Aiming at issues on flue gas des-ulfurization facing coal-fired power plants inChina, such as process selection, whetheradopting flue gas desulfurization (FGD) or not,qualification of flue gas desulfurization en-ginee...Aiming at issues on flue gas des-ulfurization facing coal-fired power plants inChina, such as process selection, whetheradopting flue gas desulfurization (FGD) or not,qualification of flue gas desulfurization en-gineering company, the localization of technicalequipment, charge for SO2 emission andnormalized management, this article makes acomprehensive analysis and puts forwardconstructive suggestions. These will providesome references for those being engaged in fluegas desulfurization in coal-fired power plants.[展开更多
This study investigated the influence of precipitators and wet flue gas desulfurization equipment on characteristics of PM_(2.5)emission from coal-fired power stations.We measured size distribution and removal efficie...This study investigated the influence of precipitators and wet flue gas desulfurization equipment on characteristics of PM_(2.5)emission from coal-fired power stations.We measured size distribution and removal efficiencies,including hybrid electrostatic precipitator/bag filters(ESP/BAGs)which have rarely been studied.A bimodal distribution of particle concentrations was observed at the inlet of each precipitator.After the precipitators,particle concentrations were significantly reduced.Although a bimodal distribution was still observed,all peak positions shifted to the smaller end.The removal efficiencies of hybrid ESP/BAGs reached 99%for PM_(2.5),which is considerably higher than those for other types of precipitators.In particular,the influence of hybrid ESP/BAG operating conditions on the performance of dust removal was explored.The efficiency of hybrid ESP/BAGs decreased by 1.9%when the first electrostatic field was shut down.The concentrations and distributions of particulate matter were also measured in three coal-fired power plants before and after desulfurization devices.The results showed diverse removal efficiencies for different desulfurization towers.The reason for the difference requires further research.We estimated the influence of removal technology for particulate matter on total emissions in China.Substituting ESPs with hybrid ESP/BAGs could reduce the total emissions to 104.3 thousand tons,with 47.48 thousand tons of PM_(2.5).展开更多
The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy ...The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy internet. Progressive penetration of intermittent renewable energy sources into the energy system has led to unprecedented challenges to the currently wide use of coal-fired power generation technologies. Here, the applications and prospects of advanced coal-fired power generation technologies are analyzed. These technologies can be summarized into three categories:(1) large-scale and higher parameters coal-fired power generation technologies, including 620/650/700 oC ultra-supercritical thermal power and double reheat ultra-supercritical coal-fired power generation technologies;(2) system innovation and specific, highefficiency thermal cycles, which consist of renewable energy-aided coal-fired power generation technologies, a supercritical CO_2 Brayton cycle for coal-fired power plants, large-scale air-cooling coal-fired power plant technologies, and innovative layouts for waste heat utilization and enhanced energy cascade utilization;(3) coal-fired power generation combined with poly-generation technologies, which are represented by integrated gasification combined cycle(IGCC) and integrated gasification fuel cell(IGFC) technologies. Concerning the existing coal-fired power units, which are responsible for peak shaving, possible strategies for enhancing flexibility and operational stability are discussed. Furthermore, future trends for coal-fired power plants coupled with cyber-physical system(CPS) technologies are introduced. The development of advanced, coal-fired power generation technologies demonstrates the progress of science and is suitable for the sustainable development of human society.展开更多
Coal is the backbone of the Indian power sector. The coal-fired power plants remain the largest emitters of carbon dioxide, sulfur dioxide and substantial amounts of nitrogen oxides, which are associated with climate ...Coal is the backbone of the Indian power sector. The coal-fired power plants remain the largest emitters of carbon dioxide, sulfur dioxide and substantial amounts of nitrogen oxides, which are associated with climate and health impacts. Various CO2 mitigation technologies (carbon capture and storage--CCS) and SO2/NOx mitigation technologies (flue gas desulfurization and selective catalytic reduction) have been employed to reduce the environmental impacts of the coal-fired power plants. Therefore, it is imperative to understand the feasibility of various mitigation technologies employed. This paper attempts to perform environmental life cycle assessment (LCA) of Indian coal-fired power plant with and without CO2, SO2 and NOx mitigation controls. The study develops new normalization factors for India in various damage categories, using the Indian emissions and energy consumption data, coupled with the emissions and particulate emission to come up with a final environmental impact of coal-fired electricity. The results show a large degree of dependence on the perspective of assessment used. The impact of sensitivities of individual substances and the effect of plant efficiency on the final LCA results is also studied.展开更多
Coal is the dominant energy source in China,and coal-fired power accounts for about half of coal consumption.However,air pollutant emissions from coal-fired power plants cause severe ecological and environmental probl...Coal is the dominant energy source in China,and coal-fired power accounts for about half of coal consumption.However,air pollutant emissions from coal-fired power plants cause severe ecological and environmental problems.This paper focuses on near-zero emission technologies and applications for clean coal-fired power.The long-term operation states of near-zero emission units were evaluated,and synergistic and special mercury(Hg)control technologies were researched.The results show that the principle technical route of near-zero emission,which was applied to 101 of China’s coal-fired units,has good adaptability to coal properties.The emission concentrations of particulate matter(PM),SO2,and NOx were below the emission limits of gas-fired power plants and the compliance rates of the hourly average emission concentrations reaching near-zero emission in long-term operation exceeded 99%.With the application of near-zero emission technologies,the generating costs increased by about 0.01 CNY∙(kW∙h)-1.However,the total emissions of air pollutants decreased by about 90%,resulting in effective improvement of the ambient air quality.Furthermore,while the Hg emission concentrations of the near-zero emission units ranged from 0.51 to 2.89μg∙m^-3,after the modified fly ash(MFA)special Hg removal system was applied,Hg emission concentration reached as low as 0.29μg∙m^-3.The operating cost of this system was only 10%-15%of the cost of mainstream Hg removal technology using activated carbon injection.Based on experimental studies carried out in a 50000 m^3∙h^-1 coal-fired flue gas pollutant control pilot platform,the interaction relationships of multi-pollutant removal were obtained and solutions were developed for emissions reaching different limits.A combined demonstration application for clean coal-fired power,with the new“1123”eco-friendly emission limits of 1,10,20 mg∙m^-3,and 3μg∙m^-3,respectively,for PM,SO2,NOx,and Hg from near-zero emission coal-fired power were put forward and realized,providing engineering and technical support for the national enhanced pollution emission standards.展开更多
On-site measurements of volatile organic compounds(VOCs)in different streams of flue gas were carried out on a real coal-fired power plant using sampling bags and SUMMA canisters to collect gas samples,filters to coll...On-site measurements of volatile organic compounds(VOCs)in different streams of flue gas were carried out on a real coal-fired power plant using sampling bags and SUMMA canisters to collect gas samples,filters to collect particle samples.Gas chromatography-flame ionization detector/mass spectrometry and gas chromatography-mass spectrometry was the offline analysis method.We found that the total mass concentration of the tested 102 VOC species at the outlet of wet flue gas desulfuration device was(13456±47)μg·m^(-3),which contained aliphatic hydrocarbons(57.9%),aromatic hydrocarbons(26.8%),halogen-containing species(14.5%),and a small amount of oxygen-containing and nitrogencontaining species.The most abundant species were 1-hexene,n-hexane and 2-methylpentane.The top ten species in terms of mass fraction(with a total mass fraction of 75.3%)were mainly hydrocarbons with a carbon number of 6 or higher and halogenated hydrocarbons with a lower carbon number.The mass concentration of VOC species in the particle phase was significantly lower than that in the gas phase.The change of VOC mass concentrations along the air pollution control devices indicates that conventional pollutant control equipment had a limited effect on VOC reduction.Ozone formation potential calculations showed that aromatic hydrocarbons contributed the highest ozone formation(46.4%)due to their relatively high mass concentrations and MIR(maximum increment reactivity)values.展开更多
Nowadays, the worsening environmental issue caused by CO2 emission is greatly aggravated by human activity. Many CO2 reduction technologies are under fast development. Among these, monoethanolamine (MEA) based CO2 cap...Nowadays, the worsening environmental issue caused by CO2 emission is greatly aggravated by human activity. Many CO2 reduction technologies are under fast development. Among these, monoethanolamine (MEA) based CO2 capture technology has been paid great attention. However, when connecting the CO2 capture process with a coal-fired power plant, the huge energy and efficiency penalty caused by CO2 capture has become a serious problem for its application. Thus, it is of great significance to reduce the related energy consumption. Based on an existing coal-fired power plant, this paper proposes a new way for the decarburized retrofitting of the coal-fired power plant, which helps to improve the overall efficiency of the power plant with less energy and efficiency penalty. The decarburized retrofitting scheme proposed will provide a new route for the CO2 capture process in China.展开更多
In order to reduce the environmental smog caused by coal combustion,air pollution control devices have been widely used in coal-fired power plants,especially of wet flue gas desulfurization(WFGD)and wet electrostatic ...In order to reduce the environmental smog caused by coal combustion,air pollution control devices have been widely used in coal-fired power plants,especially of wet flue gas desulfurization(WFGD)and wet electrostatic precipitator(WESP).In this work,particulate matter with aerodynamic diameter less than 10μm(PM_(10))and sulfur oxides(SO_(x))have been studied in a coal-fired power plant.The plant is equipped with selective catalytic reduction,electrostatic precipitator,WFGD,WESP.The results show that the PM_(10)removal efficiencies in WFGD and WESP are 54.34%and 50.39%,respectively,and the overall removal efficiency is 77.35%.WFGD and WESP have effects on the particle size distribution.After WFGD,the peak of particles shifts from 1.62 to 0.95μm,and the mass concentration of fine particles with aerodynamic diameter less than 0.61μm increases.After WESP,the peak of particle size shifts from 0.95 to 1.61μm.The differences are due to the agglomeration and growth of small particles.The SO_(3)mass concentration increases after SCR,but WFGD has a great influence on SO_(x)with the efficiency of 96.56%.WESP can remove SO_(x),but the efficiency is 20.91%.The final emission factors of SO_(2),SO_(3),PM_(1),PM_(2.5)and PM_(10)are 0.1597,0.0450,0.0154,0.0267 and 0.0215(kg·t^(−1)),respectively.Compared with the research results without ultra-low emission retrofit,the emission factors are reduced by 1~2 orders of magnitude,and the emission control level of air pollutants is greatly improved.展开更多
The hazardous waste produced by coal-fired power plants are large in quantity and variety. It is important for ecological environment protection to properly store hazardous waste in coal-fired power plants. The enviro...The hazardous waste produced by coal-fired power plants are large in quantity and variety. It is important for ecological environment protection to properly store hazardous waste in coal-fired power plants. The environmental management of hazardous waste in coal-fired power plants started late, and there are many problems in the construction and management of their storage facilities. In this paper, taking eight typical coal-fired power plants as examples, the present problems of hazardous waste storage facilities in coal-fired power plants are analyzed, and corresponding countermeasures are put forward to solve the main common problems.展开更多
With a particular reference to China Huaneng Group's practices in CO_2 capture, this article presents a brief ing on the current development of CO_2 capture technologies in coal-fired power plants both in China an...With a particular reference to China Huaneng Group's practices in CO_2 capture, this article presents a brief ing on the current development of CO_2 capture technologies in coal-fired power plants both in China and abroad. Sooner or later, the integration of CO_2 capture and storage (CCS) facility with coal-fired power plant will be inevitably put on the agenda of developers.展开更多
Based on the Chinese thermal coal and power generation data,such as ultimate analysis,proximate analysis,low heat value(LHV)on as received basis,power generation volume,thermal coal consumption volume and net coal con...Based on the Chinese thermal coal and power generation data,such as ultimate analysis,proximate analysis,low heat value(LHV)on as received basis,power generation volume,thermal coal consumption volume and net coal consumption rate,several mathematical models for calculating CO 2 reduction by Chinese coal-fired power plants are established.Calculations of the CO 2 emission factor(CEF),the CO 2 emission volume and reduction volume are made according to these models.The calculation results reveal that between 1993 and 2010,the CO 2 emission volume reached 31.069 Gt,reduced by 0.439 Gt,averaging 28.83 Mt each year.展开更多
Xiangfan Coal-fired Power Plant, a key energy construction project matched with Three Gorges Project, approved by the State Council. formally started to build in the suburb of Xiangfan City, Hubei Province on November...Xiangfan Coal-fired Power Plant, a key energy construction project matched with Three Gorges Project, approved by the State Council. formally started to build in the suburb of Xiangfan City, Hubei Province on November 29, 1996.展开更多
For Finland, carbon dioxide mineralisation was identified as the only option for CCS (carbon capture and storage) application. Unfortunately it has not been embraced by the power sector. One interesting source-sink ...For Finland, carbon dioxide mineralisation was identified as the only option for CCS (carbon capture and storage) application. Unfortunately it has not been embraced by the power sector. One interesting source-sink combination, however, is formed by magnesium silicate resources at Vammala, located -85 km east of the 565 MWe coal-fired Meri-Pori Power Plant on the country's southwest coast. This paper assesses mineral sequestration of Meri-Pori power plant CO2, using Vammala mineral resources and the mineralisation process under development at Abo Akademi University. That process implies Mg(OH)E production from magnesium silicate-based rock, followed by gas/solid carbonation of the Mg(OH)2 in a pressurised fluidised bed. Reported are results on experimental work, i.e., Mg(OH)2 production, with rock from locations close to Meri-Pori. Results suggest a total CO2 fixation capacity -50 Mt CO2 for the Vammala site, although production of Mg(OH)2 from rock from the site is challenging. Finally, as mineralisation could be directly applied to flue gases without CO2 pre-capture, we report from experimental work on carbonation of Mg(OH)2 with CO2 and CO2-SO2-O2 gas mixtures. Results show that SO2 readily reacts with Mg(OH)2, providing an opportunity to simultaneously capture SO2 and CO2, which could make separate flue gas desulphurisation redundant.展开更多
In China, according to the relative up-to-date regulations and standards, the maincontrol measure for NOX emission of coal-fired power plants is, in principle, low NOXcombustion. However, in recent years, more and mor...In China, according to the relative up-to-date regulations and standards, the maincontrol measure for NOX emission of coal-fired power plants is, in principle, low NOXcombustion. However, in recent years, more and more newlyapproved coal-fired plantswere required to install flue gas denitrification equipment. This article expounds if fluegas denitrification is necessary from several aspects, including constitution of NOX, itsimpact to environment, operation ofdeNOXequipment in USA, as wellas the differencein ambient air quality standard between China and World Health Organization. It setsforth themes in urgent need of study and areas where deNOX equipment is necessaryfor new projects, besides a recommendation that the emission standards for thermalpowerplants should be revised as soon as possible in China.展开更多
There is a growing need to explore the potential of coal-fired power plants(CFPPs)to enhance the utilization rate of wind power(wind)and photovoltaic power(PV)in the green energy field.This study developed a load regu...There is a growing need to explore the potential of coal-fired power plants(CFPPs)to enhance the utilization rate of wind power(wind)and photovoltaic power(PV)in the green energy field.This study developed a load regulation model for a multi-power generation system comprising wind,PV,and coal energy storage using realworld data.The power supply process was divided into eight fundamental load regulation scenarios,elucidating the influence of each scenario on load regulation.Within the framework of the multi-power generation system with the wind(50 MW)and PV(50 MW)alongside a CFPP(330 MW),a lithium-iron phosphate energy storage system(LIPBESS)was integrated to improve the system’s load regulation flexibility.The energy storage operation strategy was formulated based on the charging and discharging priority of the LIPBESS for each basic scenario and the charging and discharging load calculation method of LIPBESS auxiliary regulation.Through optimization using the particle swarm algorithm,the optimal capacity of LIPBESS was determined to be within the 5.24-4.88 MWh range.From an economic perspective,the LIPBESS operating with CFPP as the regulating power source was 49.1% lower in capacity compared to the renewable energy-based storage mode.展开更多
文摘Aiming at issues on flue gas des-ulfurization facing coal-fired power plants inChina, such as process selection, whetheradopting flue gas desulfurization (FGD) or not,qualification of flue gas desulfurization en-gineering company, the localization of technicalequipment, charge for SO2 emission andnormalized management, this article makes acomprehensive analysis and puts forwardconstructive suggestions. These will providesome references for those being engaged in fluegas desulfurization in coal-fired power plants.[
基金Supported by the National Basic Research Pro-gram of China(973 Program)(2013CB228506).
文摘This study investigated the influence of precipitators and wet flue gas desulfurization equipment on characteristics of PM_(2.5)emission from coal-fired power stations.We measured size distribution and removal efficiencies,including hybrid electrostatic precipitator/bag filters(ESP/BAGs)which have rarely been studied.A bimodal distribution of particle concentrations was observed at the inlet of each precipitator.After the precipitators,particle concentrations were significantly reduced.Although a bimodal distribution was still observed,all peak positions shifted to the smaller end.The removal efficiencies of hybrid ESP/BAGs reached 99%for PM_(2.5),which is considerably higher than those for other types of precipitators.In particular,the influence of hybrid ESP/BAG operating conditions on the performance of dust removal was explored.The efficiency of hybrid ESP/BAGs decreased by 1.9%when the first electrostatic field was shut down.The concentrations and distributions of particulate matter were also measured in three coal-fired power plants before and after desulfurization devices.The results showed diverse removal efficiencies for different desulfurization towers.The reason for the difference requires further research.We estimated the influence of removal technology for particulate matter on total emissions in China.Substituting ESPs with hybrid ESP/BAGs could reduce the total emissions to 104.3 thousand tons,with 47.48 thousand tons of PM_(2.5).
基金supported by the National Nature Science Foundation of China(Grant No.51821004)supported by National Soft Science Projects:"Frontier tracking research on science and technology in the field of energy" program
文摘The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy internet. Progressive penetration of intermittent renewable energy sources into the energy system has led to unprecedented challenges to the currently wide use of coal-fired power generation technologies. Here, the applications and prospects of advanced coal-fired power generation technologies are analyzed. These technologies can be summarized into three categories:(1) large-scale and higher parameters coal-fired power generation technologies, including 620/650/700 oC ultra-supercritical thermal power and double reheat ultra-supercritical coal-fired power generation technologies;(2) system innovation and specific, highefficiency thermal cycles, which consist of renewable energy-aided coal-fired power generation technologies, a supercritical CO_2 Brayton cycle for coal-fired power plants, large-scale air-cooling coal-fired power plant technologies, and innovative layouts for waste heat utilization and enhanced energy cascade utilization;(3) coal-fired power generation combined with poly-generation technologies, which are represented by integrated gasification combined cycle(IGCC) and integrated gasification fuel cell(IGFC) technologies. Concerning the existing coal-fired power units, which are responsible for peak shaving, possible strategies for enhancing flexibility and operational stability are discussed. Furthermore, future trends for coal-fired power plants coupled with cyber-physical system(CPS) technologies are introduced. The development of advanced, coal-fired power generation technologies demonstrates the progress of science and is suitable for the sustainable development of human society.
文摘Coal is the backbone of the Indian power sector. The coal-fired power plants remain the largest emitters of carbon dioxide, sulfur dioxide and substantial amounts of nitrogen oxides, which are associated with climate and health impacts. Various CO2 mitigation technologies (carbon capture and storage--CCS) and SO2/NOx mitigation technologies (flue gas desulfurization and selective catalytic reduction) have been employed to reduce the environmental impacts of the coal-fired power plants. Therefore, it is imperative to understand the feasibility of various mitigation technologies employed. This paper attempts to perform environmental life cycle assessment (LCA) of Indian coal-fired power plant with and without CO2, SO2 and NOx mitigation controls. The study develops new normalization factors for India in various damage categories, using the Indian emissions and energy consumption data, coupled with the emissions and particulate emission to come up with a final environmental impact of coal-fired electricity. The results show a large degree of dependence on the perspective of assessment used. The impact of sensitivities of individual substances and the effect of plant efficiency on the final LCA results is also studied.
基金the National Science and Technology Support Program of China(2015BAA05B02).
文摘Coal is the dominant energy source in China,and coal-fired power accounts for about half of coal consumption.However,air pollutant emissions from coal-fired power plants cause severe ecological and environmental problems.This paper focuses on near-zero emission technologies and applications for clean coal-fired power.The long-term operation states of near-zero emission units were evaluated,and synergistic and special mercury(Hg)control technologies were researched.The results show that the principle technical route of near-zero emission,which was applied to 101 of China’s coal-fired units,has good adaptability to coal properties.The emission concentrations of particulate matter(PM),SO2,and NOx were below the emission limits of gas-fired power plants and the compliance rates of the hourly average emission concentrations reaching near-zero emission in long-term operation exceeded 99%.With the application of near-zero emission technologies,the generating costs increased by about 0.01 CNY∙(kW∙h)-1.However,the total emissions of air pollutants decreased by about 90%,resulting in effective improvement of the ambient air quality.Furthermore,while the Hg emission concentrations of the near-zero emission units ranged from 0.51 to 2.89μg∙m^-3,after the modified fly ash(MFA)special Hg removal system was applied,Hg emission concentration reached as low as 0.29μg∙m^-3.The operating cost of this system was only 10%-15%of the cost of mainstream Hg removal technology using activated carbon injection.Based on experimental studies carried out in a 50000 m^3∙h^-1 coal-fired flue gas pollutant control pilot platform,the interaction relationships of multi-pollutant removal were obtained and solutions were developed for emissions reaching different limits.A combined demonstration application for clean coal-fired power,with the new“1123”eco-friendly emission limits of 1,10,20 mg∙m^-3,and 3μg∙m^-3,respectively,for PM,SO2,NOx,and Hg from near-zero emission coal-fired power were put forward and realized,providing engineering and technical support for the national enhanced pollution emission standards.
基金funded by the National Natural Science Foundation of China(52006079)the Natural Science Foundation of Hubei Province(2020CFB247)the National Key Research and Development Program of China(2018YFB0605201)。
文摘On-site measurements of volatile organic compounds(VOCs)in different streams of flue gas were carried out on a real coal-fired power plant using sampling bags and SUMMA canisters to collect gas samples,filters to collect particle samples.Gas chromatography-flame ionization detector/mass spectrometry and gas chromatography-mass spectrometry was the offline analysis method.We found that the total mass concentration of the tested 102 VOC species at the outlet of wet flue gas desulfuration device was(13456±47)μg·m^(-3),which contained aliphatic hydrocarbons(57.9%),aromatic hydrocarbons(26.8%),halogen-containing species(14.5%),and a small amount of oxygen-containing and nitrogencontaining species.The most abundant species were 1-hexene,n-hexane and 2-methylpentane.The top ten species in terms of mass fraction(with a total mass fraction of 75.3%)were mainly hydrocarbons with a carbon number of 6 or higher and halogenated hydrocarbons with a lower carbon number.The mass concentration of VOC species in the particle phase was significantly lower than that in the gas phase.The change of VOC mass concentrations along the air pollution control devices indicates that conventional pollutant control equipment had a limited effect on VOC reduction.Ozone formation potential calculations showed that aromatic hydrocarbons contributed the highest ozone formation(46.4%)due to their relatively high mass concentrations and MIR(maximum increment reactivity)values.
文摘Nowadays, the worsening environmental issue caused by CO2 emission is greatly aggravated by human activity. Many CO2 reduction technologies are under fast development. Among these, monoethanolamine (MEA) based CO2 capture technology has been paid great attention. However, when connecting the CO2 capture process with a coal-fired power plant, the huge energy and efficiency penalty caused by CO2 capture has become a serious problem for its application. Thus, it is of great significance to reduce the related energy consumption. Based on an existing coal-fired power plant, this paper proposes a new way for the decarburized retrofitting of the coal-fired power plant, which helps to improve the overall efficiency of the power plant with less energy and efficiency penalty. The decarburized retrofitting scheme proposed will provide a new route for the CO2 capture process in China.
基金The work was supported by the National Key Research and Development Plan of China(No.2016YFB0600605).
文摘In order to reduce the environmental smog caused by coal combustion,air pollution control devices have been widely used in coal-fired power plants,especially of wet flue gas desulfurization(WFGD)and wet electrostatic precipitator(WESP).In this work,particulate matter with aerodynamic diameter less than 10μm(PM_(10))and sulfur oxides(SO_(x))have been studied in a coal-fired power plant.The plant is equipped with selective catalytic reduction,electrostatic precipitator,WFGD,WESP.The results show that the PM_(10)removal efficiencies in WFGD and WESP are 54.34%and 50.39%,respectively,and the overall removal efficiency is 77.35%.WFGD and WESP have effects on the particle size distribution.After WFGD,the peak of particles shifts from 1.62 to 0.95μm,and the mass concentration of fine particles with aerodynamic diameter less than 0.61μm increases.After WESP,the peak of particle size shifts from 0.95 to 1.61μm.The differences are due to the agglomeration and growth of small particles.The SO_(3)mass concentration increases after SCR,but WFGD has a great influence on SO_(x)with the efficiency of 96.56%.WESP can remove SO_(x),but the efficiency is 20.91%.The final emission factors of SO_(2),SO_(3),PM_(1),PM_(2.5)and PM_(10)are 0.1597,0.0450,0.0154,0.0267 and 0.0215(kg·t^(−1)),respectively.Compared with the research results without ultra-low emission retrofit,the emission factors are reduced by 1~2 orders of magnitude,and the emission control level of air pollutants is greatly improved.
文摘The hazardous waste produced by coal-fired power plants are large in quantity and variety. It is important for ecological environment protection to properly store hazardous waste in coal-fired power plants. The environmental management of hazardous waste in coal-fired power plants started late, and there are many problems in the construction and management of their storage facilities. In this paper, taking eight typical coal-fired power plants as examples, the present problems of hazardous waste storage facilities in coal-fired power plants are analyzed, and corresponding countermeasures are put forward to solve the main common problems.
文摘With a particular reference to China Huaneng Group's practices in CO_2 capture, this article presents a brief ing on the current development of CO_2 capture technologies in coal-fired power plants both in China and abroad. Sooner or later, the integration of CO_2 capture and storage (CCS) facility with coal-fired power plant will be inevitably put on the agenda of developers.
文摘Based on the Chinese thermal coal and power generation data,such as ultimate analysis,proximate analysis,low heat value(LHV)on as received basis,power generation volume,thermal coal consumption volume and net coal consumption rate,several mathematical models for calculating CO 2 reduction by Chinese coal-fired power plants are established.Calculations of the CO 2 emission factor(CEF),the CO 2 emission volume and reduction volume are made according to these models.The calculation results reveal that between 1993 and 2010,the CO 2 emission volume reached 31.069 Gt,reduced by 0.439 Gt,averaging 28.83 Mt each year.
文摘Xiangfan Coal-fired Power Plant, a key energy construction project matched with Three Gorges Project, approved by the State Council. formally started to build in the suburb of Xiangfan City, Hubei Province on November 29, 1996.
文摘For Finland, carbon dioxide mineralisation was identified as the only option for CCS (carbon capture and storage) application. Unfortunately it has not been embraced by the power sector. One interesting source-sink combination, however, is formed by magnesium silicate resources at Vammala, located -85 km east of the 565 MWe coal-fired Meri-Pori Power Plant on the country's southwest coast. This paper assesses mineral sequestration of Meri-Pori power plant CO2, using Vammala mineral resources and the mineralisation process under development at Abo Akademi University. That process implies Mg(OH)E production from magnesium silicate-based rock, followed by gas/solid carbonation of the Mg(OH)2 in a pressurised fluidised bed. Reported are results on experimental work, i.e., Mg(OH)2 production, with rock from locations close to Meri-Pori. Results suggest a total CO2 fixation capacity -50 Mt CO2 for the Vammala site, although production of Mg(OH)2 from rock from the site is challenging. Finally, as mineralisation could be directly applied to flue gases without CO2 pre-capture, we report from experimental work on carbonation of Mg(OH)2 with CO2 and CO2-SO2-O2 gas mixtures. Results show that SO2 readily reacts with Mg(OH)2, providing an opportunity to simultaneously capture SO2 and CO2, which could make separate flue gas desulphurisation redundant.
文摘In China, according to the relative up-to-date regulations and standards, the maincontrol measure for NOX emission of coal-fired power plants is, in principle, low NOXcombustion. However, in recent years, more and more newlyapproved coal-fired plantswere required to install flue gas denitrification equipment. This article expounds if fluegas denitrification is necessary from several aspects, including constitution of NOX, itsimpact to environment, operation ofdeNOXequipment in USA, as wellas the differencein ambient air quality standard between China and World Health Organization. It setsforth themes in urgent need of study and areas where deNOX equipment is necessaryfor new projects, besides a recommendation that the emission standards for thermalpowerplants should be revised as soon as possible in China.
基金supported by the Natural Science Foundation of China(Grant Nos.52076079,52206010)Natural Science Foundation of Hebei Province,China(Grant No.E2020502013)the Fundamental Research Funds for the Central Universities(2021MS076,2021MS079).
文摘There is a growing need to explore the potential of coal-fired power plants(CFPPs)to enhance the utilization rate of wind power(wind)and photovoltaic power(PV)in the green energy field.This study developed a load regulation model for a multi-power generation system comprising wind,PV,and coal energy storage using realworld data.The power supply process was divided into eight fundamental load regulation scenarios,elucidating the influence of each scenario on load regulation.Within the framework of the multi-power generation system with the wind(50 MW)and PV(50 MW)alongside a CFPP(330 MW),a lithium-iron phosphate energy storage system(LIPBESS)was integrated to improve the system’s load regulation flexibility.The energy storage operation strategy was formulated based on the charging and discharging priority of the LIPBESS for each basic scenario and the charging and discharging load calculation method of LIPBESS auxiliary regulation.Through optimization using the particle swarm algorithm,the optimal capacity of LIPBESS was determined to be within the 5.24-4.88 MWh range.From an economic perspective,the LIPBESS operating with CFPP as the regulating power source was 49.1% lower in capacity compared to the renewable energy-based storage mode.