Lithium metal(LM)is a promising anode for next-generation batteries due to its high theoretical capacity and low electrode potential.Nonetheless,side reactions,volume change,and unwanted lithium dendrite growth seriou...Lithium metal(LM)is a promising anode for next-generation batteries due to its high theoretical capacity and low electrode potential.Nonetheless,side reactions,volume change,and unwanted lithium dendrite growth seriously limit the practical application of LM.Herein,with the aid of a hard template approach,a novel lithiophilic CoF_(2)-carbon hollow sphere(CoF_(2)@C-HS)composite material is successfully prepared via a facile in-situ fluorination and etching strategy.The lithiophilic CoF_(2) acts as nucleation sites to reduce nucleation overpotential as well as induces the spatial Li deposition and the formation of LiFrich solid electrolyte interphase(SEI),and the hollow carbon matrix can enhance the electrical conductivity and offer free space for LM deposition.Theoretical simulations reveal that the synergistic effect of lithiophilic CoF_(2) and hollow carbon matrix homogenizes the electric field distribution and Li~+flux.Benefiting from these advantages,the CoF_(2)@C-HS-modified copper substrate electrode delivers an enhanced Coulombic efficiency(CE)of 93.7%for 280 cycles at 1 mA cm^(-2)and 1 mA h cm^(-2).The symmetrical cell using CoF_(2)@C-HS can stably cycle more than 1800 h with a low voltage hysteresis of 11 mV at a current density of 0.5 MA cm^(-2)and an areal capacity of 0.5 mA h cm^(-2).Moreover,the Li@CoF_(2)@C-HS composite anode enables more than 300 stable cycles at 1 C with a capacity retention of 95%in LiFePO_(4)-based full cell and 110 stable cycles at 1 C in LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)-based highvoltage full cell.This work might shed a new light on designing lithiophilic hosts to spatially confine LM deposition,realizing dendrite-free LM anodes and the practical applications of LM batteries.展开更多
As China's most important gold-producing district, the Jiaodong Peninsula also contains copper, lead-zinc, molybdenum (tungsten), and other nonferrous metal ore deposits, but the space-time and genetic relationship...As China's most important gold-producing district, the Jiaodong Peninsula also contains copper, lead-zinc, molybdenum (tungsten), and other nonferrous metal ore deposits, but the space-time and genetic relationships with gold deposits remain uncertain. To investigate the temporal relationship between these nonferrous metal and gold ore deposits, We collected the samples from a number of nonferrous metallic and silver deposits and metallogenetic rock bodies in the eastern Jiaodong Peninsula for isotopic dating. The results show that the Re-Os isotopic model ages of the Lengjia molybdenum deposit in Rongcheng range from 114.5 ± 1.8 Ma to 112.6 ± 1.5 Ma, with an average age of 113.6 ± 1.6 Ma; the LA-ICP-MS ^206pb/^238U ages of 33 zircons in the sericitization porphyritic monzogranite that hosts the Tongjiazhuang silver deposit in Rongcheng range between 122 Ma and 109 Ma, with a weighted mean age of 116.04 ± 0.95 Ma; the LA-ICP-MS ^206pb/^238U ages of 31 zircons in the copper metallogenic pyroxene monzodiorite that hosts the Kuangbei copper deposit in Rongcheng range from 126 Ma to 106 Ma, with a weighted mean age of 116.6 ± 1.7 Ma; and the LA-ICP-MS ^206pb/^238U ages of 19 zircons in the pyroxene monzodiorite surrounding the Dadengge gold and multimetal deposit in Weihai range from 113 Ma to 110 Ma, with a weighted mean age of 111.7 ± 0.6 Ma. All these results indicate that the metallogenic ages of the silver and nonferrous metallic deposits in the Jiaodong Peninsula are in a limited range from 118 Ma to 111 Ma. Previous studies have demonstrated that the isotopic ages of gold deposits in the Jiaodong Peninsula range from 123 Ma to 110 Ma, while Weideshanian magmatism occurred between 126 Ma to 108 Ma. Both these ranges are grossly consistent with the metallogenic ages of silver and nonferrous metallic deposits in this study, suggesting that the large-scale mineralization occurred in the Early Cretaceous when magmatic activities were strong. This epoch may be linked to the lithosphere thinning and the thermo-upwelling extension in eastern China at that time. In addition, field investigation also shows that gold and nonferrous metallic deposits are distributed nearby the Weideshanian granite, with the nonferrous metallic deposits lying within or surrounding the granite pluton and the gold deposits outside the granite pluton. We propose the following mineralization scenario: In the Early Cretaceous, an intensive lithospheric extension induced partial melting and degassing of the metasomatized lithospheric mantle, which resulted in the formation of mantle-derived fluids enriched in metal elements. During the rapid process of magma ascent and intrusion, crust-derived fluids were activated by the magmatic thermal dome and served to further extract ore-forming materials from the crust. These fluids may have mixed with the mantle-derived fluid to form a crust-mantle mixing-type ore-forming fluid. The high-temperature conditions in the center or in contact with the granitic magmatic thermal dome would have been favorable for the formation of porphyry-type, skarn-type, and hydrothermal-vein-type ores, thus forming a series of Mo(W), Cu, and Pb-Zn deposits in the mid-eastern Jiaodong Peninsula. In contrast, the medium- to low-temperature conditions in the periphery of the magmatic thermal dome would have favored the deposition of gold (silver) ores under the appropriate physiochemical and structural conditions. The metaliogenic epoch of the molybdenum, copper, and silver deposits, and their spatio-temporal and genetic relations to the gold deposits, as demonstrated in this study, not only provide important insights to the study of regional metallogeny, our understanding of the metallogenesis of the Jiaodong type gold deposit, and the geodynamic background of the large-scale mineralization in the Jiaodong Peninsula, but also have practical value in guiding the mineral exploration.展开更多
The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein...The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein,we construct a lithium nitrate(LiNO_(3))-implanted electroactiveβphase polyvinylidene fluoride-co-hexafluoropropylene(PVDF-HFP)crystalline polymorph layer(PHL).The electronegatively charged polymer chains attain lithium ions on the surface to form lithium-ion charged channels.These channels act as reservoirs to sustainably release Li ions to recompense the ionic flux of electrolytes,decreasing the growth of lithium dendrites.The stretched molecular channels can also accelerate the transport of Li ions.The combined effects enable a high Coulombic efficiency of 97.0%for 250 cycles in lithium(Li)||copper(Cu)cell and a stable symmetric plating/stripping behavior over 2000 h at 3 mA cm^(-2)with ultrahigh Li utilization of 50%.Furthermore,the full cell coupled with PHL-Cu@Li anode and Li Fe PO_(4) cathode exhibits long-term cycle stability with high-capacity retention of 95.9%after 900 cycles.Impressively,the full cell paired with LiNi_(0.87)Co_(0.1)Mn_(0.03)O_(2)maintains a discharge capacity of 170.0 mAh g^(-1)with a capacity retention of 84.3%after 100 cycles even under harsh condition of ultralow N/P ratio of 0.83.This facile strategy will widen the potential application of LiNO_(3)in ester-based electrolyte for practical high-voltage LMBs.展开更多
A type of carbonate-hosted lead–zinc(Pb–Zn)ore deposits, known as Mississippi Valley Type(MVT)deposits, constitutes an important category of lead–zinc ore deposits. Previous studies proposed a fluid-mixing model to...A type of carbonate-hosted lead–zinc(Pb–Zn)ore deposits, known as Mississippi Valley Type(MVT)deposits, constitutes an important category of lead–zinc ore deposits. Previous studies proposed a fluid-mixing model to account for metal precipitation mechanism of the MVT ore deposits, in which fluids with metal-chloride complexes happen to mix with fluids with reduced sulfur, producing metal sulfide deposition. In this hypothesis, however, the detailed chemical kinetic process of mixing reactions, and especially the controlling factors on the metal precipitation are not yet clearly stated. In this paper, a series of mixing experiments under ambient temperature and pressure conditions were conducted to simulate the fluid mixing process, by titrating the metal-chloride solutions, doping withor without dolomite, and using NaHS solution. Experimental results, combined with the thermodynamic calculations, suggest that H_2S, rather than HS^-or S^(2-),dominated the reactions of Pb and/or Zn precipitation during the fluid mixing process, in which metal precipitation was influenced by the stability of metal complexes and the pH. Given the constant concentrations of metal and total S in fluids, the pH was a primary factor controlling the Pb and/or Zn metal precipitation. This is because neutralizing or neutralized processes for the ore-forming fluids can cause instabilities of Pb and/or Zn chloride complexes and re-distribution of sulfur species, and thus can facilitate the hydrolysis of Pb and Zn ions and precipitation of sulfides. Therefore, a weakly acidic to neutral fluid environment is most favorable for the precipitation of Pb and Zn sulfides associated with the carbonate-hosted Pb–Zn deposits.展开更多
Physicochemical parameters of mineralization such as temperature, pressure, salinity, density, composition and boiling of ore fluids as well as pH, Eh, fo2 and reducing parameter in theprocess of mineralization of maj...Physicochemical parameters of mineralization such as temperature, pressure, salinity, density, composition and boiling of ore fluids as well as pH, Eh, fo2 and reducing parameter in theprocess of mineralization of major ore deposits in the study district have been obtained by the authors through systematic observation and determination of characteristics and phase changes of fluid inclusions at different temperatures and analysis of gaseous and liquid phase compositions of the inclusions, thus providing a scientific basis for the division of mineralization-alteration stages, types of mineral deposits and minerogenetic series and the deepening of the knowledge about the ore-forming processes and mechanisms of mineral deposits. It is indicated that the deposits of the same type have similar fluid inclusion geochemical features and physicochemical parameters though they belong to different minerogenetic series, while the compositions of inclusions are not conditioned by deposit types but closely related to the minerogenetic series of deposits.展开更多
The undesirable dendrite growth induced by non-planar zinc(Zn)deposition and low Coulombic efficiency resulting from severe side reactions have been long-standing challenges for metallic Zn anodes and substantially im...The undesirable dendrite growth induced by non-planar zinc(Zn)deposition and low Coulombic efficiency resulting from severe side reactions have been long-standing challenges for metallic Zn anodes and substantially impede the practical application of rechargeable aqueous Zn metal batteries(ZMBs).Herein,we present a strategy for achieving a high-rate and long-cycle-life Zn metal anode by patterning Zn foil surfaces and endowing a Zn-Indium(Zn-In)interface in the microchannels.The accumulation of electrons in the microchannel and the zincophilicity of the Zn-In interface promote preferential heteroepitaxial Zn deposition in the microchannel region and enhance the tolerance of the electrode at high current densities.Meanwhile,electron aggregation accelerates the dissolution of non-(002)plane Zn atoms on the array surface,thereby directing the subsequent homoepitaxial Zn deposition on the array surface.Consequently,the planar dendrite-free Zn deposition and long-term cycling stability are achieved(5,050 h at 10.0 mA cm^(−2) and 27,000 cycles at 20.0 mA cm^(−2)).Furthermore,a Zn/I_(2) full cell assembled by pairing with such an anode can maintain good stability for 3,500 cycles at 5.0 C,demonstrating the application potential of the as-prepared ZnIn anode for high-performance aqueous ZMBs.展开更多
The results obtained in this work evince that the metallic mineral deposits located in the northern region of the Chilean-Pampean flat slab(in northern Chile and north-western Argentina),at approximately 27°30’S...The results obtained in this work evince that the metallic mineral deposits located in the northern region of the Chilean-Pampean flat slab(in northern Chile and north-western Argentina),at approximately 27°30’S,would be related to the subduction of the Copiapo aseismic ridge.The analysis of the gravity anomalies and vertical gravity gradient allows inferring a deflection and truncation of the main trend of the Andean structures at the extrapolated zone of the Copiapo ridge beneath South America.Thus,the general NNE-trend of the Andean structures are rotated locally to an ENE-strike within the area of the Ojos del Salado-San Buena Ventura lineament.We explain that this anomalous behavior of the gravity derived anomalies is related to the deformational effects imprinted by the ridge subduction.Regions with a low subduction angle(<30° to horizontal)are related to large mineralization due to fluids released by dehydration of the subducting crust.In addition,a higher degree of mantle melting could be produced by a thicker oceanic crust.Therefore,we interpret that the processes associated to the subduction of the Copiapo aseismic ridge(emplaced on a thickened oceanic crust due to a local compensation of the seamounts)are the cause of formation and emplacement of big metallic mineral deposits in this region of Chile and Argentina.展开更多
Suppression of uncontrollable dendrite growth and water-induced side reactions of Zn metal anodes is crucial for achieving long-lasting cycling stability and facilitating the practical implementations of aqueous Zn-me...Suppression of uncontrollable dendrite growth and water-induced side reactions of Zn metal anodes is crucial for achieving long-lasting cycling stability and facilitating the practical implementations of aqueous Zn-metal batteries.To address these challenges,we report in this study a functional nitro-cellulose interfacial layer(NCIL)on the surface of Zn anodes enlightened by a nitro-coordination chemistry strategy.The NCIL exhibits strong zincophilicity and superior coordination capability with Zn^(2+)due to the highly electronegative and highly nucleophilic nature of the nitro functional group.This characteristic facilitates a rapid Zn-ion desolvation process and homogeneous Zn plating,effectively preventing H_(2) evolution and dendrite formation.Additionally,the negatively charged surface of NCIL acts as a shield,repelling SO_(4)^(2-)anions and inhibiting corrosive reactions on the Zn surface.Remarkably,reversible and stable Zn plating/stripping is achieved for over 5100 h at a current density of 1 mA cm^(-2),which is nearly 30 times longer than that of bare Zn anodes.Furthermore,the Zn/V_(2)O_(5) full cells with the functional interface layer deliver a high-capacity retention of 80.3%for over 10,000 cycles at 5 A g^(-1).This research offers valuable insights for the rational development of advanced protective interface layers in order to achieve ultra-long-lifeZnmetal batteries.展开更多
Piezoelectric ceramic and polymeric separators have been proposed to effectively regulate Li deposition and suppress dendrite growth,but such separators still fail to satisfactorily support durable operation of lithiu...Piezoelectric ceramic and polymeric separators have been proposed to effectively regulate Li deposition and suppress dendrite growth,but such separators still fail to satisfactorily support durable operation of lithium metal batteries owing to the fragile ceramic layer or low-piezoelectricity polymer as employed.Herein,by combining PVDF-HFP and ferroelectric BaTiO_(3),we develop a homogeneous,single-layer composite separator with strong piezoelectric effects to inhibit dendrite growth while maintaining high mechanical strength.As squeezed by local protrusion,the polarized PVDF-HFP/BaTiO_(3)composite separator generates a local voltage to suppress the local-intensified electric field and further deconcentrate regional lithium-ion flux to retard lithium deposition on the protrusion,hence enabling a smoother and more compact lithium deposition morphology than the unpoled composite separator and the pure PVDF-HFP separator,especially at high rates.Remarkably,the homogeneous incorporation of BaTiO_(3)highly improves the piezoelectric performances of the separator with residual polarization of 0.086 pC cm^(-2)after polarization treatment,four times that of the pure PVDF-HFP separator,and simultaneously increases the transference number of lithium-ion from 0.45 to 0.57.Beneficial from the prominent piezoelectric mechanism,the polarized PVDF-HFP/BaTiO_(3)composite separator enables stable cyclic performances of Li||LiFePO_(4)cells for 400 cycles at 2 C(1 C=170 mA g^(-1))with a capacity retention above 99%,and for 600 cycles at 5 C with a capacity retention over 85%.展开更多
This work adopts a multi⁃step etching⁃heat treatment strategy to prepare porous silicon microsphere com⁃posite with Sb⁃Sn surface modification and carbon coating(pSi/Sb⁃Sn@C),using industrial grade SiAl alloy micro⁃sp...This work adopts a multi⁃step etching⁃heat treatment strategy to prepare porous silicon microsphere com⁃posite with Sb⁃Sn surface modification and carbon coating(pSi/Sb⁃Sn@C),using industrial grade SiAl alloy micro⁃spheres as a precursor.pSi/Sb⁃Sn@C had a 3D structure with bimetallic(Sb⁃Sn)modified porous silicon micro⁃spheres(pSi/Sb⁃Sn)as the core and carbon coating as the shell.Carbon shells can improve the electronic conductivi⁃ty and mechanical stability of porous silicon microspheres,which is beneficial for obtaining a stable solid electrolyte interface(SEI)film.The 3D porous core promotes the diffusion of lithium ions,increases the intercalation/delithia⁃tion active sites,and buffers the volume expansion during the intercalation process.The introduction of active met⁃als(Sb⁃Sn)can improve the conductivity of the composite and contribute to a certain amount of lithium storage ca⁃pacity.Due to its unique composition and microstructure,pSi/Sb⁃Sn@C showed a reversible capacity of 1247.4 mAh·g^(-1) after 300 charge/discharge cycles at a current density of 1.0 A·g^(-1),demonstrating excellent rate lithium storage performance and enhanced electrochemical cycling stability.展开更多
The Southern Great Xing’an Range(SGXR) hosts a number of Early Cretaceous Sn and associated metal deposits, which can be divided into three principal types according to their geological characteristics: skarn type de...The Southern Great Xing’an Range(SGXR) hosts a number of Early Cretaceous Sn and associated metal deposits, which can be divided into three principal types according to their geological characteristics: skarn type deposits, porphyry type deposits and hydrothermal vein type deposits. Fluid inclusion assemblages of different types of deposits are quite different, which represent the complexities of metallogenic process and formation mechanism. CH4 and CO2 have been detected in fluid inclusions from some of deposits, indicating that the ore-forming fluids are affected by materials of Permian strata. Hydrogen and oxygen isotope data from ore minerals and associated gangue minerals indicate that the initial ore fluids were dominated by magmatic waters, some of which had clearly exchanged oxygen with wall rocks during their passage through the strata. The narrow range for the δ34S values presumably reflects the corresponding uniformity of the ore forming fluids, and these δ34S values have been interpreted to reflect magmatic sources for the sulfur. The comparation between lead isotope ratios of ore minerals and different geological units’ also reveals that deeply seated magma has been a significant source of lead in the ores.展开更多
Composite Li metal anodes based on three-dimensional(3D) porous frameworks have been considered as an effective material for achieving stable Li metal batteries with high energy density.However,uneven Li deposition be...Composite Li metal anodes based on three-dimensional(3D) porous frameworks have been considered as an effective material for achieving stable Li metal batteries with high energy density.However,uneven Li deposition behavior still occurs at the top of 3D frameworks owing to the local accumulation of Li ions.To promote uniform Li deposition without top dendrite growth,herein,a layered multifunctional framework based on oxidation-treated polyacrylonitrile(OPAN) and metal-organic framework(MOF) derivatives was proposed for rationally regulating the distribution of Li ions flux,nucleation sites,and electrical conductivity.Profiting from these merits,the OPAN/carbon nano fiber-MOF(CMOF) composite framework demonstrated a reversible Li plating/stripping behavior for 500 cycles with a stable Coulombic efficiency of around 99.0% at the current density of 2 mA/cm~2.Besides,such a Li composite anode exhibited a superior cycle lifespan of over 1300 h under a low polarized voltage of 18 mV in symmetrical cells.When the Li composite anode was paired with LiFePO_(4)(LFP) cathode,the obtained full cell exhibited a stable cycling over 500 cycles.Moreover,the COMSOL Multiphysics simulation was conducted to reveal the effects on homogeneous Li ions distribution derived from the above-mentioned OPAN/CMOF framework and electrical insulation/conduction design.These electrochemical and simulated results shed light on the difficulties of designing stable and safe Li metal anode via optimizing the 3D frameworks.展开更多
The northern Guangxi region is an important rare metal, rare earth metal and polymetallic metallogenic province. In the region there exist five metallogenic series and two metallogenic subseries, whose metallogenesis ...The northern Guangxi region is an important rare metal, rare earth metal and polymetallic metallogenic province. In the region there exist five metallogenic series and two metallogenic subseries, whose metallogenesis shows features of polycyclic spiral evolution throughout the geological history. As far as various cycles are concerned, mantle-derived ore substances were reduced while crust-derived ore substances increased from early to late timesfin the whole geological evolutionary history, mantle-derived substances decreased gradually while crust-derived ones increased. Meanwhile ore element associations became more and more varied. In terms of space, mineralization migrated from the old basement outwards, i.e. from west to east during the Precambrian, and from north to south during the Phanerozoic, and again from east to west during the Yanshanian.展开更多
Copper and tin in cassiterite-sulfide deposits of the Gejiu metallogenic province are intimately associatedand show peculiar primary metal zoning. The authors made use of computer techniques to simulatenumerically the...Copper and tin in cassiterite-sulfide deposits of the Gejiu metallogenic province are intimately associatedand show peculiar primary metal zoning. The authors made use of computer techniques to simulatenumerically the zoning of these ore deposits. The study shows that the regular spatial zoning probably resultedfrom the succession of multiple, intermittent and pulsatory mineralizations, The successive transports with di-verse velocities along channelways of the ore-forming solutions, taking place under conditions of definite dif-ference between metal concentrations, in solutions and wallrocks, followed by differential deposition, consti-tute possible dynamic mechanisms for the primary metal zoning.展开更多
Many rare metal and REE deposits have been found in the Altay orogenic belt,on the northern margin of the Tarim massif and in the Kunlun-Altun orogenic belt, constituting threevery important rare metal-REE mineralizat...Many rare metal and REE deposits have been found in the Altay orogenic belt,on the northern margin of the Tarim massif and in the Kunlun-Altun orogenic belt, constituting threevery important rare metal-REE mineralization belts in western China. These deposits belong tovarious genetic types with complex ore-forming mechanism, and were formed in certain mineralizationepochs. On the basis of a systematic sum-up of geologic and geochemical achievements and^(40)Ar-^(39)Ar ages of potassium-rich minerals as well as whole-rock Rb-Sr dating results, theauthors systematically analyzed the spatial distribution and mineralization epochs of rare metal-REEdeposits in Xinjiang, northwestern China, and concluded that although the Hercynian rare metal-REEmineralizations in this area are very important, pre- and post-Hercynian (especially Indosinian andearly Yanshanian) rare metal-REE mineralizations also have important theoretical and economicsignificance.展开更多
Firstly, the concept, sources and damage of atmospheric deposition were introduced, and then the relation between atmospheric deposition and accumulation of heavy metals in rice in Guangxi was analyzed to provide refe...Firstly, the concept, sources and damage of atmospheric deposition were introduced, and then the relation between atmospheric deposition and accumulation of heavy metals in rice in Guangxi was analyzed to provide reference for the implementation of effective risk early warning of pollution from heavy metal deposition and safe production of rice in mining areas of Guangxi.展开更多
Granite-related W-Sn ore systems are commonly associated with coeval Pb-Zn mineralization. It remains unclear whether these metals are derived from the same sources or not. Mercury(Hg) is a common minor component in s...Granite-related W-Sn ore systems are commonly associated with coeval Pb-Zn mineralization. It remains unclear whether these metals are derived from the same sources or not. Mercury(Hg) is a common minor component in such systems. Hg isotopes undergo unique mass-independent fractionation(expressed as Δ^(199)Hg values), which is mainly generated during Hg photochemical reactions on Earth's surface and not affected by magmatic-hydrothermal processes, offering an excellent opportunity to trace metal sources in hydrothermal systems. We observed near-zero Δ^(199)Hg values in wolframite(-0.10‰ to0.08‰, n=11), and in skarn-(-0.17‰ to 0.12‰, n=48) and greisen-type(-0.12‰ to 0.10‰, n=11) bulk tin-tungsten ore from eight major ore deposits in South China. These values are identical to those of coeval highly evolved granites(-0.13‰ to 0.12‰,n=49), supporting that Hg in W-Sn ores were sourced from granite. However, sulfides(e.g., pyrite, chalcopyrite, arsenopyrite,galena, and sphalerite) in these deposits exhibit negative to near-zero Δ^(199)Hg values(-0.42‰ to 0.09‰, n=124), which indicates a contribution of Hg and by inference other metals from both Precambrian basement rocks(Δ^(199)Hg<0) and ore-related granites.The study demonstrates that multiple sources of metals were involved in the formation of the polymetallic W-Sn deposits, and further highlights that extraction of metals from basement rocks may be a critical control on the formation of economically important mineralization of base metal sulfides(e.g., Pb, Zn) in granite-related magmatic-hydrothermal systems.展开更多
Granitic pegmatites are commonly thought to form by fractional crystallization or by liquid immiscibility of granitic magma; however, these proposals are based mainly on analyses of fluid and melt inclusions. Here, we...Granitic pegmatites are commonly thought to form by fractional crystallization or by liquid immiscibility of granitic magma; however, these proposals are based mainly on analyses of fluid and melt inclusions. Here, we use the Jiajika pegmatite deposit, the largest spodumene deposit in Asia, as a case study to investigate ore forming processes using isotope dating. Dating of a single granite sample from the Jiajika deposit using multiple methods gave a zircon U-Pb SHRIMP age of 208.4 ~ 3.9 Ma, an 4~Ar/39Ar age for muscovite of 182.9 ~ 1.7 Ma, and an 4~Ar/39Ar age for biotite of 169.9 + 1.6 Ma. Based on these dating results and the 4~Ar/39Ar age of muscovite from the Jiajika pegmatite, a temperature-time cooling track for the Jiajika granite was constructed using closure temperatures of the different isotope systems. This track indicates that the granite cooled over ^-40 m. y., with segregation of the pegmatite fluid from the granitic magma at a temperature of ~700~C. This result suggests that the Jiajika pegmatite formed not by fractional crystallization, but by segregation of an immiscible liquid from the granitic magma. When compared with fractional crystallization, the relatively early timing of segregation of an immiscible liquid from a granitic magma can prevent the precipitation of ore-forming elements during crystallization, and suggests that liquid immiscibility could be an important ore-forming process for rare metal pegmatities. We also conclude that isotope dating is a method that can potentially be used to determine the dominant ore-forming processes that occurred during the formation of granite-related ore deposits, and suggest that this method can be employed to determine the formation history of the W-Sn ore deposits found elsewhere within the Nanling Metallogenic Belt.展开更多
Ore sorting is a preconcentration technology and can dramatically reduce energy and water usage to improve the sustainability and profitability of a mining operation.In porphyry Cu deposits,Cu is the primary target,wi...Ore sorting is a preconcentration technology and can dramatically reduce energy and water usage to improve the sustainability and profitability of a mining operation.In porphyry Cu deposits,Cu is the primary target,with ores usually containing secondary‘pay’metals such as Au,Mo and gangue elements such as Fe and As.Due to sensing technology limitations,secondary and deleterious materials vary in correlation type and strength with Cu but cannot be detected simultaneously via magnetic resonance(MR)ore sorting.Inferring the relationships between Cu and other elemental abundances is particularly critical for mineral processing.The variations in metal grade relationships occur due to the transition into different geological domains.This raises two questions-how to define these geological domains and how the metal grade relationship is influenced by these geological domains.In this paper,linear relationship is assumed between Cu grade and other metal grades.We applies a Bayesian hierarchical(partial-pooling)model to quantify the linear relationships between Cu,Au,and Fe grades from geochemical bore core data.The hierarchical model was compared with two other models-‘complete-pooling’model and‘nopooling’model.Mining blocks were split based on spatial domain to construct hierarchical model.Geochemical bore core data records metal grades measured from laboratory assay with spatial coordinates of sample location.Two case studies from different porphyry Cu deposits were used to evaluate the performance of the hierarchical model.Markov chain Monte Carlo(MCMC)was used to sample the posterior parameters.Our results show that the Bayesian hierarchical model dramatically reduced the posterior predictive variance for metal grades regression compared to the no-pooling model.In addition,the posterior inference in the hierarchical model is insensitive to the choice of prior.The data is wellrepresented in the posterior which indicates a robust model.The results show that the spatial domain can be successfully utilised for metal grade regression.Uncertainty in estimating the relationship between pay metals and both secondary and gangue elements is quantified and shown to be reduced with partial-pooling.Thus,the proposed Bayesian hierarchical model can offer a reliable and stable way to monitor the relationship between metal grades for ore sorting and other mineral processing options.展开更多
Experimental results on the primary carburization reaction between the tungsten powder and methane in the induction plasma, and the secondary carburization of the deposit on substrate at high temperature are reported....Experimental results on the primary carburization reaction between the tungsten powder and methane in the induction plasma, and the secondary carburization of the deposit on substrate at high temperature are reported. Optical microscopy and scanning electron microscopy were used to examine the microstructures of starting tungsten powder, carburized powder, and deposit. X-ray diffraction analysis, thermal gravimetric analysis and microhardness measurement were used to characterize the structures and properties of the powder and the deposit. It is found that the primary carburization reaction in the induction plasma starts from the surface of tungsten particles when the particles are melted. Tungsten particles are partially carburized inside the reactive plasma. Complete carburization is achieved through the secondary carburization reaction of the deposit on substrate at high temperature.展开更多
基金supported by the Natural Science Foundation of China (52277218)the Hubei Provincial Natural Science Foundation of China (2024AFA094)+1 种基金the Excellent Discipline Cultivation Project by JHUN (2023XKZ009)supported by the U.S.Department of Energy,Office of Science,Office of Basic Energy Sciences,Materials Sciences and Engineering Division under contract number DE-AC05-00OR22725。
文摘Lithium metal(LM)is a promising anode for next-generation batteries due to its high theoretical capacity and low electrode potential.Nonetheless,side reactions,volume change,and unwanted lithium dendrite growth seriously limit the practical application of LM.Herein,with the aid of a hard template approach,a novel lithiophilic CoF_(2)-carbon hollow sphere(CoF_(2)@C-HS)composite material is successfully prepared via a facile in-situ fluorination and etching strategy.The lithiophilic CoF_(2) acts as nucleation sites to reduce nucleation overpotential as well as induces the spatial Li deposition and the formation of LiFrich solid electrolyte interphase(SEI),and the hollow carbon matrix can enhance the electrical conductivity and offer free space for LM deposition.Theoretical simulations reveal that the synergistic effect of lithiophilic CoF_(2) and hollow carbon matrix homogenizes the electric field distribution and Li~+flux.Benefiting from these advantages,the CoF_(2)@C-HS-modified copper substrate electrode delivers an enhanced Coulombic efficiency(CE)of 93.7%for 280 cycles at 1 mA cm^(-2)and 1 mA h cm^(-2).The symmetrical cell using CoF_(2)@C-HS can stably cycle more than 1800 h with a low voltage hysteresis of 11 mV at a current density of 0.5 MA cm^(-2)and an areal capacity of 0.5 mA h cm^(-2).Moreover,the Li@CoF_(2)@C-HS composite anode enables more than 300 stable cycles at 1 C with a capacity retention of 95%in LiFePO_(4)-based full cell and 110 stable cycles at 1 C in LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)-based highvoltage full cell.This work might shed a new light on designing lithiophilic hosts to spatially confine LM deposition,realizing dendrite-free LM anodes and the practical applications of LM batteries.
基金funded by Taishan Scholar Special Project Funds(ts201511076)Key Research and Development Project of Shandong Province(2017CXGC1604)
文摘As China's most important gold-producing district, the Jiaodong Peninsula also contains copper, lead-zinc, molybdenum (tungsten), and other nonferrous metal ore deposits, but the space-time and genetic relationships with gold deposits remain uncertain. To investigate the temporal relationship between these nonferrous metal and gold ore deposits, We collected the samples from a number of nonferrous metallic and silver deposits and metallogenetic rock bodies in the eastern Jiaodong Peninsula for isotopic dating. The results show that the Re-Os isotopic model ages of the Lengjia molybdenum deposit in Rongcheng range from 114.5 ± 1.8 Ma to 112.6 ± 1.5 Ma, with an average age of 113.6 ± 1.6 Ma; the LA-ICP-MS ^206pb/^238U ages of 33 zircons in the sericitization porphyritic monzogranite that hosts the Tongjiazhuang silver deposit in Rongcheng range between 122 Ma and 109 Ma, with a weighted mean age of 116.04 ± 0.95 Ma; the LA-ICP-MS ^206pb/^238U ages of 31 zircons in the copper metallogenic pyroxene monzodiorite that hosts the Kuangbei copper deposit in Rongcheng range from 126 Ma to 106 Ma, with a weighted mean age of 116.6 ± 1.7 Ma; and the LA-ICP-MS ^206pb/^238U ages of 19 zircons in the pyroxene monzodiorite surrounding the Dadengge gold and multimetal deposit in Weihai range from 113 Ma to 110 Ma, with a weighted mean age of 111.7 ± 0.6 Ma. All these results indicate that the metallogenic ages of the silver and nonferrous metallic deposits in the Jiaodong Peninsula are in a limited range from 118 Ma to 111 Ma. Previous studies have demonstrated that the isotopic ages of gold deposits in the Jiaodong Peninsula range from 123 Ma to 110 Ma, while Weideshanian magmatism occurred between 126 Ma to 108 Ma. Both these ranges are grossly consistent with the metallogenic ages of silver and nonferrous metallic deposits in this study, suggesting that the large-scale mineralization occurred in the Early Cretaceous when magmatic activities were strong. This epoch may be linked to the lithosphere thinning and the thermo-upwelling extension in eastern China at that time. In addition, field investigation also shows that gold and nonferrous metallic deposits are distributed nearby the Weideshanian granite, with the nonferrous metallic deposits lying within or surrounding the granite pluton and the gold deposits outside the granite pluton. We propose the following mineralization scenario: In the Early Cretaceous, an intensive lithospheric extension induced partial melting and degassing of the metasomatized lithospheric mantle, which resulted in the formation of mantle-derived fluids enriched in metal elements. During the rapid process of magma ascent and intrusion, crust-derived fluids were activated by the magmatic thermal dome and served to further extract ore-forming materials from the crust. These fluids may have mixed with the mantle-derived fluid to form a crust-mantle mixing-type ore-forming fluid. The high-temperature conditions in the center or in contact with the granitic magmatic thermal dome would have been favorable for the formation of porphyry-type, skarn-type, and hydrothermal-vein-type ores, thus forming a series of Mo(W), Cu, and Pb-Zn deposits in the mid-eastern Jiaodong Peninsula. In contrast, the medium- to low-temperature conditions in the periphery of the magmatic thermal dome would have favored the deposition of gold (silver) ores under the appropriate physiochemical and structural conditions. The metaliogenic epoch of the molybdenum, copper, and silver deposits, and their spatio-temporal and genetic relations to the gold deposits, as demonstrated in this study, not only provide important insights to the study of regional metallogeny, our understanding of the metallogenesis of the Jiaodong type gold deposit, and the geodynamic background of the large-scale mineralization in the Jiaodong Peninsula, but also have practical value in guiding the mineral exploration.
基金the financial support from the National Natural Science Foundation of China(Nos.22205191 and 52002346)the Science and Technology Innovation Program of Hunan Province(No.2021RC3109)+1 种基金the Natural Science Foundation of Hunan Province,China(No.2022JJ40446)Guangxi Key Laboratory of Low Carbon Energy Material(No.2020GXKLLCEM01)。
文摘The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein,we construct a lithium nitrate(LiNO_(3))-implanted electroactiveβphase polyvinylidene fluoride-co-hexafluoropropylene(PVDF-HFP)crystalline polymorph layer(PHL).The electronegatively charged polymer chains attain lithium ions on the surface to form lithium-ion charged channels.These channels act as reservoirs to sustainably release Li ions to recompense the ionic flux of electrolytes,decreasing the growth of lithium dendrites.The stretched molecular channels can also accelerate the transport of Li ions.The combined effects enable a high Coulombic efficiency of 97.0%for 250 cycles in lithium(Li)||copper(Cu)cell and a stable symmetric plating/stripping behavior over 2000 h at 3 mA cm^(-2)with ultrahigh Li utilization of 50%.Furthermore,the full cell coupled with PHL-Cu@Li anode and Li Fe PO_(4) cathode exhibits long-term cycle stability with high-capacity retention of 95.9%after 900 cycles.Impressively,the full cell paired with LiNi_(0.87)Co_(0.1)Mn_(0.03)O_(2)maintains a discharge capacity of 170.0 mAh g^(-1)with a capacity retention of 84.3%after 100 cycles even under harsh condition of ultralow N/P ratio of 0.83.This facile strategy will widen the potential application of LiNO_(3)in ester-based electrolyte for practical high-voltage LMBs.
基金supported jointly by the National Key R&D Program of China (No. 2016YFC0600408)the National Natural Science Foundation of China (Nos. 41572060, 41773054, U1133602, 41802089)+3 种基金China Postdoctoral Science Foundation (No. 2017M610614)projects of YM Lab (2011)Innovation Team of Yunnan Province and KMUST (2008 and 2012)Yunnan and Kunming University of Science and Technology Postdoctoral Sustentation Fund
文摘A type of carbonate-hosted lead–zinc(Pb–Zn)ore deposits, known as Mississippi Valley Type(MVT)deposits, constitutes an important category of lead–zinc ore deposits. Previous studies proposed a fluid-mixing model to account for metal precipitation mechanism of the MVT ore deposits, in which fluids with metal-chloride complexes happen to mix with fluids with reduced sulfur, producing metal sulfide deposition. In this hypothesis, however, the detailed chemical kinetic process of mixing reactions, and especially the controlling factors on the metal precipitation are not yet clearly stated. In this paper, a series of mixing experiments under ambient temperature and pressure conditions were conducted to simulate the fluid mixing process, by titrating the metal-chloride solutions, doping withor without dolomite, and using NaHS solution. Experimental results, combined with the thermodynamic calculations, suggest that H_2S, rather than HS^-or S^(2-),dominated the reactions of Pb and/or Zn precipitation during the fluid mixing process, in which metal precipitation was influenced by the stability of metal complexes and the pH. Given the constant concentrations of metal and total S in fluids, the pH was a primary factor controlling the Pb and/or Zn metal precipitation. This is because neutralizing or neutralized processes for the ore-forming fluids can cause instabilities of Pb and/or Zn chloride complexes and re-distribution of sulfur species, and thus can facilitate the hydrolysis of Pb and Zn ions and precipitation of sulfides. Therefore, a weakly acidic to neutral fluid environment is most favorable for the precipitation of Pb and Zn sulfides associated with the carbonate-hosted Pb–Zn deposits.
文摘Physicochemical parameters of mineralization such as temperature, pressure, salinity, density, composition and boiling of ore fluids as well as pH, Eh, fo2 and reducing parameter in theprocess of mineralization of major ore deposits in the study district have been obtained by the authors through systematic observation and determination of characteristics and phase changes of fluid inclusions at different temperatures and analysis of gaseous and liquid phase compositions of the inclusions, thus providing a scientific basis for the division of mineralization-alteration stages, types of mineral deposits and minerogenetic series and the deepening of the knowledge about the ore-forming processes and mechanisms of mineral deposits. It is indicated that the deposits of the same type have similar fluid inclusion geochemical features and physicochemical parameters though they belong to different minerogenetic series, while the compositions of inclusions are not conditioned by deposit types but closely related to the minerogenetic series of deposits.
基金supported by the National Research Foundation of Korea Grant funded by the Korean government(MSIP)(No.2018R1A6A1A03025708).
文摘The undesirable dendrite growth induced by non-planar zinc(Zn)deposition and low Coulombic efficiency resulting from severe side reactions have been long-standing challenges for metallic Zn anodes and substantially impede the practical application of rechargeable aqueous Zn metal batteries(ZMBs).Herein,we present a strategy for achieving a high-rate and long-cycle-life Zn metal anode by patterning Zn foil surfaces and endowing a Zn-Indium(Zn-In)interface in the microchannels.The accumulation of electrons in the microchannel and the zincophilicity of the Zn-In interface promote preferential heteroepitaxial Zn deposition in the microchannel region and enhance the tolerance of the electrode at high current densities.Meanwhile,electron aggregation accelerates the dissolution of non-(002)plane Zn atoms on the array surface,thereby directing the subsequent homoepitaxial Zn deposition on the array surface.Consequently,the planar dendrite-free Zn deposition and long-term cycling stability are achieved(5,050 h at 10.0 mA cm^(−2) and 27,000 cycles at 20.0 mA cm^(−2)).Furthermore,a Zn/I_(2) full cell assembled by pairing with such an anode can maintain good stability for 3,500 cycles at 5.0 C,demonstrating the application potential of the as-prepared ZnIn anode for high-performance aqueous ZMBs.
基金CONICETthe National University of San Juan for their financial support
文摘The results obtained in this work evince that the metallic mineral deposits located in the northern region of the Chilean-Pampean flat slab(in northern Chile and north-western Argentina),at approximately 27°30’S,would be related to the subduction of the Copiapo aseismic ridge.The analysis of the gravity anomalies and vertical gravity gradient allows inferring a deflection and truncation of the main trend of the Andean structures at the extrapolated zone of the Copiapo ridge beneath South America.Thus,the general NNE-trend of the Andean structures are rotated locally to an ENE-strike within the area of the Ojos del Salado-San Buena Ventura lineament.We explain that this anomalous behavior of the gravity derived anomalies is related to the deformational effects imprinted by the ridge subduction.Regions with a low subduction angle(<30° to horizontal)are related to large mineralization due to fluids released by dehydration of the subducting crust.In addition,a higher degree of mantle melting could be produced by a thicker oceanic crust.Therefore,we interpret that the processes associated to the subduction of the Copiapo aseismic ridge(emplaced on a thickened oceanic crust due to a local compensation of the seamounts)are the cause of formation and emplacement of big metallic mineral deposits in this region of Chile and Argentina.
基金supported by the National Natural Science Foundation of China (No. 22005216 and 52172241)the General Research Fund of Hong Kong (No. CityU 11308321)Tianjin Research Innovation Project for Postgraduate Students (No.2022BKY130)
文摘Suppression of uncontrollable dendrite growth and water-induced side reactions of Zn metal anodes is crucial for achieving long-lasting cycling stability and facilitating the practical implementations of aqueous Zn-metal batteries.To address these challenges,we report in this study a functional nitro-cellulose interfacial layer(NCIL)on the surface of Zn anodes enlightened by a nitro-coordination chemistry strategy.The NCIL exhibits strong zincophilicity and superior coordination capability with Zn^(2+)due to the highly electronegative and highly nucleophilic nature of the nitro functional group.This characteristic facilitates a rapid Zn-ion desolvation process and homogeneous Zn plating,effectively preventing H_(2) evolution and dendrite formation.Additionally,the negatively charged surface of NCIL acts as a shield,repelling SO_(4)^(2-)anions and inhibiting corrosive reactions on the Zn surface.Remarkably,reversible and stable Zn plating/stripping is achieved for over 5100 h at a current density of 1 mA cm^(-2),which is nearly 30 times longer than that of bare Zn anodes.Furthermore,the Zn/V_(2)O_(5) full cells with the functional interface layer deliver a high-capacity retention of 80.3%for over 10,000 cycles at 5 A g^(-1).This research offers valuable insights for the rational development of advanced protective interface layers in order to achieve ultra-long-lifeZnmetal batteries.
基金supported by the Science Foundation of National Key Laboratory of Science and Technology on Advanced Composites in Special Environmentsthe National Natural Science Foundation of China(12002109)
文摘Piezoelectric ceramic and polymeric separators have been proposed to effectively regulate Li deposition and suppress dendrite growth,but such separators still fail to satisfactorily support durable operation of lithium metal batteries owing to the fragile ceramic layer or low-piezoelectricity polymer as employed.Herein,by combining PVDF-HFP and ferroelectric BaTiO_(3),we develop a homogeneous,single-layer composite separator with strong piezoelectric effects to inhibit dendrite growth while maintaining high mechanical strength.As squeezed by local protrusion,the polarized PVDF-HFP/BaTiO_(3)composite separator generates a local voltage to suppress the local-intensified electric field and further deconcentrate regional lithium-ion flux to retard lithium deposition on the protrusion,hence enabling a smoother and more compact lithium deposition morphology than the unpoled composite separator and the pure PVDF-HFP separator,especially at high rates.Remarkably,the homogeneous incorporation of BaTiO_(3)highly improves the piezoelectric performances of the separator with residual polarization of 0.086 pC cm^(-2)after polarization treatment,four times that of the pure PVDF-HFP separator,and simultaneously increases the transference number of lithium-ion from 0.45 to 0.57.Beneficial from the prominent piezoelectric mechanism,the polarized PVDF-HFP/BaTiO_(3)composite separator enables stable cyclic performances of Li||LiFePO_(4)cells for 400 cycles at 2 C(1 C=170 mA g^(-1))with a capacity retention above 99%,and for 600 cycles at 5 C with a capacity retention over 85%.
文摘This work adopts a multi⁃step etching⁃heat treatment strategy to prepare porous silicon microsphere com⁃posite with Sb⁃Sn surface modification and carbon coating(pSi/Sb⁃Sn@C),using industrial grade SiAl alloy micro⁃spheres as a precursor.pSi/Sb⁃Sn@C had a 3D structure with bimetallic(Sb⁃Sn)modified porous silicon micro⁃spheres(pSi/Sb⁃Sn)as the core and carbon coating as the shell.Carbon shells can improve the electronic conductivi⁃ty and mechanical stability of porous silicon microspheres,which is beneficial for obtaining a stable solid electrolyte interface(SEI)film.The 3D porous core promotes the diffusion of lithium ions,increases the intercalation/delithia⁃tion active sites,and buffers the volume expansion during the intercalation process.The introduction of active met⁃als(Sb⁃Sn)can improve the conductivity of the composite and contribute to a certain amount of lithium storage ca⁃pacity.Due to its unique composition and microstructure,pSi/Sb⁃Sn@C showed a reversible capacity of 1247.4 mAh·g^(-1) after 300 charge/discharge cycles at a current density of 1.0 A·g^(-1),demonstrating excellent rate lithium storage performance and enhanced electrochemical cycling stability.
基金supported by Key Discipline Construction Projects of Institute of Disaster Prevention (Quaternary Geology)Prospecting Projects of National Important Mineral Concentration Areas of Development Research Center of China Geological Survey (0747-1861SITCN149)
文摘The Southern Great Xing’an Range(SGXR) hosts a number of Early Cretaceous Sn and associated metal deposits, which can be divided into three principal types according to their geological characteristics: skarn type deposits, porphyry type deposits and hydrothermal vein type deposits. Fluid inclusion assemblages of different types of deposits are quite different, which represent the complexities of metallogenic process and formation mechanism. CH4 and CO2 have been detected in fluid inclusions from some of deposits, indicating that the ore-forming fluids are affected by materials of Permian strata. Hydrogen and oxygen isotope data from ore minerals and associated gangue minerals indicate that the initial ore fluids were dominated by magmatic waters, some of which had clearly exchanged oxygen with wall rocks during their passage through the strata. The narrow range for the δ34S values presumably reflects the corresponding uniformity of the ore forming fluids, and these δ34S values have been interpreted to reflect magmatic sources for the sulfur. The comparation between lead isotope ratios of ore minerals and different geological units’ also reveals that deeply seated magma has been a significant source of lead in the ores.
基金supported by the National Natural Science Foundation of China (52302292, 52302058, 52302085)the China Postdoctoral Science Foundation (2021M702225)+1 种基金the Anhui Province University Natural Science Research Project (2023AH030093, 2023AH040301)the Startup Research Fund of Chaohu University (KYQD-2023005, KYQD-2023051)。
文摘Composite Li metal anodes based on three-dimensional(3D) porous frameworks have been considered as an effective material for achieving stable Li metal batteries with high energy density.However,uneven Li deposition behavior still occurs at the top of 3D frameworks owing to the local accumulation of Li ions.To promote uniform Li deposition without top dendrite growth,herein,a layered multifunctional framework based on oxidation-treated polyacrylonitrile(OPAN) and metal-organic framework(MOF) derivatives was proposed for rationally regulating the distribution of Li ions flux,nucleation sites,and electrical conductivity.Profiting from these merits,the OPAN/carbon nano fiber-MOF(CMOF) composite framework demonstrated a reversible Li plating/stripping behavior for 500 cycles with a stable Coulombic efficiency of around 99.0% at the current density of 2 mA/cm~2.Besides,such a Li composite anode exhibited a superior cycle lifespan of over 1300 h under a low polarized voltage of 18 mV in symmetrical cells.When the Li composite anode was paired with LiFePO_(4)(LFP) cathode,the obtained full cell exhibited a stable cycling over 500 cycles.Moreover,the COMSOL Multiphysics simulation was conducted to reveal the effects on homogeneous Li ions distribution derived from the above-mentioned OPAN/CMOF framework and electrical insulation/conduction design.These electrochemical and simulated results shed light on the difficulties of designing stable and safe Li metal anode via optimizing the 3D frameworks.
基金This research was supported by the Chinese Foundation for Development of Geological Science and Technology (Project 49273162)the National Natural Science Foundation of China(Project 49273162)
文摘The northern Guangxi region is an important rare metal, rare earth metal and polymetallic metallogenic province. In the region there exist five metallogenic series and two metallogenic subseries, whose metallogenesis shows features of polycyclic spiral evolution throughout the geological history. As far as various cycles are concerned, mantle-derived ore substances were reduced while crust-derived ore substances increased from early to late timesfin the whole geological evolutionary history, mantle-derived substances decreased gradually while crust-derived ones increased. Meanwhile ore element associations became more and more varied. In terms of space, mineralization migrated from the old basement outwards, i.e. from west to east during the Precambrian, and from north to south during the Phanerozoic, and again from east to west during the Yanshanian.
文摘Copper and tin in cassiterite-sulfide deposits of the Gejiu metallogenic province are intimately associatedand show peculiar primary metal zoning. The authors made use of computer techniques to simulatenumerically the zoning of these ore deposits. The study shows that the regular spatial zoning probably resultedfrom the succession of multiple, intermittent and pulsatory mineralizations, The successive transports with di-verse velocities along channelways of the ore-forming solutions, taking place under conditions of definite dif-ference between metal concentrations, in solutions and wallrocks, followed by differential deposition, consti-tute possible dynamic mechanisms for the primary metal zoning.
基金This study was supported by China's National Key Basic Research Projects“Large-scale metallization and prognostication of large scale metallogenetic concentrated area"(No.G1999043201)“Isotopic Research of Main Metallogenetic Events in Xinjiang”(No.2001CB409810).
文摘Many rare metal and REE deposits have been found in the Altay orogenic belt,on the northern margin of the Tarim massif and in the Kunlun-Altun orogenic belt, constituting threevery important rare metal-REE mineralization belts in western China. These deposits belong tovarious genetic types with complex ore-forming mechanism, and were formed in certain mineralizationepochs. On the basis of a systematic sum-up of geologic and geochemical achievements and^(40)Ar-^(39)Ar ages of potassium-rich minerals as well as whole-rock Rb-Sr dating results, theauthors systematically analyzed the spatial distribution and mineralization epochs of rare metal-REEdeposits in Xinjiang, northwestern China, and concluded that although the Hercynian rare metal-REEmineralizations in this area are very important, pre- and post-Hercynian (especially Indosinian andearly Yanshanian) rare metal-REE mineralizations also have important theoretical and economicsignificance.
基金Supported by Foundation for Scientific and Technological Development of Guangxi Academy of Agricultural Sciences(2017JM06)Special Funds for Basic Scientific Research of Guangxi Academy of Agricultural Sciences(2015YT32)+1 种基金Key Planning Project for Research and Development of Guangxi,China(AB16380084)National Major Research Development Program of China(2016YFD0800700)~~
文摘Firstly, the concept, sources and damage of atmospheric deposition were introduced, and then the relation between atmospheric deposition and accumulation of heavy metals in rice in Guangxi was analyzed to provide reference for the implementation of effective risk early warning of pollution from heavy metal deposition and safe production of rice in mining areas of Guangxi.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41873047, 42102277)the China Postdoctoral Science Foundation (Grant No. 2021M703188)the Guizhou Provincial 2021 Science and Technology Subsidies (Grant No. GZ2021SIG)。
文摘Granite-related W-Sn ore systems are commonly associated with coeval Pb-Zn mineralization. It remains unclear whether these metals are derived from the same sources or not. Mercury(Hg) is a common minor component in such systems. Hg isotopes undergo unique mass-independent fractionation(expressed as Δ^(199)Hg values), which is mainly generated during Hg photochemical reactions on Earth's surface and not affected by magmatic-hydrothermal processes, offering an excellent opportunity to trace metal sources in hydrothermal systems. We observed near-zero Δ^(199)Hg values in wolframite(-0.10‰ to0.08‰, n=11), and in skarn-(-0.17‰ to 0.12‰, n=48) and greisen-type(-0.12‰ to 0.10‰, n=11) bulk tin-tungsten ore from eight major ore deposits in South China. These values are identical to those of coeval highly evolved granites(-0.13‰ to 0.12‰,n=49), supporting that Hg in W-Sn ores were sourced from granite. However, sulfides(e.g., pyrite, chalcopyrite, arsenopyrite,galena, and sphalerite) in these deposits exhibit negative to near-zero Δ^(199)Hg values(-0.42‰ to 0.09‰, n=124), which indicates a contribution of Hg and by inference other metals from both Precambrian basement rocks(Δ^(199)Hg<0) and ore-related granites.The study demonstrates that multiple sources of metals were involved in the formation of the polymetallic W-Sn deposits, and further highlights that extraction of metals from basement rocks may be a critical control on the formation of economically important mineralization of base metal sulfides(e.g., Pb, Zn) in granite-related magmatic-hydrothermal systems.
基金supported by grants from the National Natural Science Foundation of China (40702014)the China Postdoctoral Science Foundation (2008044018,200902580)+1 种基金the Chinese SinoProbe Project (SinoProbe-03-01)the National Nonprofit Institute Research Grant of IMR,GAGS(K1001)
文摘Granitic pegmatites are commonly thought to form by fractional crystallization or by liquid immiscibility of granitic magma; however, these proposals are based mainly on analyses of fluid and melt inclusions. Here, we use the Jiajika pegmatite deposit, the largest spodumene deposit in Asia, as a case study to investigate ore forming processes using isotope dating. Dating of a single granite sample from the Jiajika deposit using multiple methods gave a zircon U-Pb SHRIMP age of 208.4 ~ 3.9 Ma, an 4~Ar/39Ar age for muscovite of 182.9 ~ 1.7 Ma, and an 4~Ar/39Ar age for biotite of 169.9 + 1.6 Ma. Based on these dating results and the 4~Ar/39Ar age of muscovite from the Jiajika pegmatite, a temperature-time cooling track for the Jiajika granite was constructed using closure temperatures of the different isotope systems. This track indicates that the granite cooled over ^-40 m. y., with segregation of the pegmatite fluid from the granitic magma at a temperature of ~700~C. This result suggests that the Jiajika pegmatite formed not by fractional crystallization, but by segregation of an immiscible liquid from the granitic magma. When compared with fractional crystallization, the relatively early timing of segregation of an immiscible liquid from a granitic magma can prevent the precipitation of ore-forming elements during crystallization, and suggests that liquid immiscibility could be an important ore-forming process for rare metal pegmatities. We also conclude that isotope dating is a method that can potentially be used to determine the dominant ore-forming processes that occurred during the formation of granite-related ore deposits, and suggest that this method can be employed to determine the formation history of the W-Sn ore deposits found elsewhere within the Nanling Metallogenic Belt.
基金This research was funded by the CSIRO ResearchPlus Science Leader Grant Program.
文摘Ore sorting is a preconcentration technology and can dramatically reduce energy and water usage to improve the sustainability and profitability of a mining operation.In porphyry Cu deposits,Cu is the primary target,with ores usually containing secondary‘pay’metals such as Au,Mo and gangue elements such as Fe and As.Due to sensing technology limitations,secondary and deleterious materials vary in correlation type and strength with Cu but cannot be detected simultaneously via magnetic resonance(MR)ore sorting.Inferring the relationships between Cu and other elemental abundances is particularly critical for mineral processing.The variations in metal grade relationships occur due to the transition into different geological domains.This raises two questions-how to define these geological domains and how the metal grade relationship is influenced by these geological domains.In this paper,linear relationship is assumed between Cu grade and other metal grades.We applies a Bayesian hierarchical(partial-pooling)model to quantify the linear relationships between Cu,Au,and Fe grades from geochemical bore core data.The hierarchical model was compared with two other models-‘complete-pooling’model and‘nopooling’model.Mining blocks were split based on spatial domain to construct hierarchical model.Geochemical bore core data records metal grades measured from laboratory assay with spatial coordinates of sample location.Two case studies from different porphyry Cu deposits were used to evaluate the performance of the hierarchical model.Markov chain Monte Carlo(MCMC)was used to sample the posterior parameters.Our results show that the Bayesian hierarchical model dramatically reduced the posterior predictive variance for metal grades regression compared to the no-pooling model.In addition,the posterior inference in the hierarchical model is insensitive to the choice of prior.The data is wellrepresented in the posterior which indicates a robust model.The results show that the spatial domain can be successfully utilised for metal grade regression.Uncertainty in estimating the relationship between pay metals and both secondary and gangue elements is quantified and shown to be reduced with partial-pooling.Thus,the proposed Bayesian hierarchical model can offer a reliable and stable way to monitor the relationship between metal grades for ore sorting and other mineral processing options.
文摘Experimental results on the primary carburization reaction between the tungsten powder and methane in the induction plasma, and the secondary carburization of the deposit on substrate at high temperature are reported. Optical microscopy and scanning electron microscopy were used to examine the microstructures of starting tungsten powder, carburized powder, and deposit. X-ray diffraction analysis, thermal gravimetric analysis and microhardness measurement were used to characterize the structures and properties of the powder and the deposit. It is found that the primary carburization reaction in the induction plasma starts from the surface of tungsten particles when the particles are melted. Tungsten particles are partially carburized inside the reactive plasma. Complete carburization is achieved through the secondary carburization reaction of the deposit on substrate at high temperature.