pulverized coal boiler are numerically simulated at 15%and 20%rated loads,to study the flexibility of coal-fired power units on... In this paper,the combustion conditions in the boiler furnace of a 660 MWtangential fired pulverized coal boiler are numerically simulated at 15%and 20%rated loads,to study the flexibility of coal-fired power units on ultra-low load operation.The numerical results show that the boiler can operate safely at 15%and 20%ultra-low loads,and the combustion condition in the furnace is better at 20%load,and the tangent circles formed by each characteristic section in the furnace are better,and when the boiler load is decreased to 15%,the tangent circles in the furnace begin to deteriorate.The average flue gas temperature of different areas of the furnace shows that when the boiler furnace operates under ultra-low load conditions,the average smoke temperature of the cold ash hopper at 20%load is basically the same as the average smoke temperature at 15%load;in the burner area,the average smoke temperature of the cold ash hopper at 20%load is about 50 K higher than that at 15%load;in the burned out area,the average smoke temperature of the cold ash hopper at 20%load is slightly higher than that at 15%load.The average temperature of flue gas in the furnace showed a tendency to increase rapidly with the height of the furnace,then slow down and fluctuate the temperature in the burner area,and finally increase slightly in the burnout area due to the further combustion of combustible components to release heat,and then began to decrease. 展开更多
关键词 boiler combustion deep peak shaving ultra-low load numerical simulation
下载PDF
Optimizing Two-Phase Flow Heat Transfer:DCS Hybrid Modeling and Automation in Coal-Fired Power Plant Boilers
4
作者 Ming Yan Caijiang Lu +3 位作者 Pan Shi Meiling Zhang Jiawei Zhang Liang Wang 《Frontiers in Heat and Mass Transfer》 EI 2024年第2期615-631,共17页
In response to escalating challenges in energy conservation and emission reduction,this study delves into the complexities of heat transfer in two-phase flows and adjustments to combustion processes within coal-fired ... In response to escalating challenges in energy conservation and emission reduction,this study delves into the complexities of heat transfer in two-phase flows and adjustments to combustion processes within coal-fired boilers.Utilizing a fusion of hybrid modeling and automation technologies,we develop soft measurement models for key combustion parameters,such as the net calorific value of coal,flue gas oxygen content,and fly ash carbon content,within theDistributedControl System(DCS).Validated with performance test data,thesemodels exhibit controlled root mean square error(RMSE)and maximum absolute error(MAXE)values,both within the range of 0.203.Integrated into their respective automatic control systems,thesemodels optimize two-phase flow heat transfer,finetune combustion conditions,and mitigate incomplete combustion.Furthermore,this paper conducts an in-depth exploration of the generationmechanismof nitrogen oxides(NOx)and low oxygen emission reduction technology in coal-fired boilers,demonstrating a substantial reduction in furnace exit NOx generation by 30%to 40%and the power supply coal consumption decreased by 1.62 g/(kW h).The research outcomes highlight the model’s rapid responsiveness,enabling prompt reflection of transient variations in various economic indicator parameters.This provides a more effective means for real-time monitoring of crucial variables in coal-fired boilers and facilitates timely combustion adjustments,underscoring notable achievements in boiler combustion.The research not only provides valuable and practical insights into the intricacies of two-phase flow heat transfer and heat exchange but also establishes a pioneering methodology for tackling industry challenges. 展开更多
关键词 Two-phase flow coal-fired boiler oxygen content of flue gas carbon content in fly ash hybrid modeling automation control
下载PDF
INTRODUCTION TO INCONEL ALLOY 740: AN ALLOY DESIGNED FOR SUPERHEATER TUBING IN COAL-FIRED ULTRA SUPERCRITICAL BOILERS 被引量:19
5
作者 S.J. Patel 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2005年第4期479-488,共10页
Chinese utilities as well as those worldwide are facing increased demand for additional electricity, reduced plant emissions and greater efficiency. To meet this challenge will require increasing boiler temperature, p... Chinese utilities as well as those worldwide are facing increased demand for additional electricity, reduced plant emissions and greater efficiency. To meet this challenge will require increasing boiler temperature, pressure and coal ash corrosion resistance of the materials of boiler construction of future coal-fired boilers. A new nickel-based tube alloy, INCONEL^R alloy 740, is described aiming at meeting this challenge. Emphasis will be on describing the alloy' s mechanical properties, coal-ash and steam corrosion resistance. Microstructural stability as a function of temperature and time is addressed as well as some of the early methodology em- ployed to arrive at the current chemical composition. 展开更多
关键词 ultrasupercritical boiler tubing INCONEL coal-fired
下载PDF
NO_x emission model for coal-fired boilers using partial least squares and extreme learning machine 被引量:4
6
作者 Dong Ze Ma Ning Li Changqing 《Journal of Southeast University(English Edition)》 EI CAS 2019年第2期179-184,共6页
To implement a real-time reduction in NOx,a rapid and accurate model is required.A PLS-ELM model based on the combination of partial least squares(PLS)and the extreme learning machine(ELM)for the establishment of the ... To implement a real-time reduction in NOx,a rapid and accurate model is required.A PLS-ELM model based on the combination of partial least squares(PLS)and the extreme learning machine(ELM)for the establishment of the NOx emission model of utility boilers is proposed.First,the initial input variables of the NOx emission model are determined according to the mechanism analysis.Then,the initial input data is extracted by PLS.Finally,the extracted information is used as the input of the ELM model.A large amount of real data was obtained from the distributed control system(DCS)historical database of a 1 000 MW power plant boiler to train and validate the PLS-ELM model.The modeling performance of the PLS-ELM was compared with that of the back propagation(BP)neural network,support vector machine(SVM)and ELM models.The mean relative errors(MRE)of the PLS-ELM model were 1.58%for the training dataset and 1.69%for the testing dataset.The prediction precision of the PLS-ELM model is higher than those of the BP,SVM and ELM models.The consumption time of the PLS-ELM model is also shorter than that of the BP,SVM and ELM models. 展开更多
关键词 NOx emission partial least squares extreme learning machine coal-fired boiler
下载PDF
Sliding Mode Predictive Control of Main Steam Pressure in Coal-fired Power Plant Boiler 被引量:4
7
作者 史元浩 王景成 章云锋 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第6期1107-1112,共6页
Since the combustion system of coal-fired boiler in thermal power plant is characterized as time varying, strongly coupled, and nonlinear, it is hard to achieve a satisfactory performance by the conventional proportio... Since the combustion system of coal-fired boiler in thermal power plant is characterized as time varying, strongly coupled, and nonlinear, it is hard to achieve a satisfactory performance by the conventional proportional integral derivative (PID) control scheme. For the characteristics of the main steam pressure in coal-fired power plant boiler, the sliding mode control system with Smith predictive structure is proposed to look for performance and robustness improvement. First, internal model control (IMC) and Smith predictor (SP) is used to deal with the time delay, and sliding mode controller (SMCr) is designed to overcome the model mismatch. Simulation results show the effectiveness of the proposed controller compared with conventional ones. 展开更多
关键词 coal fired power plant boiler combustion system main steam pressure sliding mode control Smith predictor internal model control
下载PDF
Feasibility Analysis on the Integrated Application of Solar Energy, Biogas, Coal-fired Boiler and Radiant Floor Heating for Rural Residence 被引量:3
8
作者 JIN Junjie TANG Zhonghua +2 位作者 GAO Lifu TANG Li ZHANG Xiaodong 《Journal of Landscape Research》 2013年第4期12-14,共3页
The feasibility of adopting a balanced energy mix mode (domestic solar energy, biogas, coal-fired boiler and radiant floor heating) was proposed. Taking a typical rural residence in Zhengzhou City for example, the stu... The feasibility of adopting a balanced energy mix mode (domestic solar energy, biogas, coal-fired boiler and radiant floor heating) was proposed. Taking a typical rural residence in Zhengzhou City for example, the study through theoretical analysis and calculation showed that such a balanced energy mix is an economic way and efficient in saving energy and reducing air pollution, and elaborated the theoretical feasibility of popularizing such a heat supply mode in rural areas. 展开更多
关键词 Solar energy COLLECTOR BIOGAS coal-fired boiler Radiant FLOOR HEATING
下载PDF
Effect of Rare Earth Composite Ceramic Materials on Oil Combustion of Oil-Burning Boiler 被引量:1
9
作者 李奋平 梁金生 +4 位作者 朱东彬 丁燕 王丽娟 梁广川 王亚楠 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第z2期244-247,共4页
The rare earth composite ceramic materials were prepared using rare earths and far infrared natural mineral. The effects of the as-prepared ceramic materials on the oil consumption and air pollutants emissions of oil-... The rare earth composite ceramic materials were prepared using rare earths and far infrared natural mineral. The effects of the as-prepared ceramic materials on the oil consumption and air pollutants emissions of oil-burning boiler were investigated. The results show that the composite ceramic materials can radiate higher intensity of far infrared. The molecular movement is strengthened and the chemical bonds of the molecules are easily ruptured when the diesel oil is dealt with the composite materials. The oil-saving rate of the RBS·VH-1 .5 boiler dealt with the rare earth composite ceramic materials is 3.49%, and the reducing rates of CO and NO in the exhaust gas are 25.4% and 9.7%, respectively. 展开更多
关键词 far infrared composite materials diesel oil combustion boiler oil consumption rare earths
下载PDF
Boiler combustion optimization based on ANN and PSO-Powell algorithm 被引量:1
10
作者 戴维葆 邹平华 +1 位作者 冯明华 董占双 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第2期198-203,共6页
To improve the thermal efficiency and reduce nitrogen oxides (NOx ) emissions in a power plant for energy conservation and environment protection, based on the reconstructed section temperature field and other relat... To improve the thermal efficiency and reduce nitrogen oxides (NOx ) emissions in a power plant for energy conservation and environment protection, based on the reconstructed section temperature field and other related parameters, dynamic radial basis function (RBF) artificial neural network (ANN) models for forecasting unburned carbon in fly ash and NO, emissions in flue gas ware developed in this paper, together with a multi-objective optimization system utilizing particle swarm optimization and Powell (PSO-Powell) algorithm. To validate the proposed approach, a series of field tests were conducted in a 350 MW power plant. The results indicate that PSO-Powell algorithm can improve the capability to search optimization solution of PSO algorithm, and the effectiveness of system. Its prospective application in the optimization of a pulverized coal ( PC ) fired boiler is presented as well. 展开更多
关键词 boiler combustion ANN PSO-Powell algorithm multi-objective optimization section temperature field
下载PDF
Investigation of the Effects of a Large Percentage of Dried Sludge on the Operation of a Coal-Fired Boiler 被引量:1
11
作者 Jialin Tong Yan Zhang +2 位作者 Ruikang Wu Xiaojuan Qi Xuemin Ye 《Fluid Dynamics & Materials Processing》 EI 2023年第4期1027-1041,共15页
A 600 MW coal-fired boiler with a four-corner tangential combustion mode is considered here to study the combustion features and pollutant emissions at different loads for large-percentages of blending dried sludges.T... A 600 MW coal-fired boiler with a four-corner tangential combustion mode is considered here to study the combustion features and pollutant emissions at different loads for large-percentages of blending dried sludges.The influence of the over-fired air(OFA)coefficient is examined and the impact of the blending ratio on the boiler operation is explored.The results show that for low blending ratios,a slight increase in the blending ratio can improve the combustion of bituminite,whereas a further increase leads to the deterioration of the combustion of blended fuels and thus reduces the boiler efficiency.Enhancing the supporting capability of the secondary air effectively reduces the slagging degree in the bottom ash hopper and improves the burnout rate of coals.For a large-percentage blending case at full load,it is found that the OFA coefficient must be reduced appropriately,otherwise,a secondary high-temperature combustion zone can be generated in the vicinity of the furnace arches,causing high temperature slagging and superheater tube bursting.Considering the influences of combustion and pollutant emissions,the recommended OFA coefficient is 0.2.Blending dried sludge under low loads increases the flue gas temperature at the furnace exit.While reducing the flue gas temperature in the main combustion region,which is beneficial to the safe operation of the denitrification system.Increasing the blending ratio and reducing load lead to an increase in NOx concentration at the furnace exit Sludges with low nitrogen content are suggested for the practical operation of boilers. 展开更多
关键词 Blending ratio boiler load combustion pollutant emission over-fired air(OFA)coefficient numerical simulation
下载PDF
Numerical Modeling of Sugarcane Bagasse Combustion in Sugar Mill Boiler 被引量:1
12
作者 P.Kana-Donfack C.Kapseu +1 位作者 D.Tcheukam-Toko G.Ndong-Essengue 《Journal of Energy and Power Engineering》 2019年第2期80-90,共11页
The sugarcane bagasse fuel is an energetic deposit opportunity for thermal and electricity generation in sugar society.Combustion behaviors,essential for effective operation of these devices are a necessity.A 3D numer... The sugarcane bagasse fuel is an energetic deposit opportunity for thermal and electricity generation in sugar society.Combustion behaviors,essential for effective operation of these devices are a necessity.A 3D numerical model has been developed in the commercial software Ansys Fluent.According to the fuel density and particle variable,this model took into account both suspension and grate model combustion.The realizable k-ε turbulent model with the P-1 model shows its advantage of describing such king problems and has been applied on the numerical model.The contour of the temperature,spices and the particle trajectory provided a clear understanding of bagasse fuel combustion in the furnace as well,bagasse particle goes through from initial heating to char combustion and its conversion to ash.The results obtained were in accordance with those of the literature.These results could be used to analyze this inexpensive combustion process for looking for the effect of design parameter change on the furnace performance. 展开更多
关键词 SUGARCANE BAGASSE combustion SUGAR MILL boiler
下载PDF
Simulation on an optimal combustion control strategy for 3-D temperature distributions in tangentially pc-fired utility boiler furnaces
13
作者 WANGXi-fen ZHOUHuai-chun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第2期305-308,共4页
The control of 3-D temperature distribution in a utility boiler furnace is essential for the safe, economic and clean operation of pc-fired furnace with multi-burner system. The development of the visualization of 3-... The control of 3-D temperature distribution in a utility boiler furnace is essential for the safe, economic and clean operation of pc-fired furnace with multi-burner system. The development of the visualization of 3-D temperature distributions in pc-fired furnaces makes it possible for a new combustion control strategy directly with the furnace temperature as its goal to improve the control quality for the combustion processes. Studied in this paper is such a new strategy that the whole furnace is divided into several parts in the vertical direction, and the average temperature and its bias from the center in every cross section can be extracted from the visualization results of the 3-D temperature distributions. In the simulation stage, a computational fluid dynamics(CFD) code served to calculate the 3-D temperature distributions in a furnace, then a linear model was set up to relate the features of the temperature distributions with the input of the combustion processes, such as the flow rates of fuel and air fed into the furnaces through all the burners. The adaptive genetic algorithm was adopted to find the optimal combination of the whole input parameters which ensure to form an optimal 3-D temperature field in the furnace desired for the operation of boiler. Simulation results showed that the strategy could soon find the factors making the temperature distribution apart from the optimal state and give correct adjusting suggestions. 展开更多
关键词 tangentially-fired boilers combustion control three-dimensional temperature distributions adaptive genetic algorithm
下载PDF
Survey and Study on Combustion Performance of W-Flame Double Arch Boiler 被引量:1
14
作者 Yuan Ying Xiang Daguang (Thermal Power Research Institute State Power Corporation of China) 《Electricity》 2000年第1期23-30,共8页
By the end of 1997, totally ten 300 MW grade W-flame double arch boilers, firing anthracite or meager coal, were operating in China. These W-flame boilers were designed and supplied separately by four different manufa... By the end of 1997, totally ten 300 MW grade W-flame double arch boilers, firing anthracite or meager coal, were operating in China. These W-flame boilers were designed and supplied separately by four different manufacturers in the world, using either their own technology or foreign patent. It is shown by a recent survey that all these boilers are having a normal operation. However, there is still some room to be improved, such as boiler furnace configuration. Also, for raising the burnout rate and avoiding local slagging, furnace volume and burner layout need to be deliberated. And the tineness of pulverized coal and the air / coal ratio need to be improved. Some suggestions are made in this paper for optimizing the boiler design, Test data for the minimum stable combustion load and NOx emission are given too. 展开更多
关键词 Survey and Study on combustion Performance of W-Flame Double Arch boiler
下载PDF
Numerical simulation of NO_x formation in a cyclone-opposed coal-fired utility boiler
15
作者 李芳芹 任建兴 魏敦崧 《Journal of Coal Science & Engineering(China)》 2005年第1期71-73,共3页
In this paper, FLUENT software was used to simulate the burning process in a utility boiler. Chose the kinetics/diffusion-limited as combustion model, two-competing-rates as devolatilization model, RNG k-εmodel as vi... In this paper, FLUENT software was used to simulate the burning process in a utility boiler. Chose the kinetics/diffusion-limited as combustion model, two-competing-rates as devolatilization model, RNG k-εmodel as viscous model, and PDF model as combustion turbulent flow model. Numerical calculation of NOx formation in a 330 MW cyclone-opposed coal-fired utility boiler with 32 double air registers was done. The distribution characteristics of temperature, NOx and oxygen concentration in furnace were studied. They were symmetrically distributed in furnace. In the combustion area, temperature and NOx concentration are high, while oxygen concentration is low. Temperature and NOx concentration are declined gradually along with furnace height, while oxygen concentration is raised. The higher the temperature is and the greater the excess air coefficient is, the more NOx formation. 展开更多
关键词 swirl-opposed boiler numerical simulation combustion NOx
下载PDF
Flexible Co-Combustion of High Ratios of Sustainable Biomass with Coal in Oxy-CFB Boiler for CO<sub>2</sub>Capture
16
作者 Jose A. Gutiérrez Bravo Raquel Garcia Erasmo Cadena 《Journal of Power and Energy Engineering》 2018年第11期12-22,共11页
Coal-fired plants are under pressure to reduce their carbon-intensity. Available options include co-firing CO2-neutral biomass, oxy-fuel-combustion as part of a carbon capture process or a combination of both to give... Coal-fired plants are under pressure to reduce their carbon-intensity. Available options include co-firing CO2-neutral biomass, oxy-fuel-combustion as part of a carbon capture process or a combination of both to give a “CO2-negative” power plant. BioCCS, the combination of CO2 Capture and Storage (CCS) with sustainable biomass conversion, is the only large-scale technology that can achieve net negative emissions. Combining, developing and demonstrating the oxy-combustion of high ratios of sustainable biomass with coal in flexible circulating fluidized bed (CFB) boiler will bring significant advances in the reduction of greenhouse gases (GHG) emissions. Areas addressed include possibilities for: biomass characterization;handling and feeding;co-firing ratios definition;CFB oxy-co-combustion studies;combustion performance;boiler flexibility in fuel and load;main emissions analysis;slaging, fouling and agglomeration;corrosion and erosion;and implications on plant operation and associated costs. The article will detail a comprehensive understanding on sustainable biomass supply, co-firing ratios and how direct biomass co-combustion under oxy-fuel conditions can be implemented. It seeks to push biomass co-combustion in future large-scale oxy-fuel CFB power stations to high thermal shares while enhancing the power plants’ operational flexibility, economic competitiveness and give operational procedures. There will be a need to consider the public acceptance of power production from coal and coal sustainability, by its combination with renewable sources of energy (biomass). 展开更多
关键词 CARBON CAPTURE Use and Storage (CCUS) BIOMASS combustion CARBON CAPTURE CFB boiler
下载PDF
System Performance and Pollution Emission of Biomass Gas Co-Firing in a Coal-Fired Boiler
17
作者 Sikandar Abid Xiaotao Zhang +3 位作者 Weidong Zhang Haoliang Mu Chengyu Zhang Aijun Wang 《Journal of Power and Energy Engineering》 2020年第10期18-25,共8页
To reduce greenhouse gases emission and increase the renewable energy uti</span><span style="font-family:Verdana;">lization portion in the world, the biomass gasification coupled with a coal-fire... To reduce greenhouse gases emission and increase the renewable energy uti</span><span style="font-family:Verdana;">lization portion in the world, the biomass gasification coupled with a coal-fired </span><span style="font-family:Verdana;">boiler power generation system is studied. It is a challenge to achieve optimum performance for the coupled system. The models of biomass gasification coupled with co-firing of coal in a boiler have been established. A comparative study of three kinds of biomass (Food Rubbish, Straw and Wood Pellets) has </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">been </span></span></span><span><span><span><span style="font-family:Verdana;">done. The syngas produced in a 10 t/h gasifier is fed to a 330 MWe coal-fired boiler for co-combustion, and the co-firing performances have been compared with pure coal combustion case under the conditions of constant boiler load. Results show that co-firing decreases the furnace combustion temperature and raises the flue gas temperature for Food Rubbish and Straw, while, flue gases temperature decrease in case of Wood Pellets. At the same time NO<sub>x</sub> and SO<sub>x</sub> emissions have reduced. The system efficiencies at constant load for Food Rubbish, Straw and Wood Pellets are 83.25%, </span><span style="font-family:Verdana;">83.88% and 82.56% when the optimum conditions of gasification and co-firing </span><span style="font-family:Verdana;">process are guaranteed. 展开更多
关键词 Biomass Gasification coal-fired boiler System Efficiency Optimal Air to Biomass Ratio
下载PDF
Comprehensive evaluation for efficient development of coal-fired Industry boiler clearing
18
作者 WU Li-xin 《煤炭加工与综合利用》 CAS 2017年第10期I0001-I0001,共1页
The Paper has introduced development of domesticand foreign coal-fired industry boiler and has implementedcomprehensive comparison for several substitution technologies(coal powder boiler, coal water mixture boiler, ... The Paper has introduced development of domesticand foreign coal-fired industry boiler and has implementedcomprehensive comparison for several substitution technologies(coal powder boiler, coal water mixture boiler, coal-fired boiler,gas-fired boiler and biomass boiler, etc.) of backward coal-firedindustrial boiler in technology, economy and environment, etc.;has evaluated comprehensive effect and adaptiveconditions of coal-fired industry boiler technology and has put forward suggestion forefficient development of coal-fired industry boiler clearing. 展开更多
关键词 coal-fired industrial boiler CLEAR EFFICIENT COMPREHENSIVE evaluation
下载PDF
Low-NOx Combustion Retrofit and Running Adjustment for 600-MW Utility Boiler with Four-Corner Tangential Firing
19
《Electricity》 2013年第1期40-47,共8页
Low-NOX combustion retrofit is performed by adopting staged combustion technology for a 600 MW utility boiler with a four-corner tangential firing system. The emission data of NOX before and after retrofit are compare... Low-NOX combustion retrofit is performed by adopting staged combustion technology for a 600 MW utility boiler with a four-corner tangential firing system. The emission data of NOX before and after retrofit are compared and analyzed. The test results show that the emission concentration of NOX decreases obviously after the low-NOX retrofit. Additionally, the emission of NOX decreases by nearly 50% when the unit load is higher than 350 MW. It can also be concluded that the emission of NOX is influenced significantly by the amount of SOFA, the damper opening of auxiliary air, the differential pressure between the secondary air windbox and the furnace, and so on. 展开更多
关键词 four-corner tangential firing boiler low-NOx combustion running adjustment
下载PDF
Formation and emission characteristics of VOCs from a coal-fired power plant 被引量:3
20
作者 Jingying Xu Yue Lyu +3 位作者 Jiankun Zhuo Yishu Xu Zijian Zhou Qiang Yao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第7期256-264,共9页
On-site measurements of volatile organic compounds(VOCs)in different streams of flue gas were carried out on a real coal-fired power plant using sampling bags and SUMMA canisters to collect gas samples,filters to coll... On-site measurements of volatile organic compounds(VOCs)in different streams of flue gas were carried out on a real coal-fired power plant using sampling bags and SUMMA canisters to collect gas samples,filters to collect particle samples.Gas chromatography-flame ionization detector/mass spectrometry and gas chromatography-mass spectrometry was the offline analysis method.We found that the total mass concentration of the tested 102 VOC species at the outlet of wet flue gas desulfuration device was(13456±47)μg·m^(-3),which contained aliphatic hydrocarbons(57.9%),aromatic hydrocarbons(26.8%),halogen-containing species(14.5%),and a small amount of oxygen-containing and nitrogencontaining species.The most abundant species were 1-hexene,n-hexane and 2-methylpentane.The top ten species in terms of mass fraction(with a total mass fraction of 75.3%)were mainly hydrocarbons with a carbon number of 6 or higher and halogenated hydrocarbons with a lower carbon number.The mass concentration of VOC species in the particle phase was significantly lower than that in the gas phase.The change of VOC mass concentrations along the air pollution control devices indicates that conventional pollutant control equipment had a limited effect on VOC reduction.Ozone formation potential calculations showed that aromatic hydrocarbons contributed the highest ozone formation(46.4%)due to their relatively high mass concentrations and MIR(maximum increment reactivity)values. 展开更多
关键词 Volatile organic compounds Coal combustion Ozone formation potential coal-fired power plant On-site measurement
下载PDF
上一页 1 2 173 下一页 到第
使用帮助 返回顶部