Electrochemical reduction of CO_(2)(CO_(2)RR)has become a research hot spot in recent years in the context of carbon neutrality.HCOOH is one of the most promising products obtained by electrochemical reduction of CO_(...Electrochemical reduction of CO_(2)(CO_(2)RR)has become a research hot spot in recent years in the context of carbon neutrality.HCOOH is one of the most promising products obtained by electrochemical reduction of CO_(2) due to its high energy value as estimated by market price per energy unit and wide application in chemical industry.Biomass is the most abundant renewable resource in the natural world.Coupling biomass oxidative conversion with CO_(2)RR driven by renewable electricity would well achieve carbon negativity.In this work,we comprehensively reviewed the current research progress on CO_(2)RR to produce HCOOH and coupled system for conversion of biomass and its derivatives to produce value-added products.Sn-and Bi-based electrocatalysts are discussed for CO_(2)RR with regards to the structure of the catalyst and reaction mechanisms.Electro-oxidation reactions of biomass derived sugars,alcohols,furan aldehydes and even polymeric components of lignocellulose were reviewed as alternatives to replace oxygen evolution reaction(OER)in the conventional electrolysis process.It was recommended that to further improve the efficiency of the coupled system,future work should be focused on the development of more efficient and stable catalysts,careful design of the electrolytic cells for improving the mass transfer and development of environment-friendly processes for recovering the formed formate and biomass oxidation products.展开更多
This study explores the corrosion issues arising from the coupled combustion of coal and biomass and proposes potential solutions.Biomass,as a renewable energy source,offers advantages in energy-saving and carbon redu...This study explores the corrosion issues arising from the coupled combustion of coal and biomass and proposes potential solutions.Biomass,as a renewable energy source,offers advantages in energy-saving and carbon reduction.However,the corrosive effects of alkali metal compounds,sulfur(S)and chlorine(Cl)elements in the ash after combustion cannot be underestimated due to the high volatile content of biomass fuels.We investigate the corrosion mechanisms,as well as the transfer of Cl and alkali metal elements during this process.Comparative corrosion analyses are conducted among coal-fired boilers,pure biomass boilers and boilers with coupled combustion.Various biomass types in co-firing are studied to understand different corrosion outcomes.The main factors influencing corrosion include the physicochemical properties of biomass feedstock,furnace temperature and heating surface materials,with the chemical composition and ash content of biomass playing a dominant role.Currently,the methods used for anti-corrosion include water washing pretreatment of biomass feedstock,application of novel alloys and coatings and the development of additives to inhibit fouling,ash deposition and corrosion.Efficient inhibitors are economical and easy to produce.Additionally,biomass can be converted into biomass gasification gas,although challenges related to tar still need to be addressed.展开更多
Tar removal is a bottleneck in the smooth commercialization of biomass gasification technology. Based on introducing adsorption process into Quench Coupled with ABsorption Technology(QCABT) previously proposed by the ...Tar removal is a bottleneck in the smooth commercialization of biomass gasification technology. Based on introducing adsorption process into Quench Coupled with ABsorption Technology(QCABT) previously proposed by the author’s group, Quench Coupled with ADsorption Technology(QCADT) has been developed to narrow this gap. Additionally, benzene and naphthalene, which are more similar to the real tar for containing aromatic ring structures, were adopted as light and heavy simulated tar, respectively. Also their removal behavior by QCADT was investigated. The results show that the removal mechanism of QCADT is similar to that of QCABT, except for the higher overall tar removal rate due to adsorption effect. Adsorbents with both micro-and narrow mesopores exhibit a better benzene removal performance, while narrow mesopores play dominant roles in naphthalene removal. Penetration adsorption loading of benzene and naphthalene on AC-1 can reach0.38 g·g^-1 and 0.34 g·g^-1, respectively. The sawdust hardly has any tar removal effect. Combined micro-and meso-pores, will benefit both deep tar removal and large adsorption rate, providing a high tar removal efficiency.展开更多
To reduce greenhouse gases emission and increase the renewable energy uti</span><span style="font-family:Verdana;">lization portion in the world, the biomass gasification coupled with a coal-fire...To reduce greenhouse gases emission and increase the renewable energy uti</span><span style="font-family:Verdana;">lization portion in the world, the biomass gasification coupled with a coal-fired </span><span style="font-family:Verdana;">boiler power generation system is studied. It is a challenge to achieve optimum performance for the coupled system. The models of biomass gasification coupled with co-firing of coal in a boiler have been established. A comparative study of three kinds of biomass (Food Rubbish, Straw and Wood Pellets) has </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">been </span></span></span><span><span><span><span style="font-family:Verdana;">done. The syngas produced in a 10 t/h gasifier is fed to a 330 MWe coal-fired boiler for co-combustion, and the co-firing performances have been compared with pure coal combustion case under the conditions of constant boiler load. Results show that co-firing decreases the furnace combustion temperature and raises the flue gas temperature for Food Rubbish and Straw, while, flue gases temperature decrease in case of Wood Pellets. At the same time NO<sub>x</sub> and SO<sub>x</sub> emissions have reduced. The system efficiencies at constant load for Food Rubbish, Straw and Wood Pellets are 83.25%, </span><span style="font-family:Verdana;">83.88% and 82.56% when the optimum conditions of gasification and co-firing </span><span style="font-family:Verdana;">process are guaranteed.展开更多
The electrochemical oxidation of biomass molecules coupling with hydrogen production is a promising strategy to obtain both green energy and value-added chemicals;however,this strategy is limited by the competing oxyg...The electrochemical oxidation of biomass molecules coupling with hydrogen production is a promising strategy to obtain both green energy and value-added chemicals;however,this strategy is limited by the competing oxygen evolution reactions and high energy consumption.Herein,we report a hierarchical CoNi layered double hydroxides(LDHs)electrocatalyst with abundant Ni vacancies for the efficient anodic oxidation of 5-hydroxymethylfurfural(HMF)and cathodic hydrogen evolution.The unique hierarchical nanosheet structure and Ni vacancies provide outstanding activity and selectivity toward several biomass molecules because of the finely regulated electronic structure and highly-exposed active sites.In particular,a high faradaic efficiency(FE)at a high current density(99%at 100 mA cm^(-2))is achieved for HMF oxidation,and a two-electrode electrolyzer is assembled based on the Ni vacancies-enriched LDH,which realized a continuous synthesis of highly-pure 2,5-furandicarboxylic acid products with high yields(95%)and FE(90%).展开更多
在碳达峰、碳中和背景下,发展燃煤与生物质耦合发电是加快电力转型升级、实现煤电低碳发展的重要途径之一。在某台300 MW循环流化床(CFB)锅炉上设计建设了一套燃煤直燃耦合生物质的燃烧发电系统,并利用该系统进行了燃煤直燃耦合生物质...在碳达峰、碳中和背景下,发展燃煤与生物质耦合发电是加快电力转型升级、实现煤电低碳发展的重要途径之一。在某台300 MW循环流化床(CFB)锅炉上设计建设了一套燃煤直燃耦合生物质的燃烧发电系统,并利用该系统进行了燃煤直燃耦合生物质的燃烧特性试验研究。结果表明:该生物质直燃耦合系统运行稳定可靠;CFB锅炉在掺烧木屑颗粒燃料时,随着掺烧比的增加,混合燃料的飞灰含碳量下降、CO排放量降低,混合燃料的燃尽性得以改善;掺烧后经过锅炉燃烧配风优化,锅炉NOx排放量比纯烧原煤排放量略有降低。试验典型工况污染物测试表明:掺入木屑颗粒燃料后,锅炉烟气二噁英排放量为0.0088 ng TEQ/m^(3)(标准工况,φ(O_(2))=11%,下同),飞灰中二噁英排放量为0.0206 ng TEQ/m^(3);飞灰中重金属及P、As、Se等有害微量元素排放值总量为32.121mg/L;底渣中重金属及P、As、Se等有害微量元素排放值总量为3.918 mg/L,烟气和飞灰中的二噁英和重金属等有害物质排放均满足国家环保标准排放限值。展开更多
A series of bifunctional Zn Ce@SBA-15 catalysts with different Zn/Ce ratios were prepared by a solid-state grinding strategy and used in the conversion of ethanol to 1,3-butadiene(ETB).For the supported metal oxides,Z...A series of bifunctional Zn Ce@SBA-15 catalysts with different Zn/Ce ratios were prepared by a solid-state grinding strategy and used in the conversion of ethanol to 1,3-butadiene(ETB).For the supported metal oxides,Zn O serves as the active sites for the dehydrogenation of ethanol,and CeO_(2) promotes the aldolcondensation reaction.Based on the results of Py-FTIR and NH_(3)-TPD,it suggests that the yield of 1,3-butadiene is positively correlated with the number of weak Lewis acid sites on the catalyst surface,given their benefit for aldol-condensation reactions.The catalyst with an optimal Zn/Ce ratio of about 1:5 has the highest concentration of weak Lewis acid.Coupling with the Zn O sites,it contributes to a 98.4%conversion of ethanol and a 45.2%selective of 1,3-butadiene under relatively mild reaction conditions(375°C,101.325 k Pa,and 0.54 h^(-1)).展开更多
Thermochemical conversion of fossil resources into fuels,chemicals,andmaterials has rapidly increased atmospheric CO_(2)levels,hindering global efforts toward achieving carbon neutrality.With the increasing push for s...Thermochemical conversion of fossil resources into fuels,chemicals,andmaterials has rapidly increased atmospheric CO_(2)levels,hindering global efforts toward achieving carbon neutrality.With the increasing push for sustainability,utilizing electrochemical technology to transform CO_(2)or biomass into value-added chemicals and to close the carbon cycle with sustainable energy sources represents a promising strategy.Expanding the scope of electrosynthesis technology is a prerequisite for the electrification of chemical manufacturing.To this end,constructing the C─N bond is considered a priority.However,a systematic review of electrocatalytic processes toward building C─N bonds using CO_(2)and biomass as carbon sources is not available.Accordingly,this review highlights the research progress in the electrosynthesis of organic nitrogen compounds from CO_(2)and biomass by C─N coupling reactions in view of catalytic materials,focusing on the enlightenment of traditional catalysis on C─N coupling and the understanding of the basis of electrochemical C─N coupling.The possibility of C─N bond in electrocatalysis is also examined from the standpoints of activation of substrates,coupling site,mechanism,and inhibition of hydrogen evolution reaction(HER).Finally,the challenges and prospects of electrocatalytic C─N coupling reactions with improved efficiency and selectivity for future development are discussed.展开更多
基金supported by the National Key R&D Program of China(2022YFA2105900)the National Natural Science Foundation of China(No.22178197)。
文摘Electrochemical reduction of CO_(2)(CO_(2)RR)has become a research hot spot in recent years in the context of carbon neutrality.HCOOH is one of the most promising products obtained by electrochemical reduction of CO_(2) due to its high energy value as estimated by market price per energy unit and wide application in chemical industry.Biomass is the most abundant renewable resource in the natural world.Coupling biomass oxidative conversion with CO_(2)RR driven by renewable electricity would well achieve carbon negativity.In this work,we comprehensively reviewed the current research progress on CO_(2)RR to produce HCOOH and coupled system for conversion of biomass and its derivatives to produce value-added products.Sn-and Bi-based electrocatalysts are discussed for CO_(2)RR with regards to the structure of the catalyst and reaction mechanisms.Electro-oxidation reactions of biomass derived sugars,alcohols,furan aldehydes and even polymeric components of lignocellulose were reviewed as alternatives to replace oxygen evolution reaction(OER)in the conventional electrolysis process.It was recommended that to further improve the efficiency of the coupled system,future work should be focused on the development of more efficient and stable catalysts,careful design of the electrolytic cells for improving the mass transfer and development of environment-friendly processes for recovering the formed formate and biomass oxidation products.
文摘This study explores the corrosion issues arising from the coupled combustion of coal and biomass and proposes potential solutions.Biomass,as a renewable energy source,offers advantages in energy-saving and carbon reduction.However,the corrosive effects of alkali metal compounds,sulfur(S)and chlorine(Cl)elements in the ash after combustion cannot be underestimated due to the high volatile content of biomass fuels.We investigate the corrosion mechanisms,as well as the transfer of Cl and alkali metal elements during this process.Comparative corrosion analyses are conducted among coal-fired boilers,pure biomass boilers and boilers with coupled combustion.Various biomass types in co-firing are studied to understand different corrosion outcomes.The main factors influencing corrosion include the physicochemical properties of biomass feedstock,furnace temperature and heating surface materials,with the chemical composition and ash content of biomass playing a dominant role.Currently,the methods used for anti-corrosion include water washing pretreatment of biomass feedstock,application of novel alloys and coatings and the development of additives to inhibit fouling,ash deposition and corrosion.Efficient inhibitors are economical and easy to produce.Additionally,biomass can be converted into biomass gasification gas,although challenges related to tar still need to be addressed.
基金Supported by the Six Talent Peaks Project in Jiangsu Province(2015-ZBZ-015)the top-notch academic programs project of Jiangsu Higher Education Institutions(PPZY2015A022)the Natonal Key Reasearch and Development Program of China(2018YFB1502900,2018YFB1502903).
文摘Tar removal is a bottleneck in the smooth commercialization of biomass gasification technology. Based on introducing adsorption process into Quench Coupled with ABsorption Technology(QCABT) previously proposed by the author’s group, Quench Coupled with ADsorption Technology(QCADT) has been developed to narrow this gap. Additionally, benzene and naphthalene, which are more similar to the real tar for containing aromatic ring structures, were adopted as light and heavy simulated tar, respectively. Also their removal behavior by QCADT was investigated. The results show that the removal mechanism of QCADT is similar to that of QCABT, except for the higher overall tar removal rate due to adsorption effect. Adsorbents with both micro-and narrow mesopores exhibit a better benzene removal performance, while narrow mesopores play dominant roles in naphthalene removal. Penetration adsorption loading of benzene and naphthalene on AC-1 can reach0.38 g·g^-1 and 0.34 g·g^-1, respectively. The sawdust hardly has any tar removal effect. Combined micro-and meso-pores, will benefit both deep tar removal and large adsorption rate, providing a high tar removal efficiency.
文摘To reduce greenhouse gases emission and increase the renewable energy uti</span><span style="font-family:Verdana;">lization portion in the world, the biomass gasification coupled with a coal-fired </span><span style="font-family:Verdana;">boiler power generation system is studied. It is a challenge to achieve optimum performance for the coupled system. The models of biomass gasification coupled with co-firing of coal in a boiler have been established. A comparative study of three kinds of biomass (Food Rubbish, Straw and Wood Pellets) has </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">been </span></span></span><span><span><span><span style="font-family:Verdana;">done. The syngas produced in a 10 t/h gasifier is fed to a 330 MWe coal-fired boiler for co-combustion, and the co-firing performances have been compared with pure coal combustion case under the conditions of constant boiler load. Results show that co-firing decreases the furnace combustion temperature and raises the flue gas temperature for Food Rubbish and Straw, while, flue gases temperature decrease in case of Wood Pellets. At the same time NO<sub>x</sub> and SO<sub>x</sub> emissions have reduced. The system efficiencies at constant load for Food Rubbish, Straw and Wood Pellets are 83.25%, </span><span style="font-family:Verdana;">83.88% and 82.56% when the optimum conditions of gasification and co-firing </span><span style="font-family:Verdana;">process are guaranteed.
基金This work was supported by the National Natural Science Foundation of China(22090031,22090030,21922501 and 21871021)Project funded by China Postdoctoral Science Foundation(2021M690319).
文摘The electrochemical oxidation of biomass molecules coupling with hydrogen production is a promising strategy to obtain both green energy and value-added chemicals;however,this strategy is limited by the competing oxygen evolution reactions and high energy consumption.Herein,we report a hierarchical CoNi layered double hydroxides(LDHs)electrocatalyst with abundant Ni vacancies for the efficient anodic oxidation of 5-hydroxymethylfurfural(HMF)and cathodic hydrogen evolution.The unique hierarchical nanosheet structure and Ni vacancies provide outstanding activity and selectivity toward several biomass molecules because of the finely regulated electronic structure and highly-exposed active sites.In particular,a high faradaic efficiency(FE)at a high current density(99%at 100 mA cm^(-2))is achieved for HMF oxidation,and a two-electrode electrolyzer is assembled based on the Ni vacancies-enriched LDH,which realized a continuous synthesis of highly-pure 2,5-furandicarboxylic acid products with high yields(95%)and FE(90%).
文摘在碳达峰、碳中和背景下,发展燃煤与生物质耦合发电是加快电力转型升级、实现煤电低碳发展的重要途径之一。在某台300 MW循环流化床(CFB)锅炉上设计建设了一套燃煤直燃耦合生物质的燃烧发电系统,并利用该系统进行了燃煤直燃耦合生物质的燃烧特性试验研究。结果表明:该生物质直燃耦合系统运行稳定可靠;CFB锅炉在掺烧木屑颗粒燃料时,随着掺烧比的增加,混合燃料的飞灰含碳量下降、CO排放量降低,混合燃料的燃尽性得以改善;掺烧后经过锅炉燃烧配风优化,锅炉NOx排放量比纯烧原煤排放量略有降低。试验典型工况污染物测试表明:掺入木屑颗粒燃料后,锅炉烟气二噁英排放量为0.0088 ng TEQ/m^(3)(标准工况,φ(O_(2))=11%,下同),飞灰中二噁英排放量为0.0206 ng TEQ/m^(3);飞灰中重金属及P、As、Se等有害微量元素排放值总量为32.121mg/L;底渣中重金属及P、As、Se等有害微量元素排放值总量为3.918 mg/L,烟气和飞灰中的二噁英和重金属等有害物质排放均满足国家环保标准排放限值。
基金National Natural Science Foundation of China for financial support(21878227)。
文摘A series of bifunctional Zn Ce@SBA-15 catalysts with different Zn/Ce ratios were prepared by a solid-state grinding strategy and used in the conversion of ethanol to 1,3-butadiene(ETB).For the supported metal oxides,Zn O serves as the active sites for the dehydrogenation of ethanol,and CeO_(2) promotes the aldolcondensation reaction.Based on the results of Py-FTIR and NH_(3)-TPD,it suggests that the yield of 1,3-butadiene is positively correlated with the number of weak Lewis acid sites on the catalyst surface,given their benefit for aldol-condensation reactions.The catalyst with an optimal Zn/Ce ratio of about 1:5 has the highest concentration of weak Lewis acid.Coupling with the Zn O sites,it contributes to a 98.4%conversion of ethanol and a 45.2%selective of 1,3-butadiene under relatively mild reaction conditions(375°C,101.325 k Pa,and 0.54 h^(-1)).
文摘Thermochemical conversion of fossil resources into fuels,chemicals,andmaterials has rapidly increased atmospheric CO_(2)levels,hindering global efforts toward achieving carbon neutrality.With the increasing push for sustainability,utilizing electrochemical technology to transform CO_(2)or biomass into value-added chemicals and to close the carbon cycle with sustainable energy sources represents a promising strategy.Expanding the scope of electrosynthesis technology is a prerequisite for the electrification of chemical manufacturing.To this end,constructing the C─N bond is considered a priority.However,a systematic review of electrocatalytic processes toward building C─N bonds using CO_(2)and biomass as carbon sources is not available.Accordingly,this review highlights the research progress in the electrosynthesis of organic nitrogen compounds from CO_(2)and biomass by C─N coupling reactions in view of catalytic materials,focusing on the enlightenment of traditional catalysis on C─N coupling and the understanding of the basis of electrochemical C─N coupling.The possibility of C─N bond in electrocatalysis is also examined from the standpoints of activation of substrates,coupling site,mechanism,and inhibition of hydrogen evolution reaction(HER).Finally,the challenges and prospects of electrocatalytic C─N coupling reactions with improved efficiency and selectivity for future development are discussed.