A novel carbon trap sampling system for gas-phase mercury measurement in flue gas is developed, including the high efficient sorbents made of modified biomass cokes and high precision sorbent traps for measuring parti...A novel carbon trap sampling system for gas-phase mercury measurement in flue gas is developed, including the high efficient sorbents made of modified biomass cokes and high precision sorbent traps for measuring particle-bound and total vapor-phase mercury in flue gas. A dedusting device is installed to collect fine fly ash for reducing the measurement errors. The thorough comparison test of mercury concentration in flue gas is conducted between the novel sampling system and the Ontario hydro method (OHM) in a 6 kW circulating fluidized bed combustor. Mercury mass balance rates of the OHM range from 95.47% to 104.72%. The mercury breakthrough rates for the second section of the sorbent trap are all below 2%. The relative deviations in the two test cases are in the range of 15. 96% to 17. 56% under different conditions. The verified data suggest that this novel carbon trap sampling system can meet the standards of quality assurance and quality control required by EPA Method 30B and can be applied to the coal-fired flue gas mercury sampling system.展开更多
Heterogeneous agglomeration (HA) is a very potential technology for coal-fired flue gas treatment.In this paper,the distribution and migration mechanisms of trace elements (TEs such as Se,As and Pb in CFPPs were studi...Heterogeneous agglomeration (HA) is a very potential technology for coal-fired flue gas treatment.In this paper,the distribution and migration mechanisms of trace elements (TEs such as Se,As and Pb in CFPPs were studied on a 30,000 m^(3)/hr pilot-scale experimental plat form.The influences of HA on the removal efficiency of gaseous and particulate TEs were well analyzed.The results showed that Se,As and Pb were enriched in fly ash,and their sen sitivity to particle size is quite different.The content of Se was the highest in PM1,reaching193.04 mg/kg at the electrostatic precipitator (ESP) outlet.The average particle size of the total dust before ESP increased significantly from 21.686 to 62.612μm after injecting the heterogeneous agglomeration adsorbent,conducive to its further removal by ESP.In addi tion,the concentrations of gaseous Se,As and Pb in the flue gas decreased after adsorben spray,and accordingly,their contents in the hierarchical particles increased,indicating tha the adsorbent could effectively promote the adsorption of gaseous trace elements in fly ash and reduce the possibility of their escape to the atmosphere.Total concentrations of Se,As and Pb emitted by wet flue gas desulfurization (WFGD) are 0.223,0.668 and 0.076μg/m^(3)which decreased by 59.98%,47.69%and 90.71%,respectively.Finally,a possible HA mecha nism model was proposed,where chemical adsorption,physical condensation and collision agglomeration of gaseous TEs and fine particles with adsorbent droplets occurred to form larger agglomerates.展开更多
The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and hi...The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and high pressure,the miscible displacement of flue gas and light oil is possible.At the same temperature,there is a linear relationship between oil displacement efficiency and pressure.At the same pressure,the oil displacement efficiency increases gently and then rapidly to more than 90% to achieve miscible displacement with the increase of temperature.The rapid increase of oil displacement efficiency is closely related to the process that the light components of oil transit in phase state due to distillation with the rise of temperature.Moreover,at the same pressure,the lighter the oil,the lower the minimum miscibility temperature between flue gas and oil,which allows easier miscibility and ultimately better performance of thermal miscible flooding by air injection.The miscibility between flue gas and light oil at high temperature and high pressure is more typically characterized by phase transition at high temperature in supercritical state,and it is different from the contact extraction miscibility of CO_(2) under conventional high pressure conditions.展开更多
During wet complexation denitrification of flue gas,Fe^(Ⅱ)EDTA regeneration,also known as reducing Fe^(Ⅱ)EDTA and Fe^(Ⅱ)EDTA-nitric oxide(NO)to Fe^(Ⅱ)EDTA,is crucial.In this paper,ultraviolet(UV)light was used for...During wet complexation denitrification of flue gas,Fe^(Ⅱ)EDTA regeneration,also known as reducing Fe^(Ⅱ)EDTA and Fe^(Ⅱ)EDTA-nitric oxide(NO)to Fe^(Ⅱ)EDTA,is crucial.In this paper,ultraviolet(UV)light was used for the first time to reduce Fe^(Ⅱ)EDTA-NO.The experimental result demonstrated that Fe^(Ⅱ)EDTA-NO reduction rate increased with UV power increasing,elevated temperature,and initial Fe^(Ⅱ)EDTA-NO concentration decreasing.Fe^(Ⅱ)EDTA-NO reduction rate increased first and then decreased as pH value increased(2.0-10.0).Fe^(Ⅱ)EDTA-NO reduction with UV irradiation presented a first order reaction with respect to Fe^(Ⅱ)EDTA-NO.Compared with other Fe^(Ⅱ)EDTA regeneration methods,Fe^(Ⅱ)EDTA regeneration with UV show more superiority through comprehensive consideration of regeneration rate and procedure.Subsequently,NO absorption experiment by Fe^(Ⅱ)EDTA solution with UV irradiation confirmed that UV can significantly promote the NO removal performance of Fe^(Ⅱ)EDTA.Appropriate oxygen concentration(3%(vol))and acidic environment(pH=4)was favorable for NO removal.With UV power increasing as well as temperature decreasing,NO removal efficiency rose.In addition,the mechanism research indicates that NO from flue gas is mostly converted to NO_(2)-,NO_(3)-,NH_(4)^(+),N_(2),and N_(2)O with Fe^(Ⅱ)EDTA absorption liquid with UV irradiation.UV strengthens NO removal in Fe^(Ⅱ)EDTA absorption liquid by forming a synergistic effect of oxidation-reduction-complexation.Finally,compared with NO removal methods with Fe^(Ⅱ)EDTA,Fe^(Ⅱ)EDTA combined UV system shows prominent technology advantage in terms of economy and secondary pollution.展开更多
The synthesis of α-calcium sulfate hemihydrate (α-CSH) from flue gas desulfurization (FGD)gypsum is a good way to realize the comprehensive utilization of FGD gypsum. To obtainα-CSH with the satisfactory performanc...The synthesis of α-calcium sulfate hemihydrate (α-CSH) from flue gas desulfurization (FGD)gypsum is a good way to realize the comprehensive utilization of FGD gypsum. To obtainα-CSH with the satisfactory performances, a facile hydrothermal-aging pretreatment process for FGD gypsum raw materials was proposed, where FGD gypsum was firstly hydrothermally converted to α-CSH whiskers, and α-CSH whiskers were further hydrated to synthesize CaSO4·2H2O (CSD) by aging under the regulation of N,N'-methylenebisacrylamide (MBA). The effects of aging time, MBA addition, aging temperature, and pH on the morphology of the synthesized CSD were investigated. The synthesized CSD crystals exhibit highly uniform prismatic morphology with the length of ca 100μm and the whiteness of 91.56%. The regulation mechanism of MBA was also illustrated. The synthesized CSD crystals with prismatic morphology were further used as raw materials to synthesize the short columnar α-CSH. The absolute dry compressive strength of paste prepared from the short columnar α-CSH is 40.85 MPa, which reaches α40 strength grade.展开更多
The synergistic impact of mechanical ball milling and flue gas desulfurization(FGD)gypsum on the dealkalization of bauxite residue was investigated through integrated analyses of solution chemistry,mineralogy,and micr...The synergistic impact of mechanical ball milling and flue gas desulfurization(FGD)gypsum on the dealkalization of bauxite residue was investigated through integrated analyses of solution chemistry,mineralogy,and microtopography.The results showed a significant decrease in Na_(2)O content(>30 wt.%)of FGD gypsum-treated bauxite residue after 30 min of mechanical ball milling.Mechanical ball milling resulted in differentiation of the elemental distribution,modification of the minerals in crystalline structure,and promotion in the dissolution of alkaline minerals,thus enhancing the acid neutralization capacity of bauxite residue.5 wt.%FGD gypsum combined with 30 min mechanical ball milling was optimal for the dealkalization of bauxite residue.展开更多
In order to achieve ultra-low emissions of SO_(2)and NOx,the oxygen blast furnace with sintering flue gas injection is presented as a promising novel process.The CO_(2)emission was examined,and a cost analysis of the ...In order to achieve ultra-low emissions of SO_(2)and NOx,the oxygen blast furnace with sintering flue gas injection is presented as a promising novel process.The CO_(2)emission was examined,and a cost analysis of the process was conducted.The results show that in the cases when the top gas is not circulated(Cases 1–3),and the volume of injected sintering flue gas per ton of hot metal is below about 1250 m^(3),the total CO_(2)emissions decrease first and then increase as the oxygen content of the blast increases.When the volume of injected sintering flue gas per ton of hot metal exceeds approximately 1250 m^(3),the total CO_(2)emissions gradually decrease.When the recirculating top gas and the vacuum pressure swing adsorption are considered,the benefits of recovered gas can make the ironmaking cost close to or even lower than that of the ordinary blast furnace.Furthermore,the implementation of this approach leads to a substantial reduction in total CO_(2)emissions,with reductions of 69.13%(Case 4),70.60%(Case 5),and 71.07%(Case 6),respectively.By integrating previous research and current findings,the reasonable oxygen blast furnace with sintering flue gas injection can not only realize desulfurization and denitrification,but also achieve the goal of reducing CO_(2)emissions and ironmaking cost.展开更多
In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction m...In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.展开更多
The coal-fired flue gas spraying wastewater is a kind of refractory mixed wastewater with poor biodegradability.In this study,the degradation of model coal-fired flue gas spraying wastewater was studied by using disch...The coal-fired flue gas spraying wastewater is a kind of refractory mixed wastewater with poor biodegradability.In this study,the degradation of model coal-fired flue gas spraying wastewater was studied by using discharge free radicals produced by double-dielectric barrier discharge.The degradation rate of pollutants,chemical oxygen demand removal rate and other indicators were detected,and the influence of different conditions on the degradation effect was analyzed.The optimal parameters are as follows:residence time 120 min,input power 170.0 W,initial pH value 3.79,and aeration rate 1.8 mL/min.The initial concentrations of acetone,formaldehyde,chloroform,benzene and toluene were 100,100,100,and 100 mg/L,respectively.Furthermore,it is proved that the discharge area is independent of the degradation rate.Through the analysis of the mechanism,it is found that·OH is an important factor affecting the degradation rate of pollutants in model coal-fired flue gas spraying wastewater.展开更多
Based on the basic principle and mechanism of flue gas denitrification,the commonly used catalysts for flue gas denitrification were introduced firstly,and then the catalytic performance,stability and reaction mechani...Based on the basic principle and mechanism of flue gas denitrification,the commonly used catalysts for flue gas denitrification were introduced firstly,and then the catalytic performance,stability and reaction mechanism of catalysts in the market were analyzed.Different types of catalysts were studied to look for green catalysts with high activity,sulfur resistance,water vapor resistance and other advantages.The mechanism of denitration reaction of green catalysts was discussed,and the laws of formation,propagation and consumption of active species in the reaction process were revealed to provide theoretical basis for optimizing catalyst design and improving reaction conditions.Then the research status and problems of new catalysts for flue gas denitrification were described.Finally,the future development direction of green catalysts for flue gas denitration was discussed to improve the performance and stability of catalysts and meet the performance requirements of denitration catalysts in different industries.展开更多
Wet removal of NO from coal-fired flue gas by UV/H2O2 Advanced Oxidation Process (AOP) were investigated in a self-designed UV-bubble reactor. Several main influencing factors (UV intensity, H2O2 initial concentration...Wet removal of NO from coal-fired flue gas by UV/H2O2 Advanced Oxidation Process (AOP) were investigated in a self-designed UV-bubble reactor. Several main influencing factors (UV intensity, H2O2 initial concentration, initial pH value, solution temperature, NO initial concentration, liquid-gas ratio and O2 percentage content) on the NO removal efficiency were studied. The results showed that UV intensity, H2O2 initial concentration, NO initial concentration and liquid-gas ratio are the main influencing factors. In the best conditions, the highest NO removal efficiency by UV/H2O2 advanced oxidation process could reach 82.9%. Based on the experimental study, the influencing mechanism of the relevant influencing factors were discussed in depth.展开更多
Accurate measurement of trace heavy metal mercury(Hg) in flue gas of coal-fired units is great significance for ecological and environmental protection.Mixed gas was used to simulate the actual flue gas of a power pla...Accurate measurement of trace heavy metal mercury(Hg) in flue gas of coal-fired units is great significance for ecological and environmental protection.Mixed gas was used to simulate the actual flue gas of a power plant in this study.A laser-induced breakdown spectroscopy(LIBS)system for Hg measurement in mixed gas was built to study the effect of mixed gas pressure,Hg concentration in mixed gas and delay time on Hg measurement.The experimental results show that the appropriate low mixed gas pressure can obtain high Hg signal intensity and signal to noise ratio.The Hg signal intensity and signal to noise ratio increased with the increase of Hg concentration in mixed gas.The Hg signal intensity and signal to noise ratio decreased with the increase in delay time.According to the above results,the optimized measurement conditions can be determined.Different Hg concentrations in mixed gas were quantitatively analyzed by the internal standard method and traditional calibration method respectively.The relative error of prediction of the test sample obtained by the internal standard method was within 11.11%.The relative error of prediction of the traditional calibration method was less than 14.54%.This proved that the internal standard method can improve the accuracy of quantitative analysis of Hg concentration in flue gas using LIBS.展开更多
Wet Flue Gas Desulfurization(WFGD)unit based upon spray scrubber has beenwidely employed to control SO_(2) emissions from flue gas in coal-fired power plant.To clarify the dependence of desulfurization performance on ...Wet Flue Gas Desulfurization(WFGD)unit based upon spray scrubber has beenwidely employed to control SO_(2) emissions from flue gas in coal-fired power plant.To clarify the dependence of desulfurization performance on inter-phase transfer behaviors with non-ideal contacting patterns of flue gas and slurry droplets,three regions in spray scrubber are distinguished in terms of gas-slurry flow structures using CFD method in the Eulerian-Lagrangian framework.A comprehensive model is established by involving the transfer process between two phases and chemical reactions in aqueous phase,which is validatedwith the measured data froma WFGD scrubber of 330 MW coal-fired power unit.Numerical results show that the overall uniformity degree of flue gas in whole scrubber is largely determined by the force-balanced droplets in the middle part of scrubber,which is dominated by counter-current mode.Both momentum transfer behavior and SO_(2) chemical absorption process present the synchronicity with the evolution of gas-slurry flow pattern,whilst the heat transfer together with H_(2)O evaporation has little effect on overall absorption process.Three regions are firstly defined as Gas Inlet Region(GIR),Dominant Absorption Region(DAR)and Slurry Dispersed Region(SDR)from the bottom to top of scrubber.SO_(2) is mainly scrubbed in DAR,which provides much more intensive interaction between two phases compared to GIR or SDR.A better understanding of the desulfurization process is obtained from the fundamental relationship between transport phenomena and chemical reactions based upon the complicated hydrodynamics of gas-slurry two-phase flow,which should be useful for designing and optimizing the scrubber in coal-fired power unit.展开更多
The aim of this study was to develop and examine the morphology and distribution of mercury (Hg) in flue gas desulfurization (FGD) by-product.</span></span><span><span><span style="font...The aim of this study was to develop and examine the morphology and distribution of mercury (Hg) in flue gas desulfurization (FGD) by-product.</span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Mercury in the coal of coal-fired power plants is concentrated in the by-products of desulfurization process, and it is widely used as an additive in cement, building materials and other industries. Due to the different stability of various forms of mercury in the environment, subsequent use of products containing desulfurization by-product additives will continue to be released into the environment, endangering human health. Therefore, it is very necessary to study the form and distribution of mercury in the by-products of desulfurization in coal-fired power plants to provide a theoretical basis for subsequent harmless treatment.</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">For content and morphology of mercury analysis, 1 sample of dry FGD ash and 6 samples of wet FGD gypsum were analyzed. The total 7 samples were extracted using a modification of sequential chemical extractions (SCE) method, which was employed for the partitioning Hg into four fractions: water soluble, acid soluble, H<sub>2</sub>O<sub>2</sub> soluble, and residual. The Hg analysis was done with United States Environmental Protection Agency (USEPA) method</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">7471B. Comparing with the wet FGD gypsums of coal-fired boilers, the total Hg content in the dry FGD by-product was as high as</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">1.22 mg/kg, while the total Hg content in the FGD gypsum is 0.23</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">0.74 mg/kg, which was 2 times over the wet FGD gypsum. The concentration of water soluble Hg in the dry FGD by-product was the highest amount (0.72 mg/kg), accounting for 59.02% of the total mercury. While residual Hg content was 0.16 mg/kg, only about 13.11% of the total mercury. Mercury content in FGD gypsum was expressed in the form of <i></span><i><span style="font-family:Verdana;">ρ</span></i><span style="font-family:Verdana;"></i></span></span></span></span><span><span><i><span style="font-family:""> </span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(residual Hg) ></span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"><i></span><i><span style="font-family:Verdana;">ρ</span></i><span style="font-family:Verdana;"></i></span></span></span></span><span><span><i><span style="font-family:""> </span></i></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">(H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> soluble Hg)</span></span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">></span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"><i></span><i><span style="font-family:Verdana;">ρ</span></i><span style="font-family:Verdana;"></i></span></span></span></span><span><span><i><span style="font-family:""> </span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(water soluble Hg)</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">></span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"><i></span><i><span style="font-family:Verdana;">ρ</span></i><span style="font-family:Verdana;"></i></span></span></span></span><span><span><i><span style="font-family:""> </span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(acid soluble Hg). The morphology and distribution of mercury in FGD by-products is supposed to be analyzed before utilization, and the impact of mercury on the environment should be considered.展开更多
The main technologies for reducing flue gas heat loss of pulverized coal-fired boilers are introduced, and the suitability of these technologies for boiler operation and the principles for selection of these technolog...The main technologies for reducing flue gas heat loss of pulverized coal-fired boilers are introduced, and the suitability of these technologies for boiler operation and the principles for selection of these technologies are explored. The main conclusions are: 1) the non-equilibrium control over flue gas flow rates at the inlet of the air heater and the reversal rotation of the air heater rotator should be popularized as regular technologies in large boilers; 2) increasing the area of the air heater to reduce the flue gas heat loss in pulverized coal-fired boilers should be the top option and increasing the area of the economizer be the next choice; 3) low- pressure economizer technology could save energy under special conditions and should be compared with the technology of increasing economizer area in terms of technical economics when the latter is feasible; 4) the hot primary air heater is only suitable to the pnlvefizing system with a large amount of cold air mixed.展开更多
In China, according to the relative up-to-date regulations and standards, the maincontrol measure for NOX emission of coal-fired power plants is, in principle, low NOXcombustion. However, in recent years, more and mor...In China, according to the relative up-to-date regulations and standards, the maincontrol measure for NOX emission of coal-fired power plants is, in principle, low NOXcombustion. However, in recent years, more and more newlyapproved coal-fired plantswere required to install flue gas denitrification equipment. This article expounds if fluegas denitrification is necessary from several aspects, including constitution of NOX, itsimpact to environment, operation ofdeNOXequipment in USA, as wellas the differencein ambient air quality standard between China and World Health Organization. It setsforth themes in urgent need of study and areas where deNOX equipment is necessaryfor new projects, besides a recommendation that the emission standards for thermalpowerplants should be revised as soon as possible in China.展开更多
Supercritical carbon dioxide(S-CO_(2))Brayton power cycle power generation technology,has attracted more and more scholars'attention in recent years because of its advantages of high efficiency and flexibility.Com...Supercritical carbon dioxide(S-CO_(2))Brayton power cycle power generation technology,has attracted more and more scholars'attention in recent years because of its advantages of high efficiency and flexibility.Compared with conventional steam boilers,S-CO_(2) has different heat transfer characteristics,it is easy to cause the temperature of the cooling wall of the boiler to rise,which leads to higher combustion gas temperature in the furnace,higher NOX generation concentration.The adoption of flue gas recirculation has a significance impact on the combustion process of pulverized coal in the boiler,and it is the most effective ways to reduce the emission of NOX and the combustion temperature in the boiler.This paper takes 1000MW S-CO_(2) T-type coal-fired boiler as the research target to investigate the combustion and NOX generation characteristics of S-CO_(2) coal-fired boilers under flue gas recirculation condition,the influence of recirculated flue gas distribution along the furnace height on the characteristics of NOX formation and the combustion of pulverized coal.The results show that the recirculated flue gas distribution has the great impact on the concentration of NOX at the boiler outlet.When the bottom recirculation flue gas rate is gradually increased,the average temperature of the lower boiler decreases and the average temperature of the upper boiler increases slightly;The concentration of NOx at the furnace outlet increases.展开更多
Efficient control of the desulphurization system is challenging in maximizing the economic objective while reducing the SO_(2) emission concentration. The conventional optimization method is generally based on a hiera...Efficient control of the desulphurization system is challenging in maximizing the economic objective while reducing the SO_(2) emission concentration. The conventional optimization method is generally based on a hierarchical structure in which the upper optimization layer calculates the steady-state results and the lower control layer is responsible to drive the process to the target point. However, the conventional hierarchical structure does not take the economic performance of the dynamic tracking process into account. To this end, multi-objective economic model predictive control(MOEMPC) is introduced in this paper, which unifies the optimization and control layers in a single stage. The objective functions are formulated in terms of a dynamic horizon and to balance the stability and economic performance. In the MOEMPC scheme, economic performance and SO_(2) emission performance are guaranteed by tracking a set of utopia points during dynamic transitions. The terminal penalty function and stabilizing constraint conditions are designed to ensure the stability of the system. Finally, an optimized control method for the stable operation of the complex desulfurization system has been established. Simulation results demonstrate that MOEMPC is superior over another control strategy in terms of economic performance and emission reduction, especially when the desulphurization system suffers from frequent flue gas disturbances.展开更多
The technology for spraying a sintering bed and thus improving sinter quality indicators while reducing the emission of flue gas pollutants has recently become an important research topic.The impacts on sinter quality...The technology for spraying a sintering bed and thus improving sinter quality indicators while reducing the emission of flue gas pollutants has recently become an important research topic.The impacts on sinter quality and emissions when spraying the sintering surface with different amounts and flow rates of steam were investigated in this study.The sinter quality indicators were most effectively improved by spraying 180 g of steam flow continuously at a rate of 0.02 m^(3)/min for 15 min after ignition for 8 min.The optimal effect on emission reduction was obtained by spraying 90 g of steam flow continuously at a rate of 0.01 m^(3)/min for 15 min after ignition for 8 min.展开更多
The in-situ instrumentation technique for measuring mercury and itsspeciation downstream a utility 100 MW pulverized coal (PC) fired boiler system was developed andconducted by the use of the Ontario hydro method (OHM...The in-situ instrumentation technique for measuring mercury and itsspeciation downstream a utility 100 MW pulverized coal (PC) fired boiler system was developed andconducted by the use of the Ontario hydro method (OHM) consistent with American standard test methodtogether with the semi-continuous emissions monitoring (SCEM) system as well as a mobile laboratoryfor mercury monitoring. The mercury and its speciation concentrations including participate mercuryat three locations of before air preheater, before electrostatic precipitator (ESP) and after ESPwere measured using the OHM and SCEM methods under normal operation conditions of the boiler systemas a result of firing a bituminous coal. The vapor-phase total mercury Hg(VT) concentration declinedwith the decrease of flue gas temperature because of mercury species transformation from oxidizedmercury to particulate mercury as the flue gas moved downstream from the air preheater to the ESPand after the ESP. A good agreement for Hg°, Hg^(2+) and Hg( VT) was obtained between the twomethods in the ash-free area. But in the dense particle-laden flue gas area, there appeared to be abig bias for mercury speciation owing to dust cake formed in the filter of OHM sampling probe. Theparticulateaffinity to the flue gas mercury and the impacts of sampling condition to accuracy ofmeasure were discussed.展开更多
基金The National Natural Science Foundation of China(No.51376046,51076030)the National Science and Technology Support Program of China(No.2012BAA02B01)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXZZ13_0093,KYLX_0115,KYLX_018)
文摘A novel carbon trap sampling system for gas-phase mercury measurement in flue gas is developed, including the high efficient sorbents made of modified biomass cokes and high precision sorbent traps for measuring particle-bound and total vapor-phase mercury in flue gas. A dedusting device is installed to collect fine fly ash for reducing the measurement errors. The thorough comparison test of mercury concentration in flue gas is conducted between the novel sampling system and the Ontario hydro method (OHM) in a 6 kW circulating fluidized bed combustor. Mercury mass balance rates of the OHM range from 95.47% to 104.72%. The mercury breakthrough rates for the second section of the sorbent trap are all below 2%. The relative deviations in the two test cases are in the range of 15. 96% to 17. 56% under different conditions. The verified data suggest that this novel carbon trap sampling system can meet the standards of quality assurance and quality control required by EPA Method 30B and can be applied to the coal-fired flue gas mercury sampling system.
基金supported by the National Key Research and Development Program (No. 2018YFB0605104)the National Natural Science Foundation of China (No. 42030807)+1 种基金the Program for HUST Academic Frontier Youth Team (No. 2018QYTD05)the Hubei Provincial Key Research and Development Program (No. 2020BCA076)。
文摘Heterogeneous agglomeration (HA) is a very potential technology for coal-fired flue gas treatment.In this paper,the distribution and migration mechanisms of trace elements (TEs such as Se,As and Pb in CFPPs were studied on a 30,000 m^(3)/hr pilot-scale experimental plat form.The influences of HA on the removal efficiency of gaseous and particulate TEs were well analyzed.The results showed that Se,As and Pb were enriched in fly ash,and their sen sitivity to particle size is quite different.The content of Se was the highest in PM1,reaching193.04 mg/kg at the electrostatic precipitator (ESP) outlet.The average particle size of the total dust before ESP increased significantly from 21.686 to 62.612μm after injecting the heterogeneous agglomeration adsorbent,conducive to its further removal by ESP.In addi tion,the concentrations of gaseous Se,As and Pb in the flue gas decreased after adsorben spray,and accordingly,their contents in the hierarchical particles increased,indicating tha the adsorbent could effectively promote the adsorption of gaseous trace elements in fly ash and reduce the possibility of their escape to the atmosphere.Total concentrations of Se,As and Pb emitted by wet flue gas desulfurization (WFGD) are 0.223,0.668 and 0.076μg/m^(3)which decreased by 59.98%,47.69%and 90.71%,respectively.Finally,a possible HA mecha nism model was proposed,where chemical adsorption,physical condensation and collision agglomeration of gaseous TEs and fine particles with adsorbent droplets occurred to form larger agglomerates.
基金Supported by the PetroChina Science and Technology Project(2023ZG18).
文摘The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and high pressure,the miscible displacement of flue gas and light oil is possible.At the same temperature,there is a linear relationship between oil displacement efficiency and pressure.At the same pressure,the oil displacement efficiency increases gently and then rapidly to more than 90% to achieve miscible displacement with the increase of temperature.The rapid increase of oil displacement efficiency is closely related to the process that the light components of oil transit in phase state due to distillation with the rise of temperature.Moreover,at the same pressure,the lighter the oil,the lower the minimum miscibility temperature between flue gas and oil,which allows easier miscibility and ultimately better performance of thermal miscible flooding by air injection.The miscibility between flue gas and light oil at high temperature and high pressure is more typically characterized by phase transition at high temperature in supercritical state,and it is different from the contact extraction miscibility of CO_(2) under conventional high pressure conditions.
基金supported by National Natural Science Foundation of China(52260012)Natural Science Foundation of Jiangxi Province(20232BAB203053,20212ACB213001,20232BAB203033)+1 种基金General Project of Jiangxi Province Key Research and Development Program(20192BBG70008)Training Plan for Academic and Technical Leaders of Major Disciplines in Jiangxi Province-youth Talent Project(20232BCJ23047).
文摘During wet complexation denitrification of flue gas,Fe^(Ⅱ)EDTA regeneration,also known as reducing Fe^(Ⅱ)EDTA and Fe^(Ⅱ)EDTA-nitric oxide(NO)to Fe^(Ⅱ)EDTA,is crucial.In this paper,ultraviolet(UV)light was used for the first time to reduce Fe^(Ⅱ)EDTA-NO.The experimental result demonstrated that Fe^(Ⅱ)EDTA-NO reduction rate increased with UV power increasing,elevated temperature,and initial Fe^(Ⅱ)EDTA-NO concentration decreasing.Fe^(Ⅱ)EDTA-NO reduction rate increased first and then decreased as pH value increased(2.0-10.0).Fe^(Ⅱ)EDTA-NO reduction with UV irradiation presented a first order reaction with respect to Fe^(Ⅱ)EDTA-NO.Compared with other Fe^(Ⅱ)EDTA regeneration methods,Fe^(Ⅱ)EDTA regeneration with UV show more superiority through comprehensive consideration of regeneration rate and procedure.Subsequently,NO absorption experiment by Fe^(Ⅱ)EDTA solution with UV irradiation confirmed that UV can significantly promote the NO removal performance of Fe^(Ⅱ)EDTA.Appropriate oxygen concentration(3%(vol))and acidic environment(pH=4)was favorable for NO removal.With UV power increasing as well as temperature decreasing,NO removal efficiency rose.In addition,the mechanism research indicates that NO from flue gas is mostly converted to NO_(2)-,NO_(3)-,NH_(4)^(+),N_(2),and N_(2)O with Fe^(Ⅱ)EDTA absorption liquid with UV irradiation.UV strengthens NO removal in Fe^(Ⅱ)EDTA absorption liquid by forming a synergistic effect of oxidation-reduction-complexation.Finally,compared with NO removal methods with Fe^(Ⅱ)EDTA,Fe^(Ⅱ)EDTA combined UV system shows prominent technology advantage in terms of economy and secondary pollution.
基金Funded by National Natural Science Foundation of China(No.22008049)Natural Science Foundation of Hebei Province,China (Nos.B2020202081 and B2018202330)+1 种基金Key Laboratory of Gas Hydrate,Guangzhou Institute of Energy Conversion,Chinese Academy of Sciences,China (No.E029kf1601)Research Fund Program of Science and Technology of Colleges and Universities of Hebei Province,China (No.QN2019012)。
文摘The synthesis of α-calcium sulfate hemihydrate (α-CSH) from flue gas desulfurization (FGD)gypsum is a good way to realize the comprehensive utilization of FGD gypsum. To obtainα-CSH with the satisfactory performances, a facile hydrothermal-aging pretreatment process for FGD gypsum raw materials was proposed, where FGD gypsum was firstly hydrothermally converted to α-CSH whiskers, and α-CSH whiskers were further hydrated to synthesize CaSO4·2H2O (CSD) by aging under the regulation of N,N'-methylenebisacrylamide (MBA). The effects of aging time, MBA addition, aging temperature, and pH on the morphology of the synthesized CSD were investigated. The synthesized CSD crystals exhibit highly uniform prismatic morphology with the length of ca 100μm and the whiteness of 91.56%. The regulation mechanism of MBA was also illustrated. The synthesized CSD crystals with prismatic morphology were further used as raw materials to synthesize the short columnar α-CSH. The absolute dry compressive strength of paste prepared from the short columnar α-CSH is 40.85 MPa, which reaches α40 strength grade.
基金the National Natural Science Foundation of China(Nos.42177391,42077379)the Natural Science Foundation of Hunan Province,China(No.2022JJ20060)+1 种基金the Central South University Innovation-driven Research Program,China(No.2023CXQD065)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2023ZZTS0800).
文摘The synergistic impact of mechanical ball milling and flue gas desulfurization(FGD)gypsum on the dealkalization of bauxite residue was investigated through integrated analyses of solution chemistry,mineralogy,and microtopography.The results showed a significant decrease in Na_(2)O content(>30 wt.%)of FGD gypsum-treated bauxite residue after 30 min of mechanical ball milling.Mechanical ball milling resulted in differentiation of the elemental distribution,modification of the minerals in crystalline structure,and promotion in the dissolution of alkaline minerals,thus enhancing the acid neutralization capacity of bauxite residue.5 wt.%FGD gypsum combined with 30 min mechanical ball milling was optimal for the dealkalization of bauxite residue.
基金the financial supports from Hubei Provincial Key Technologies Research and Development Program(2022BCA058)China Scholarship Council(201908420169)the European Project“Towards Fossil-free Steel”.
文摘In order to achieve ultra-low emissions of SO_(2)and NOx,the oxygen blast furnace with sintering flue gas injection is presented as a promising novel process.The CO_(2)emission was examined,and a cost analysis of the process was conducted.The results show that in the cases when the top gas is not circulated(Cases 1–3),and the volume of injected sintering flue gas per ton of hot metal is below about 1250 m^(3),the total CO_(2)emissions decrease first and then increase as the oxygen content of the blast increases.When the volume of injected sintering flue gas per ton of hot metal exceeds approximately 1250 m^(3),the total CO_(2)emissions gradually decrease.When the recirculating top gas and the vacuum pressure swing adsorption are considered,the benefits of recovered gas can make the ironmaking cost close to or even lower than that of the ordinary blast furnace.Furthermore,the implementation of this approach leads to a substantial reduction in total CO_(2)emissions,with reductions of 69.13%(Case 4),70.60%(Case 5),and 71.07%(Case 6),respectively.By integrating previous research and current findings,the reasonable oxygen blast furnace with sintering flue gas injection can not only realize desulfurization and denitrification,but also achieve the goal of reducing CO_(2)emissions and ironmaking cost.
基金supported by the Qingdao Postdoctoral Program Funding(QDBSH20220202045)Shandong provincial Natural Science Foundation(ZR2021ME049,ZR2022ME176)+1 种基金National Natural Science Foundation of China(22078176)Taishan Industrial Experts Program(TSCX202306135).
文摘In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.
基金supported by enterprise projects(No.YT2017,No.YG1908).
文摘The coal-fired flue gas spraying wastewater is a kind of refractory mixed wastewater with poor biodegradability.In this study,the degradation of model coal-fired flue gas spraying wastewater was studied by using discharge free radicals produced by double-dielectric barrier discharge.The degradation rate of pollutants,chemical oxygen demand removal rate and other indicators were detected,and the influence of different conditions on the degradation effect was analyzed.The optimal parameters are as follows:residence time 120 min,input power 170.0 W,initial pH value 3.79,and aeration rate 1.8 mL/min.The initial concentrations of acetone,formaldehyde,chloroform,benzene and toluene were 100,100,100,and 100 mg/L,respectively.Furthermore,it is proved that the discharge area is independent of the degradation rate.Through the analysis of the mechanism,it is found that·OH is an important factor affecting the degradation rate of pollutants in model coal-fired flue gas spraying wastewater.
基金Supported by the Interdisciplinary Team Project of Shenyang University of Technology in 2021:Green and Low-carbon(Technology and Evaluation)of Typical Industries of Carbon Peak(2021-70-06)"Double First-class"Construction Project of Liaoning Province in 2020(Scientific Research)(FWDFGD2020041).
文摘Based on the basic principle and mechanism of flue gas denitrification,the commonly used catalysts for flue gas denitrification were introduced firstly,and then the catalytic performance,stability and reaction mechanism of catalysts in the market were analyzed.Different types of catalysts were studied to look for green catalysts with high activity,sulfur resistance,water vapor resistance and other advantages.The mechanism of denitration reaction of green catalysts was discussed,and the laws of formation,propagation and consumption of active species in the reaction process were revealed to provide theoretical basis for optimizing catalyst design and improving reaction conditions.Then the research status and problems of new catalysts for flue gas denitrification were described.Finally,the future development direction of green catalysts for flue gas denitration was discussed to improve the performance and stability of catalysts and meet the performance requirements of denitration catalysts in different industries.
基金supported by the National Natural Science Foundation of China (Grant No. 50721140649)
文摘Wet removal of NO from coal-fired flue gas by UV/H2O2 Advanced Oxidation Process (AOP) were investigated in a self-designed UV-bubble reactor. Several main influencing factors (UV intensity, H2O2 initial concentration, initial pH value, solution temperature, NO initial concentration, liquid-gas ratio and O2 percentage content) on the NO removal efficiency were studied. The results showed that UV intensity, H2O2 initial concentration, NO initial concentration and liquid-gas ratio are the main influencing factors. In the best conditions, the highest NO removal efficiency by UV/H2O2 advanced oxidation process could reach 82.9%. Based on the experimental study, the influencing mechanism of the relevant influencing factors were discussed in depth.
基金supported by National Natural Science Foundation of China (No. 51506171)。
文摘Accurate measurement of trace heavy metal mercury(Hg) in flue gas of coal-fired units is great significance for ecological and environmental protection.Mixed gas was used to simulate the actual flue gas of a power plant in this study.A laser-induced breakdown spectroscopy(LIBS)system for Hg measurement in mixed gas was built to study the effect of mixed gas pressure,Hg concentration in mixed gas and delay time on Hg measurement.The experimental results show that the appropriate low mixed gas pressure can obtain high Hg signal intensity and signal to noise ratio.The Hg signal intensity and signal to noise ratio increased with the increase of Hg concentration in mixed gas.The Hg signal intensity and signal to noise ratio decreased with the increase in delay time.According to the above results,the optimized measurement conditions can be determined.Different Hg concentrations in mixed gas were quantitatively analyzed by the internal standard method and traditional calibration method respectively.The relative error of prediction of the test sample obtained by the internal standard method was within 11.11%.The relative error of prediction of the traditional calibration method was less than 14.54%.This proved that the internal standard method can improve the accuracy of quantitative analysis of Hg concentration in flue gas using LIBS.
基金This work was supported by the National Natural Science Foundation of China(51706070 and U1910215)the Fundamental Research Funds for the Central Universities(2018ZD03,2020MS008 and 2020MS078).
文摘Wet Flue Gas Desulfurization(WFGD)unit based upon spray scrubber has beenwidely employed to control SO_(2) emissions from flue gas in coal-fired power plant.To clarify the dependence of desulfurization performance on inter-phase transfer behaviors with non-ideal contacting patterns of flue gas and slurry droplets,three regions in spray scrubber are distinguished in terms of gas-slurry flow structures using CFD method in the Eulerian-Lagrangian framework.A comprehensive model is established by involving the transfer process between two phases and chemical reactions in aqueous phase,which is validatedwith the measured data froma WFGD scrubber of 330 MW coal-fired power unit.Numerical results show that the overall uniformity degree of flue gas in whole scrubber is largely determined by the force-balanced droplets in the middle part of scrubber,which is dominated by counter-current mode.Both momentum transfer behavior and SO_(2) chemical absorption process present the synchronicity with the evolution of gas-slurry flow pattern,whilst the heat transfer together with H_(2)O evaporation has little effect on overall absorption process.Three regions are firstly defined as Gas Inlet Region(GIR),Dominant Absorption Region(DAR)and Slurry Dispersed Region(SDR)from the bottom to top of scrubber.SO_(2) is mainly scrubbed in DAR,which provides much more intensive interaction between two phases compared to GIR or SDR.A better understanding of the desulfurization process is obtained from the fundamental relationship between transport phenomena and chemical reactions based upon the complicated hydrodynamics of gas-slurry two-phase flow,which should be useful for designing and optimizing the scrubber in coal-fired power unit.
文摘The aim of this study was to develop and examine the morphology and distribution of mercury (Hg) in flue gas desulfurization (FGD) by-product.</span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Mercury in the coal of coal-fired power plants is concentrated in the by-products of desulfurization process, and it is widely used as an additive in cement, building materials and other industries. Due to the different stability of various forms of mercury in the environment, subsequent use of products containing desulfurization by-product additives will continue to be released into the environment, endangering human health. Therefore, it is very necessary to study the form and distribution of mercury in the by-products of desulfurization in coal-fired power plants to provide a theoretical basis for subsequent harmless treatment.</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">For content and morphology of mercury analysis, 1 sample of dry FGD ash and 6 samples of wet FGD gypsum were analyzed. The total 7 samples were extracted using a modification of sequential chemical extractions (SCE) method, which was employed for the partitioning Hg into four fractions: water soluble, acid soluble, H<sub>2</sub>O<sub>2</sub> soluble, and residual. The Hg analysis was done with United States Environmental Protection Agency (USEPA) method</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">7471B. Comparing with the wet FGD gypsums of coal-fired boilers, the total Hg content in the dry FGD by-product was as high as</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">1.22 mg/kg, while the total Hg content in the FGD gypsum is 0.23</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">0.74 mg/kg, which was 2 times over the wet FGD gypsum. The concentration of water soluble Hg in the dry FGD by-product was the highest amount (0.72 mg/kg), accounting for 59.02% of the total mercury. While residual Hg content was 0.16 mg/kg, only about 13.11% of the total mercury. Mercury content in FGD gypsum was expressed in the form of <i></span><i><span style="font-family:Verdana;">ρ</span></i><span style="font-family:Verdana;"></i></span></span></span></span><span><span><i><span style="font-family:""> </span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(residual Hg) ></span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"><i></span><i><span style="font-family:Verdana;">ρ</span></i><span style="font-family:Verdana;"></i></span></span></span></span><span><span><i><span style="font-family:""> </span></i></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">(H</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> soluble Hg)</span></span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">></span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"><i></span><i><span style="font-family:Verdana;">ρ</span></i><span style="font-family:Verdana;"></i></span></span></span></span><span><span><i><span style="font-family:""> </span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(water soluble Hg)</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">></span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"><i></span><i><span style="font-family:Verdana;">ρ</span></i><span style="font-family:Verdana;"></i></span></span></span></span><span><span><i><span style="font-family:""> </span></i></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(acid soluble Hg). The morphology and distribution of mercury in FGD by-products is supposed to be analyzed before utilization, and the impact of mercury on the environment should be considered.
文摘The main technologies for reducing flue gas heat loss of pulverized coal-fired boilers are introduced, and the suitability of these technologies for boiler operation and the principles for selection of these technologies are explored. The main conclusions are: 1) the non-equilibrium control over flue gas flow rates at the inlet of the air heater and the reversal rotation of the air heater rotator should be popularized as regular technologies in large boilers; 2) increasing the area of the air heater to reduce the flue gas heat loss in pulverized coal-fired boilers should be the top option and increasing the area of the economizer be the next choice; 3) low- pressure economizer technology could save energy under special conditions and should be compared with the technology of increasing economizer area in terms of technical economics when the latter is feasible; 4) the hot primary air heater is only suitable to the pnlvefizing system with a large amount of cold air mixed.
文摘In China, according to the relative up-to-date regulations and standards, the maincontrol measure for NOX emission of coal-fired power plants is, in principle, low NOXcombustion. However, in recent years, more and more newlyapproved coal-fired plantswere required to install flue gas denitrification equipment. This article expounds if fluegas denitrification is necessary from several aspects, including constitution of NOX, itsimpact to environment, operation ofdeNOXequipment in USA, as wellas the differencein ambient air quality standard between China and World Health Organization. It setsforth themes in urgent need of study and areas where deNOX equipment is necessaryfor new projects, besides a recommendation that the emission standards for thermalpowerplants should be revised as soon as possible in China.
基金This paper is supported by the National Key R&D Program of China(2017YFB0601805).
文摘Supercritical carbon dioxide(S-CO_(2))Brayton power cycle power generation technology,has attracted more and more scholars'attention in recent years because of its advantages of high efficiency and flexibility.Compared with conventional steam boilers,S-CO_(2) has different heat transfer characteristics,it is easy to cause the temperature of the cooling wall of the boiler to rise,which leads to higher combustion gas temperature in the furnace,higher NOX generation concentration.The adoption of flue gas recirculation has a significance impact on the combustion process of pulverized coal in the boiler,and it is the most effective ways to reduce the emission of NOX and the combustion temperature in the boiler.This paper takes 1000MW S-CO_(2) T-type coal-fired boiler as the research target to investigate the combustion and NOX generation characteristics of S-CO_(2) coal-fired boilers under flue gas recirculation condition,the influence of recirculated flue gas distribution along the furnace height on the characteristics of NOX formation and the combustion of pulverized coal.The results show that the recirculated flue gas distribution has the great impact on the concentration of NOX at the boiler outlet.When the bottom recirculation flue gas rate is gradually increased,the average temperature of the lower boiler decreases and the average temperature of the upper boiler increases slightly;The concentration of NOx at the furnace outlet increases.
基金supported by the National Key Research and Development Program of China (2017YFB0601805)。
文摘Efficient control of the desulphurization system is challenging in maximizing the economic objective while reducing the SO_(2) emission concentration. The conventional optimization method is generally based on a hierarchical structure in which the upper optimization layer calculates the steady-state results and the lower control layer is responsible to drive the process to the target point. However, the conventional hierarchical structure does not take the economic performance of the dynamic tracking process into account. To this end, multi-objective economic model predictive control(MOEMPC) is introduced in this paper, which unifies the optimization and control layers in a single stage. The objective functions are formulated in terms of a dynamic horizon and to balance the stability and economic performance. In the MOEMPC scheme, economic performance and SO_(2) emission performance are guaranteed by tracking a set of utopia points during dynamic transitions. The terminal penalty function and stabilizing constraint conditions are designed to ensure the stability of the system. Finally, an optimized control method for the stable operation of the complex desulfurization system has been established. Simulation results demonstrate that MOEMPC is superior over another control strategy in terms of economic performance and emission reduction, especially when the desulphurization system suffers from frequent flue gas disturbances.
文摘The technology for spraying a sintering bed and thus improving sinter quality indicators while reducing the emission of flue gas pollutants has recently become an important research topic.The impacts on sinter quality and emissions when spraying the sintering surface with different amounts and flow rates of steam were investigated in this study.The sinter quality indicators were most effectively improved by spraying 180 g of steam flow continuously at a rate of 0.02 m^(3)/min for 15 min after ignition for 8 min.The optimal effect on emission reduction was obtained by spraying 90 g of steam flow continuously at a rate of 0.01 m^(3)/min for 15 min after ignition for 8 min.
文摘The in-situ instrumentation technique for measuring mercury and itsspeciation downstream a utility 100 MW pulverized coal (PC) fired boiler system was developed andconducted by the use of the Ontario hydro method (OHM) consistent with American standard test methodtogether with the semi-continuous emissions monitoring (SCEM) system as well as a mobile laboratoryfor mercury monitoring. The mercury and its speciation concentrations including participate mercuryat three locations of before air preheater, before electrostatic precipitator (ESP) and after ESPwere measured using the OHM and SCEM methods under normal operation conditions of the boiler systemas a result of firing a bituminous coal. The vapor-phase total mercury Hg(VT) concentration declinedwith the decrease of flue gas temperature because of mercury species transformation from oxidizedmercury to particulate mercury as the flue gas moved downstream from the air preheater to the ESPand after the ESP. A good agreement for Hg°, Hg^(2+) and Hg( VT) was obtained between the twomethods in the ash-free area. But in the dense particle-laden flue gas area, there appeared to be abig bias for mercury speciation owing to dust cake formed in the filter of OHM sampling probe. Theparticulateaffinity to the flue gas mercury and the impacts of sampling condition to accuracy ofmeasure were discussed.