China’s electric power industry as a basic industry, plays an important role in the longterm, sustained and healthy development of the whole national economy. China’s electric power industry attained great achieveme...China’s electric power industry as a basic industry, plays an important role in the longterm, sustained and healthy development of the whole national economy. China’s electric power industry attained great achievement in technology and economical results during the past eight years from 1987-1995. The total national installed generating capacity increased from 102.897 GW in 1987 to more than 200 GW in March, 1995.展开更多
Northern China has rich wind power and photovoltaic renewable resources. Combined Heat and Power (CHP) Units to meet the load demand and limit its peaking capacity in winter, to a certain extent, it results in structu...Northern China has rich wind power and photovoltaic renewable resources. Combined Heat and Power (CHP) Units to meet the load demand and limit its peaking capacity in winter, to a certain extent, it results in structural problems of wind-solar power and thermoelectric. To solve these problems, this paper proposes a plurality of units together to ensure supply of heat load on the premise, by building a thermoelectric power peaking considering thermal load unit group dynamic scheduling model, to achieve the potential of different thermoelectric properties peaking units of the excavation. Simulation examples show, if the unit group exists obvious relationship thermoelectric individual differences, the thermal load dynamic scheduling can be more significantly improved overall performance peaking unit group, effectively increase clean energy consumptive.展开更多
Both the modeling and the load regulation capacity prediction of a supercritical power plant are investigated in this paper. Firstly, an indirect identification method based on subspace identification method is propos...Both the modeling and the load regulation capacity prediction of a supercritical power plant are investigated in this paper. Firstly, an indirect identification method based on subspace identification method is proposed. The obtained identification model is verified by the actual operation data and the dynamic characteristics of the system are well reproduced. Secondly, the model is used to predict the load regulation capacity of thermal power unit. The power, main steam pressure, main steam temperature and other parameters are simulated respectively when the unit load is going up and down. Under the actual constraints, the load regulation capacity of thermal power unit can be predicted quickly.展开更多
After a thorough demonstration in Panshan Thermal Power Plant, the 500 MW super critical pressure unit simulator developed by the Simulation & Control Institute under the North China University of Electric Power w...After a thorough demonstration in Panshan Thermal Power Plant, the 500 MW super critical pressure unit simulator developed by the Simulation & Control Institute under the North China University of Electric Power was accepted by experts from the North China Electric Power Group Company on 3rd August 1996.展开更多
Coal consumption curve of the thermal power plant can reflect the function relationship between the coal consumption of unit and load, which plays a key role for research on unit economic operation and load optimal di...Coal consumption curve of the thermal power plant can reflect the function relationship between the coal consumption of unit and load, which plays a key role for research on unit economic operation and load optimal dispatch. Now get coal consumption curve is generally obtained by least square method, but which are static curve and these curves remain unchanged for a long time, and make them are incompatible with the actual operation situation of the unit. Furthermore, coal consumption has the characteristics of typical nonlinear and time varying, sometimes the least square method does not work for nonlinear complex problems. For these problems, a method of coal consumption curve fitting of the thermal power plant units based on genetic algorithm is proposed. The residual analysis method is used for data detection;quadratic function is employed to the objective function;appropriate parameters such as initial population size, crossover rate and mutation rate are set;the unit’s actual coal consumption curves are fitted, and comparing the proposed method with least squares method, the results indicate that fitting effect of the former is better than the latter, and further indicate that the proposed method to do curve fitting can best approximate known data in a certain significance, and they can real-timely reflect the interdependence between power output and coal consumption.展开更多
With countries proposing the goal of carbon neutrality,the clean transformation of energy structure has become a hot and trendy issue internationally.Renewable energy generation will account for the main proportion,bu...With countries proposing the goal of carbon neutrality,the clean transformation of energy structure has become a hot and trendy issue internationally.Renewable energy generation will account for the main proportion,but it also leads to the problem of unstable electricity supply.At present,large-scale energy storage technology is not yet mature.Improving the flexibility of coal-fired power plants to suppress the instability of renewable energy generation is a feasible path.Thermal energy storage is a feasible technology to improve the flexibility of coal-fired power plants.This article provides a review of the research on the flexibility transformation of coal-fired power plants based on heat storage technology,mainly including medium to low-temperature heat storage based on hot water tanks and high-temperature heat storage based on molten salt.The current technical difficulties are summarized,and future development prospects are presented.The combination of the thermal energy storage system and coal-fired power generation system is the foundation,and the control of the inclined temperature layer and the selection and development of molten salt are key issues.The authors hope that the research in this article can provide a reference for the flexibility transformation research of coal-fired power plants,and promote the application of heat storage foundation in specific coal-fired power plant transformation projects.展开更多
In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional un...In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional units obviously can not solve the new energy as the main body of the scheduling problem.To enhance the systemscheduling ability,based on the participation of thermal power units,incorporate the high energy-carrying load of electro-melting magnesiuminto the regulation object,and consider the effects on the wind unpredictability of the power.Firstly,the operating characteristics of high energy load and wind power are analyzed,and the principle of the participation of electrofusedmagnesiumhigh energy-carrying loads in the elimination of obstructedwind power is studied.Second,a two-layer optimization model is suggested,with the objective function being the largest amount of wind power consumed and the lowest possible cost of system operation.In the upper model,the high energy-carrying load regulates the blocked wind power,and in the lower model,the second-order cone approximation algorithm is used to solve the optimizationmodelwithwind power uncertainty,so that a two-layer optimizationmodel that takes into account the regulation of the high energy-carrying load of the electrofused magnesium and the uncertainty of the wind power is established.Finally,the model is solved using Gurobi,and the results of the simulation demonstrate that the suggested model may successfully lower wind abandonment,lower system operation costs,increase the accuracy of day-ahead scheduling,and lower the final product error of the thermal electricity unit.展开更多
Coal-fired power is the main power source and the biggest contributor to energy conservation in the past several decades in China.It is generally believed that advanced technology should be counted on for energy conse...Coal-fired power is the main power source and the biggest contributor to energy conservation in the past several decades in China.It is generally believed that advanced technology should be counted on for energy conservation.However,a review of the decline in the national average net coal consumption rate(NCCR)of China's coal-fired power industry along with its development over the past few decades indicates that the upgradation of the national unit capacity structure(including installing advanced production and phasing out backward production)plays a more important role.A quantitative study on the effect of the unit capacity structure upgradation on the decline in the national average NCCR suggests that phasing out backward production is the leading factor for the decline in the NCCR in the past decade,followed by the new installation,whose sum contributes to approximately 80%of the decline in the national average NCCR.The new installation has an effective affecting period of about 8 years,during which it would gradually decline from a relatively high value.Since the effect of phasing out backward production may remain at a certain degree given a continual action of phasing out backward capacity,it is suggested that the organized action of phasing out backward production should be insisted on.展开更多
The energy-saving analytics of coal-fired power units in China is confronting new challenges especially with even more complicated system structure, higher working medium parameters, time-dependent varying operation c...The energy-saving analytics of coal-fired power units in China is confronting new challenges especially with even more complicated system structure, higher working medium parameters, time-dependent varying operation conditions and boundaries such as load rate, coal quality, ambient temperature and humidity. Compared with the traditional optimization of specific operating parameters, the idea of the energy-consumption benchmark state was proposed. The equivalent specific fuel consumption(ESFC) analytics was introduced to determine the energy-consumption benchmark state, with the minimum ESFC under varying operation boundaries. Models for the energy-consumption benchmark state were established, and the endogenous additional specific consumption(ASFC) and exogenous ASFC were calculated. By comparing the benchmark state with the actual state, the energy-saving tempospacial effect can be quantified. As a case study, the energy consumption model of a 1000 MW ultra supercritical power unit was built. The results show that system energy consumption can be mainly reduced by improving the performance of turbine subsystem. This nearly doubles the resultant by improving the boiler system. The energy saving effect of each component increases with the decrease of load and has a greater influence under a lower load rate. The heat and mass transfer process takes priority in energy saving diagnosis of related components and processes. This makes great reference for the design and operation optimization of coal-fired power units.展开更多
In order to provide more grid space for the renewable energy power,the traditional coal-fired power unit should be operated flexibility,especially achieved the deep peak shaving capacity.In this paper,a new scheme usi...In order to provide more grid space for the renewable energy power,the traditional coal-fired power unit should be operated flexibility,especially achieved the deep peak shaving capacity.In this paper,a new scheme using the reheat steam extraction is proposed to further reduce the load far below 50%rated power.Two flexible operation modes of increasing power output mode and reducing fuel mode are proposed in heat discharging process.A 600 MW coal-fired power unit with 50%rated power is chosen as the research model.The results show that the power output is decreased from 300.03 MW to 210.07 MW when the extracted reheat steam flow rate is 270.70 t·h^(-1),which increases the deep peak shaving capacity by 15%rated power.The deep peak shaving time and the thermal efficiency are 7.63 h·d^(-1)and 36.91%respectively for the increasing power output mode,and they are 7.24 h·d^(-1)and 36.58%respectively for the reducing fuel mode.The increasing power output mode has the advantages of higher deep peak shaving time and the thermal efficiency,which is recommended as the preferred scheme for the flexible operation of the coal-fired power unit.展开更多
This paper proposed a novel integrated system with solar energy,thermal energy storage(TES),coal-fired power plant(CFPP),and compressed air energy storage(CAES)system to improve the operational flexibility of the CFPP...This paper proposed a novel integrated system with solar energy,thermal energy storage(TES),coal-fired power plant(CFPP),and compressed air energy storage(CAES)system to improve the operational flexibility of the CFPP.A portion of the solar energy is adopted for preheating the boiler’s feedwater,and another portion is stored in the TES for the CAES discharging process.Condensate water from the CFPP condenser is used for cooling compressed air during the CAES charging process.The thermodynamic performance of the integrated system under different load conditions is studied.The system operations in a typical day are simulated with EBSILON software.The system enables daily coal saving of 9.88 t and reduces CO_(2)emission by 27.95 t compared with the original CFPP at 100%load.Under partial load conditions,the system enables maximum coal saving of 10.29 t and maximum CO_(2)emission reduction of 29.11 t at 75%load.The system has maximum peak shaving depth of 9.42%under 40%load condition.The potential of the system participating ancillary service is also discussed.It is found that the integration of solar thermal system and CAES system can bring significant ancillary service revenue to a conventional CFPP.展开更多
Increasing wind power integration and coal-fired unit retirements increases the strain on the power system’s spinning reserve and increases the pressure on peak regulation.With the ability to stock extra power genera...Increasing wind power integration and coal-fired unit retirements increases the strain on the power system’s spinning reserve and increases the pressure on peak regulation.With the ability to stock extra power generation and supply the peak load,the energy storage system(ESS)can alleviate the rising demand on the spinning reserve and play an increasingly important role in the power system.In this paper,a trilevel robust ESS planning model is proposed to accommodate uncertain wind power investment as well as coal-fired unit retirement.The upper-level of this model is to determine the planning scheme of ESSs,which iteratively takes the worst-case scenario of wind power investment and coal-fired unit retirement into consideration.The middle-level and lower-level of this model are to make the optimal daily economic dispatch under the worst-case realizations of uncertainties.We derive an equivalent reformulation of the proposed robust ESS planning model and solve it with a dual column-and-constraint generation algorithm.Case studies are conducted using the IEEE RTS-79 system.The results demonstrate the superiority of the proposed planning method in comparison with other methods.Furthermore,the effects of the capital cost of ESS,the expected proportion of wind power,and the uncertainty budget on the development of ESS are studied.Taking the uncertainties of unit retirement and wind power investment into consideration achieves a better trade-off between the ESS investment cost and the operational cost.展开更多
With the development of new energy,the primary frequency control(PFC)is becoming more and more important and complicated.To improve the reliability of the PFC,an evaluation method of primary frequency control ability(...With the development of new energy,the primary frequency control(PFC)is becoming more and more important and complicated.To improve the reliability of the PFC,an evaluation method of primary frequency control ability(PFCA)was proposed.First,based on the coupling model of the coordinated control system(CCS)and digital electro-hydraulic control system(DEH),principle and control mode of the PFC were introduced in detail.The simulation results showed that the PFC of the CCS and DEH was the most effective control mode.Then,the analysis of the CCS model and variable condition revealed the internal relationship among main steam pressure,valve opening and power.In term of this,the radial basis function(RBF)neural network was established to estimate the PFCA.Because the simulation curves fit well with the actual curves,the accuracy of the coupling model was verified.On this basis,simulation data was produced by coupling model to verify the proposed evaluation method.The low predication error of main steam pressure,power and the PFCA indicated that the method was effective.In addition,the actual data obtained from historical operation data were used to estimate the PFCA accurately,which was the strongest evidence for this method.展开更多
Given the distribution feature of resources such as coal and water, the requirements for the development of Chinese power industry, and the fact of monopoly by foreign companies, it is very necessary and significant t...Given the distribution feature of resources such as coal and water, the requirements for the development of Chinese power industry, and the fact of monopoly by foreign companies, it is very necessary and significant to independently research and develop air-cooling technologies. Through experimental research, simulative calculation, process and equipment development, field tests and a demonstration project, the design and operation technologies for air-cooling system are grasped and relevant key equipment is developed. The results of the demonstration project show that the technical indicators for the air-cooling system have met or exceeded the design requirements. Part of the research results have been incorporated into the relevant national design standards. The technologies developed have been applied to more than 23 sets of thermal power units of or above 600 MW in China.展开更多
文摘China’s electric power industry as a basic industry, plays an important role in the longterm, sustained and healthy development of the whole national economy. China’s electric power industry attained great achievement in technology and economical results during the past eight years from 1987-1995. The total national installed generating capacity increased from 102.897 GW in 1987 to more than 200 GW in March, 1995.
文摘Northern China has rich wind power and photovoltaic renewable resources. Combined Heat and Power (CHP) Units to meet the load demand and limit its peaking capacity in winter, to a certain extent, it results in structural problems of wind-solar power and thermoelectric. To solve these problems, this paper proposes a plurality of units together to ensure supply of heat load on the premise, by building a thermoelectric power peaking considering thermal load unit group dynamic scheduling model, to achieve the potential of different thermoelectric properties peaking units of the excavation. Simulation examples show, if the unit group exists obvious relationship thermoelectric individual differences, the thermal load dynamic scheduling can be more significantly improved overall performance peaking unit group, effectively increase clean energy consumptive.
文摘Both the modeling and the load regulation capacity prediction of a supercritical power plant are investigated in this paper. Firstly, an indirect identification method based on subspace identification method is proposed. The obtained identification model is verified by the actual operation data and the dynamic characteristics of the system are well reproduced. Secondly, the model is used to predict the load regulation capacity of thermal power unit. The power, main steam pressure, main steam temperature and other parameters are simulated respectively when the unit load is going up and down. Under the actual constraints, the load regulation capacity of thermal power unit can be predicted quickly.
文摘After a thorough demonstration in Panshan Thermal Power Plant, the 500 MW super critical pressure unit simulator developed by the Simulation & Control Institute under the North China University of Electric Power was accepted by experts from the North China Electric Power Group Company on 3rd August 1996.
文摘Coal consumption curve of the thermal power plant can reflect the function relationship between the coal consumption of unit and load, which plays a key role for research on unit economic operation and load optimal dispatch. Now get coal consumption curve is generally obtained by least square method, but which are static curve and these curves remain unchanged for a long time, and make them are incompatible with the actual operation situation of the unit. Furthermore, coal consumption has the characteristics of typical nonlinear and time varying, sometimes the least square method does not work for nonlinear complex problems. For these problems, a method of coal consumption curve fitting of the thermal power plant units based on genetic algorithm is proposed. The residual analysis method is used for data detection;quadratic function is employed to the objective function;appropriate parameters such as initial population size, crossover rate and mutation rate are set;the unit’s actual coal consumption curves are fitted, and comparing the proposed method with least squares method, the results indicate that fitting effect of the former is better than the latter, and further indicate that the proposed method to do curve fitting can best approximate known data in a certain significance, and they can real-timely reflect the interdependence between power output and coal consumption.
基金funded by National Key R&D Program of China,grant number 2019YFB1505400 and 2022YFB2405205.
文摘With countries proposing the goal of carbon neutrality,the clean transformation of energy structure has become a hot and trendy issue internationally.Renewable energy generation will account for the main proportion,but it also leads to the problem of unstable electricity supply.At present,large-scale energy storage technology is not yet mature.Improving the flexibility of coal-fired power plants to suppress the instability of renewable energy generation is a feasible path.Thermal energy storage is a feasible technology to improve the flexibility of coal-fired power plants.This article provides a review of the research on the flexibility transformation of coal-fired power plants based on heat storage technology,mainly including medium to low-temperature heat storage based on hot water tanks and high-temperature heat storage based on molten salt.The current technical difficulties are summarized,and future development prospects are presented.The combination of the thermal energy storage system and coal-fired power generation system is the foundation,and the control of the inclined temperature layer and the selection and development of molten salt are key issues.The authors hope that the research in this article can provide a reference for the flexibility transformation research of coal-fired power plants,and promote the application of heat storage foundation in specific coal-fired power plant transformation projects.
基金funded by the National Key R&D Program of China,Grant Number 2019YFB1505400.
文摘In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional units obviously can not solve the new energy as the main body of the scheduling problem.To enhance the systemscheduling ability,based on the participation of thermal power units,incorporate the high energy-carrying load of electro-melting magnesiuminto the regulation object,and consider the effects on the wind unpredictability of the power.Firstly,the operating characteristics of high energy load and wind power are analyzed,and the principle of the participation of electrofusedmagnesiumhigh energy-carrying loads in the elimination of obstructedwind power is studied.Second,a two-layer optimization model is suggested,with the objective function being the largest amount of wind power consumed and the lowest possible cost of system operation.In the upper model,the high energy-carrying load regulates the blocked wind power,and in the lower model,the second-order cone approximation algorithm is used to solve the optimizationmodelwithwind power uncertainty,so that a two-layer optimizationmodel that takes into account the regulation of the high energy-carrying load of the electrofused magnesium and the uncertainty of the wind power is established.Finally,the model is solved using Gurobi,and the results of the simulation demonstrate that the suggested model may successfully lower wind abandonment,lower system operation costs,increase the accuracy of day-ahead scheduling,and lower the final product error of the thermal electricity unit.
基金China Postdoctoral Science Foundation (No.2017M620758)Special Funds of the National Natural Science Foundation of China(Grant No.L1522032)the Consulting Project of Chinese Academy of Engineering(No.2015-ZCQ-06).
文摘Coal-fired power is the main power source and the biggest contributor to energy conservation in the past several decades in China.It is generally believed that advanced technology should be counted on for energy conservation.However,a review of the decline in the national average net coal consumption rate(NCCR)of China's coal-fired power industry along with its development over the past few decades indicates that the upgradation of the national unit capacity structure(including installing advanced production and phasing out backward production)plays a more important role.A quantitative study on the effect of the unit capacity structure upgradation on the decline in the national average NCCR suggests that phasing out backward production is the leading factor for the decline in the NCCR in the past decade,followed by the new installation,whose sum contributes to approximately 80%of the decline in the national average NCCR.The new installation has an effective affecting period of about 8 years,during which it would gradually decline from a relatively high value.Since the effect of phasing out backward production may remain at a certain degree given a continual action of phasing out backward capacity,it is suggested that the organized action of phasing out backward production should be insisted on.
文摘The energy-saving analytics of coal-fired power units in China is confronting new challenges especially with even more complicated system structure, higher working medium parameters, time-dependent varying operation conditions and boundaries such as load rate, coal quality, ambient temperature and humidity. Compared with the traditional optimization of specific operating parameters, the idea of the energy-consumption benchmark state was proposed. The equivalent specific fuel consumption(ESFC) analytics was introduced to determine the energy-consumption benchmark state, with the minimum ESFC under varying operation boundaries. Models for the energy-consumption benchmark state were established, and the endogenous additional specific consumption(ASFC) and exogenous ASFC were calculated. By comparing the benchmark state with the actual state, the energy-saving tempospacial effect can be quantified. As a case study, the energy consumption model of a 1000 MW ultra supercritical power unit was built. The results show that system energy consumption can be mainly reduced by improving the performance of turbine subsystem. This nearly doubles the resultant by improving the boiler system. The energy saving effect of each component increases with the decrease of load and has a greater influence under a lower load rate. The heat and mass transfer process takes priority in energy saving diagnosis of related components and processes. This makes great reference for the design and operation optimization of coal-fired power units.
基金supported by the National Natural Science Foundation of China(Grant No.52076006)the Inner Mongolia Science and Technology Major Project(Grant No.2021ZD0036)。
文摘In order to provide more grid space for the renewable energy power,the traditional coal-fired power unit should be operated flexibility,especially achieved the deep peak shaving capacity.In this paper,a new scheme using the reheat steam extraction is proposed to further reduce the load far below 50%rated power.Two flexible operation modes of increasing power output mode and reducing fuel mode are proposed in heat discharging process.A 600 MW coal-fired power unit with 50%rated power is chosen as the research model.The results show that the power output is decreased from 300.03 MW to 210.07 MW when the extracted reheat steam flow rate is 270.70 t·h^(-1),which increases the deep peak shaving capacity by 15%rated power.The deep peak shaving time and the thermal efficiency are 7.63 h·d^(-1)and 36.91%respectively for the increasing power output mode,and they are 7.24 h·d^(-1)and 36.58%respectively for the reducing fuel mode.The increasing power output mode has the advantages of higher deep peak shaving time and the thermal efficiency,which is recommended as the preferred scheme for the flexible operation of the coal-fired power unit.
基金The authors would like to thank the support from the Beijing Natural Science Foundation(JQ21010)National Science Fund for Distinguished Young Scholars(51925604)+1 种基金National Key R&D Plan of China(2018YFE0117300)International Partnership Program,Bureau of International Cooperation of Chinese Academy of Sciences(182211KYSB20170029).
文摘This paper proposed a novel integrated system with solar energy,thermal energy storage(TES),coal-fired power plant(CFPP),and compressed air energy storage(CAES)system to improve the operational flexibility of the CFPP.A portion of the solar energy is adopted for preheating the boiler’s feedwater,and another portion is stored in the TES for the CAES discharging process.Condensate water from the CFPP condenser is used for cooling compressed air during the CAES charging process.The thermodynamic performance of the integrated system under different load conditions is studied.The system operations in a typical day are simulated with EBSILON software.The system enables daily coal saving of 9.88 t and reduces CO_(2)emission by 27.95 t compared with the original CFPP at 100%load.Under partial load conditions,the system enables maximum coal saving of 10.29 t and maximum CO_(2)emission reduction of 29.11 t at 75%load.The system has maximum peak shaving depth of 9.42%under 40%load condition.The potential of the system participating ancillary service is also discussed.It is found that the integration of solar thermal system and CAES system can bring significant ancillary service revenue to a conventional CFPP.
基金This work was supported by the National Key R&D Program of China(2016YFB0900100)the National Natural Science Foundation of China(51907123,51807116).
文摘Increasing wind power integration and coal-fired unit retirements increases the strain on the power system’s spinning reserve and increases the pressure on peak regulation.With the ability to stock extra power generation and supply the peak load,the energy storage system(ESS)can alleviate the rising demand on the spinning reserve and play an increasingly important role in the power system.In this paper,a trilevel robust ESS planning model is proposed to accommodate uncertain wind power investment as well as coal-fired unit retirement.The upper-level of this model is to determine the planning scheme of ESSs,which iteratively takes the worst-case scenario of wind power investment and coal-fired unit retirement into consideration.The middle-level and lower-level of this model are to make the optimal daily economic dispatch under the worst-case realizations of uncertainties.We derive an equivalent reformulation of the proposed robust ESS planning model and solve it with a dual column-and-constraint generation algorithm.Case studies are conducted using the IEEE RTS-79 system.The results demonstrate the superiority of the proposed planning method in comparison with other methods.Furthermore,the effects of the capital cost of ESS,the expected proportion of wind power,and the uncertainty budget on the development of ESS are studied.Taking the uncertainties of unit retirement and wind power investment into consideration achieves a better trade-off between the ESS investment cost and the operational cost.
基金supported by the Electric Power Research Institute of State Grid Corporation of China in Zhejiang province。
文摘With the development of new energy,the primary frequency control(PFC)is becoming more and more important and complicated.To improve the reliability of the PFC,an evaluation method of primary frequency control ability(PFCA)was proposed.First,based on the coupling model of the coordinated control system(CCS)and digital electro-hydraulic control system(DEH),principle and control mode of the PFC were introduced in detail.The simulation results showed that the PFC of the CCS and DEH was the most effective control mode.Then,the analysis of the CCS model and variable condition revealed the internal relationship among main steam pressure,valve opening and power.In term of this,the radial basis function(RBF)neural network was established to estimate the PFCA.Because the simulation curves fit well with the actual curves,the accuracy of the coupling model was verified.On this basis,simulation data was produced by coupling model to verify the proposed evaluation method.The low predication error of main steam pressure,power and the PFCA indicated that the method was effective.In addition,the actual data obtained from historical operation data were used to estimate the PFCA accurately,which was the strongest evidence for this method.
文摘Given the distribution feature of resources such as coal and water, the requirements for the development of Chinese power industry, and the fact of monopoly by foreign companies, it is very necessary and significant to independently research and develop air-cooling technologies. Through experimental research, simulative calculation, process and equipment development, field tests and a demonstration project, the design and operation technologies for air-cooling system are grasped and relevant key equipment is developed. The results of the demonstration project show that the technical indicators for the air-cooling system have met or exceeded the design requirements. Part of the research results have been incorporated into the relevant national design standards. The technologies developed have been applied to more than 23 sets of thermal power units of or above 600 MW in China.