Using a minitype and stress-type test device for similar material simulation of coal-mining subsidence, the relation between tectonic stress and coal-mining subsidence was successfully simulated, furthermore, the test...Using a minitype and stress-type test device for similar material simulation of coal-mining subsidence, the relation between tectonic stress and coal-mining subsidence was successfully simulated, furthermore, the test period of similar material simulation was obviously shortened and the test process was more dexterous and convenient. To do simi-lar material simulation with the minitype and stress-type test device was feasible and high-efficient. Bringing two models with the same geological and mining conditions to bear lateral compressive stress and tensile stress respectively and simulating the process of underground mining, the test results indicate that: under the compressive stress, the col-lapse of the coal roof occurs belatedly and the damaged range in cover of coal seam is smaller, therefore the movement and deformation of the cover and its damage to the ground geological environment are not evident; whereas under tensile stress, the situation is contrary to which mentioned above. A conclusion was obtained from the test that the ground environment hazards in coal mining areas were controlled by the regional geo-logical tectonic stress field.展开更多
Aquifer thermal energy storage(ATES)system has received attention for heating or cooling buildings.However,it is well known that land subsidence becomes a major environmental concern for ATES projects.Yet,the effect o...Aquifer thermal energy storage(ATES)system has received attention for heating or cooling buildings.However,it is well known that land subsidence becomes a major environmental concern for ATES projects.Yet,the effect of temperature on land subsidence has received practically no attention in the past.This paper presents a thermo-hydro-mechanical(THM)coupled numerical study on an ATES system in Shanghai,China.Four water wells were installed for seasonal heating and cooling of an agriculture greenhouse.The target aquifer at a depth of 74e104.5 m consisted of alternating layers of sand and silty sand and was covered with clay.Groundwater level,temperature,and land subsidence data from 2015 to 2017 were collected using field monitoring instruments.Constrained by data,we constructed a field scale three-dimensional(3D)model using TOUGH(Transport of Unsaturated Groundwater and Heat)and FLAC3D(Fast Lagrangian Analysis of Continua)equipped with a thermo-elastoplastic constitutive model.The effectiveness of the numerical model was validated by field data.The model was used to reproduce groundwater flow,heat transfer,and mechanical responses in porous media over three years and capture the thermo-and pressure-induced land subsidence.The results show that the maximum thermoinduced land subsidence accounts for about 60%of the total subsidence.The thermo-induced subsidence is slightly greater in winter than that in summer,and more pronounced near the cold well area than the hot well area.This study provides some valuable guidelines for controlling land subsidence caused by ATES systems installed in soft soils.展开更多
The residual subsidence caused by underground mining in mountain area has a long subsidence duration time and great potential harm,which seriously threatens the safety of people's production and life in the mining...The residual subsidence caused by underground mining in mountain area has a long subsidence duration time and great potential harm,which seriously threatens the safety of people's production and life in the mining area.Therefore,it is necessary to use appropriate monitoring methods and mathematical models to effectively monitor and predict the residual subsidence caused by underground mining.Compared with traditional level survey and InSAR(Interferometric Synthetic Aperture Radar)technology,GNSS(Global Navigation Satellite System)online monitoring technology has the advantages of long-term monitoring,high precision and more flexible monitoring methods.The empirical equation method of residual subsidence in mining subsidence is effectively combined with the rock creep equation,which can not only describe the residual subsidence process from the mechanism,but also predict the residual subsidence.Therefore,based on GNSS online monitoring technology,combined with the mining subsidence model of mountain area and adding the correlation coefficient of the compaction degree of caving broken rock and the Kelvin model of rock mechanics,this paper constructs the residual subsidence time series model of arbitrary point on the ground in mountain area.Through the example,the predicted results of the model in the inversion parameter phase and the dynamic prediction phase are compared with the measured data sequence.The results show that the model can carry out effective numerical calculation according to the GNSS monitoring data of any point on the ground,and the model prediction effect is good,which provides a new method for the prediction of residual subsidence in mountain mining.展开更多
Based on a large number of newly added deep well data in recent years,the subsidence of the Ordos Basin in the Mid-Late Triassic is systematically studied,and it is proposed that the Ordos Basin experienced two import...Based on a large number of newly added deep well data in recent years,the subsidence of the Ordos Basin in the Mid-Late Triassic is systematically studied,and it is proposed that the Ordos Basin experienced two important subsidence events during this depositional period.Through contrastive analysis of the two stages of tectonic subsidence,including stratigraphic characteristics,lithology combination,location of catchment area and sedimentary evolution,it is proposed that both of them are responses to the Indosinian Qinling tectonic activity on the edge of the craton basin.The early subsidence occurred in the Chang 10 Member was featured by high amplitude,large debris supply and fast deposition rate,with coarse debris filling and rapid subsidence accompanied by rapid accumulation,resulting in strata thickness increasing from northeast to southwest in wedge-shape.The subsidence center was located in Huanxian–Zhenyuan–Qingyang–Zhengning areas of southwestern basin with the strata thickness of 800–1300 m.The subsidence center deviating from the depocenter developed multiple catchment areas,until then,unified lake basin has not been formed yet.Under the combined action of subsidence and Carnian heavy rainfall event during the deposition period of Chang 7 Member,a large deep-water depression was formed with slow deposition rate,and the subsidence center coincided with the depocenter basically in the Mahuangshan–Huachi–Huangling areas.The deep-water sediments were 120–320 m thick in the subsidence center,characterized by fine grain.There are differences in the mechanism between the two stages of subsidence.The early one was the response to the northward subduction of the MianLüe Ocean and intense depression under compression in Qinling during Mid-Triassic.The later subsidence is controlled by the weak extensional tectonic environment of the post-collision stage during Late Triassic.展开更多
Mining-induced surface deformation disrupts ecological balance and impedes economic progress.This study employs SBAS-InSAR with 107-view of ascending and descending SAR data from Sentinel-1,spanning February 2017 to S...Mining-induced surface deformation disrupts ecological balance and impedes economic progress.This study employs SBAS-InSAR with 107-view of ascending and descending SAR data from Sentinel-1,spanning February 2017 to September 2020,to monitor surface deformation in the Fa’er Coal Mine,Guizhou Province.Analysis on the surface deformation time series reveals the relationship between underground mining and surface shifts.Considering geological conditions,mining activities,duration,and ranges,the study determines surface movement parameters for the coal mine.It asserts that mining depth significantly influences surface movement parameters in mountainous mining areas.Increasing mining depth elevates the strike movement angle on the deeper side of the burial depth by 22.84°,while decreasing by 7.74°on the shallower side.Uphill movement angles decrease by 4.06°,while downhill movement angles increase by 15.71°.This emphasizes the technology's suitability for local mining design,which lays the groundwork for resource development,disaster prevention,and ecological protection in analogous contexts.展开更多
Despite the high efficiency of remote sensing methods for rapid and large-scale detection of subsidence phenomena,this technique has limitations such as atmospheric impact and temporal and spatial decorrelation that a...Despite the high efficiency of remote sensing methods for rapid and large-scale detection of subsidence phenomena,this technique has limitations such as atmospheric impact and temporal and spatial decorrelation that affect the accuracy of the results.This paper proposes a method based on an artificial neural network to improve the results of monitoring land subsidence due to groundwater overexploitation by radar interferometry in the Aliabad plain(Central Iran).In this regard,vertical ground deformations were monitored over 18 months using the Sentinel-1A SAR images.To model the land subsidence by a multilayer perceptron(MLP)artificial neural network,four parameters,including groundwater level,alluvial thickness,elastic modulus,and transmissivity have been applied.The model's generalizability was assessed using data derived for 144 days.According to the results,the neural network estimates the land subsidence at each ground point with an accuracy of 6.8 mm.A comparison between the predicted and actual values indicated a significant agreement.The MLP model can be used to improve the results of subsidence detection in the study area or other areas with similar characteristics.展开更多
When the mining goaf is close to the cliff,rock slope subsidence induced by underground mining is significantly affected by its boundary conditions.In this study,an analytical method is proposed by considering the key...When the mining goaf is close to the cliff,rock slope subsidence induced by underground mining is significantly affected by its boundary conditions.In this study,an analytical method is proposed by considering the key strata as a semi-infinite Euler-Bernoulli beam rested on a Winkler foundation with a local subsidence area.The analytical solutions of deflection are derived by analyzing the boundary and continuity conditions of the cliff.Then,the analytical solutions are verified by the results from experimental tests,FEM and InSAR,respectively.After that,the influence of changing parameters on deflections is studied with sensitivity analysis.The results show that the distance between goaf and cliff significantly affects the deflection of semi-infinite beam.The response of semi-infinite beam is obviously determined by the length of goaf and the bending stiffness of beam.The comparisons between semi-infinite beam and infinite beam illustrate the ascendancy of the improved model in such problems.展开更多
Groundwater serves as an important water source for residents in and around mining areas.To achieve scientific planning and efficient utilization of water resources in mining areas,it is essential to figure out the ch...Groundwater serves as an important water source for residents in and around mining areas.To achieve scientific planning and efficient utilization of water resources in mining areas,it is essential to figure out the chemical formation process and the ground water sulfur cycle that transpire after the coal mining activities.Based on studies of hydrochemistry and D,^(18)O-H_(2)O,^(34)S-SO_(4)isotopes,this study applied principal component analysis,ion ratio and other methods in its attempts to reveal the hydrogeochemical action and sulfur cycle in the subsidence area of Pingyu mining area.The study discovered that,in the studied area,precipitation provides the major supply of groundwater and the main water chemistry effects are dominated by oxidation dissolution of sulfide minerals as well as the dissolution of carbonate and silicate rocks.The sulfate in groundwater primarily originates from oxidation and dissolution of sulfide minerals in coal-bearing strata and human activities.The mixed sulfate formed by the oxidation of sulfide minerals and by human activities continuously recharges the groundwater,promoting the dissolution of carbonate rock and silicate rock in the process.展开更多
Based on the characteristics of strata movement of solid backfilling mining technology, the surface subsidence prediction method based on the equivalent mining height theory was proposed, and the parameters selection ...Based on the characteristics of strata movement of solid backfilling mining technology, the surface subsidence prediction method based on the equivalent mining height theory was proposed, and the parameters selection guideline of this method was also described. While comparing the parameters of caving mining with equivalent height, the subsidence efficient can be calculated according to the mining height and bulk factor of sagging zone and fracture zone, the tangent of main influence angle of solid backfilling mining is reduced by 0.2-0.5(while it cannot be less than 1.0). For sake of safety, offset of the inflection point is set to zero, and other parameters, such as horizontal movement coefficient and main propagation angle are equal to the corresponding parameters of caving mining with equivalent height. In the last part, a case study of solid backfilling mining subsidence prediction was described. The results show the applicability of this method and the difference of the maximum subsidence point between the prediction and the observation is less than 5%.展开更多
Due to the difficulties in obtaining large deformation mining subsidence using differential Interferometric Synthetic Aperture Radar (D-InSAR) alone, a new algorithm was proposed to extract large deformation mining ...Due to the difficulties in obtaining large deformation mining subsidence using differential Interferometric Synthetic Aperture Radar (D-InSAR) alone, a new algorithm was proposed to extract large deformation mining subsidence using D-InSAR technique and probability integral method. The details of the algorithm are as follows:the control points set, containing correct phase unwrapping points on the subsidence basin edge generated by D-InSAR and several observation points (near the maximum subsidence and inflection points), was established at first; genetic algorithm (GA) was then used to optimize the parameters of probability integral method; at last, the surface subsidence was deduced according to the optimum parameters. The results of the experiment in Huaibei mining area, China, show that the presented method can generate the correct mining subsidence basin with a few surface observations, and the relative error of maximum subsidence point is about 8.3%, which is much better than that of conventional D-InSAR (relative error is 68.0%).展开更多
In order to monitor large-area mining subsidence accurately, a high-precision global navigation satellite system (GNSS) monitoring network was established based on the nearby international GNSS service (IGS) stati...In order to monitor large-area mining subsidence accurately, a high-precision global navigation satellite system (GNSS) monitoring network was established based on the nearby international GNSS service (IGS) stations taken as reference points. Given the non-linear motions of IGS stations, the robust Kalman filtering (RKF) model was presented to determine the datum of multi-period monitoring network considering the velocity and weekly solution of IGS stations. The theory proposed was applied to monitoring mining subsidence in northern Anhui coal mine in China. According to the case study, the RKF model to establish monitoring datum is better than the prediction method and the weekly solution from IGS analysis centers (ACs), and the corresponding precision of deformation can reach up to millimeter level with 4 h observation. The research provides an efficient and accurate approach for monitoring large-area mining subsidence.展开更多
The high resolution Terra SAR-X dataset was employed with DIn SAR and persistent scatterer interferometry(PSI) technique for subsidence monitoring in a mountainous area. For DInS AR technique, the generally used SRT...The high resolution Terra SAR-X dataset was employed with DIn SAR and persistent scatterer interferometry(PSI) technique for subsidence monitoring in a mountainous area. For DInS AR technique, the generally used SRTM and relief-DEM, which was derived from aerial topographic map, were used to evaluate the influence of external DEM. The results show that SRTM could not fully compensate the complex topography of the research area. The corner reflectors installed during the acquisition of SAR dataset were used to estimate the accuracy of geocoding. The terrain corrected geocoding results based on relief-DEM were much better than using SRTM, with the root mean square error(RMSE) being 6.35 m in X direction and 11.65 m in Y direction(both in UTM projection), around one pixel of the multilooked intensity image to be geocoded. For PSI technique, the results from time-series analysis of multi-baseline differential interferograms were integrated to restrict only persistent scatterer candidates near the boundary of subsiding area for regression analysis. The results demonstrate that PSI can refine the boundary of subsidence, which could then be used to derive some angular parameters to help people to learn the law of subsidence caused by repeated excavation in this area.展开更多
Land subsidence is a severe hazard threatening Tanggu, a flat lowland area, and evidences of land subsidence can be seen throughout the city. A new reasonable GPS network was set up in this area from 2008 to 2010. The...Land subsidence is a severe hazard threatening Tanggu, a flat lowland area, and evidences of land subsidence can be seen throughout the city. A new reasonable GPS network was set up in this area from 2008 to 2010. The monitoring data show that land subsidence was serious and two main subsidence cones were obviously formed in the region. One emerged at Hujiayuan, with the maximum rate reaching 60 ram/a, and the influence region enlarged prominently from 2005 to 2010. The other one occurred at Kaifaqu, which became obvious only after 2005, and it showed a decreasing tendency with time. To analyze the causes of ground settlement, a correlation between groundwater withdrawal and land subsidence was firstly made. The results confirmed that over-exploitation of groundwater was the major cause for the severe settlement in Hujiayuan. Meanwhile, the subsidence of Kaifaqu was also related to groundwater withdrawal before 2005. However, the relationship became unconspicuous after 2005. To find the cause of this abnormity, a three-dimensional finite element numerical model, coupled with groundwater flow and subsidence, was built. The simulation results indicate that the subsidence induced by high-rise buildings is serious, but the affected range is limited and it also shows a decreasing trend with time, corresponding to the subsidence characteristics at Kaifaqu. Therefore, more attention should be paid to this hazard induced by engineering construction besides groundwater withdrawal, as more high-rise buildings are under construction in Tanggu.展开更多
Surface subsidence is a typical ground movement due to longwall mining, which causes a series of environmental problems and hazards. In China, intensive coal extractions are commonly operated under dense-populated coa...Surface subsidence is a typical ground movement due to longwall mining, which causes a series of environmental problems and hazards. In China, intensive coal extractions are commonly operated under dense-populated coalfields, which exacerbates the negative subsequences resulted from surface settlement. Therefore, effective approaches to control the ground subsidence are in urgent need for the Chinese coal mining industry. This paper presents a newly developed subsidence control technology: isolated overburden grout injection, including the theory, technique and applications. Relevant procedures such as injection system design, grouting material selection, borehole layout, grout take estimation and injection process design are proposed. The applicability of this technology has been demonstrated through physical modelling, field measurements, and case studies. Since 2009, the technology has been successfully applied to 14 longwall areas in 9 Chinese coal mines. The ultimate surface subsidence factors vary from 0.10 to 0.15. This method has a great potential to be popularized and performed where longwall mining are implemented under villages and ground infrastructures.展开更多
Differential interferometric synthetic aperture radar(DIn SAR), a satellite-based remote sensing technique, has potential application for measuring mine subsidence on a regional scale with high spatial and temporal re...Differential interferometric synthetic aperture radar(DIn SAR), a satellite-based remote sensing technique, has potential application for measuring mine subsidence on a regional scale with high spatial and temporal resolutions. However, the characteristics of synthetic aperture radar(SAR) data and the effectiveness of DIn SAR for subsidence monitoring depend on the radar band(wavelength). This study evaluates the effectiveness of DIn SAR for monitoring subsidence due to longwall mining in central Utah using L-band(24 cm wavelength) SAR data from the advanced land observing satellite(ALOS)and X-band(3 cm wavelength) SAR data from the Terra SAR-X mission. In the Wasatch Plateau region of central Utah, which is characterized by steep terrain and variable ground cover conditions, areas affected by longwall mine subsidence are identifiable using both L-band and X-band DIn SAR.Generally, using L-band data, subsidence magnitudes are measurable. Compared to X-band, L-band data are less affected by signal saturation due to large deformation gradients and by temporal decorrelation due to changes in the surface conditions over time. The L-band data tend to be stable over relatively long periods(months). Short wavelength X-band data are strongly affected by signal saturation and temporal decorrelation, but regions of subsidence are typically identifiable over short periods(days). Additionally,though subsidence magnitudes are difficult to precisely measure in the central Utah region using X-band data, they can often be reasonably estimated.展开更多
he lithosphere stretching, subsidence and basement thermal history of the Songliao, Yinggehai and Qiongdongnan basins in East China have been investigated by using backstripping technique and stretching models. ...he lithosphere stretching, subsidence and basement thermal history of the Songliao, Yinggehai and Qiongdongnan basins in East China have been investigated by using backstripping technique and stretching models. The subsidence curve of the Songliao basin characterizes a rift basin history evolving from synrift rapid subsidence to postrift thermal subsidence. The calculated stretching factor of the basin is about 1.8 to 2.0 and the horizontal extension is about 55-60 km. The reconstructed subsidence curves of the Qiongdongnan and Yinggehai basins show that the basins underwent several rapid subsidence episodes, which has been interpreted as the result of a multiple stretching of the lithosphere. The total mean stretching factors of the Qiongdongnan and Yinggehai basins, calculated by using a multiple instantaneous stretching model, are about 1.7-1.9 and 2.5-3.0 respectively. The stretching factors of these basins, estimated from subsidence, are consistent with those determined from crustal thinning. The reconstructed thermal histories of these basins are in agreement with the geological observation.展开更多
Based on the integrated study of structure attributions and characteristics of the original basin in combination with lithology and lithofacies, sedimentary provenance analysis and thickness distribution of the Mesozo...Based on the integrated study of structure attributions and characteristics of the original basin in combination with lithology and lithofacies, sedimentary provenance analysis and thickness distribution of the Mesozoic Ordos Basin, it is demonstrated that the depocenters migrated counterclockwise from southeast to the north and then to the southwest from the Middle-Late Triassic to the Early Cretaceous. There were no unified and larger-scale accumulation centers except several small isolated accumulation centers before the Early Cretaceous. The reasons why belts of relatively thick strata were well developed in the western basin in several stages are that this area is near the west boundary of the original Ordos Basin, there was abundant sediment supply and the hydrodynamic effect was strong. Therefore, they stand for local accumulation centers. Until the Early Cretaceous, depocenters, accumulation centers and subsidence centers were superposed as an entity in the southwest part of the Ordos Basin. Up to the end of the Middle Jurassic, there still appeared a paleogeographic and paleostructural higher-in-west and lower-in-east framework in the residual basin to the west of the Yellow River. The depocenters of the Ordos Basin from the Middle-Late Triassic to the Middle Jurassic were superposed consistently. The relatively high thermal maturation of Mesozoic and Paleozoic strata in the depocenters and their neighborhood suggest active deep effects in these areas. Generally, superposition of depocenters in several periods and their consistency with high thermal evolution areas reveal the control of subsidence processes. Therefore, depocenters may represent the positions of the subsidence centers. The subsidence centers (or depocenters) are located in the south of the large-scale cratonic Ordos Basin. This is associated with flexural subsidence of the foreland, resulting from the strong convergence and orogenic activity contemporaneous with the Qinling orogeny.展开更多
Based on fission track dating of apatite, and measurement of vitrinite reflectance of rock samples from the Longmenshan (Longmen Mountain)area and the West Sichuan foreland basin and computer modelling it is concluded...Based on fission track dating of apatite, and measurement of vitrinite reflectance of rock samples from the Longmenshan (Longmen Mountain)area and the West Sichuan foreland basin and computer modelling it is concluded that (l)the Songpan-Garze fold belt has uplifted at least by 3-4 km with an uplift rate of no less than 0.3-0.4 mm/a since 10 Ma B.P.; (2) the Longmenshan thrust nappe belt has uplifted at least by 5-6 km with an uplift rate of more than 0.5- 0.6 mm /a since 10 Ma B.P.; (3) the Longmenshan detachment belt has uplifted by 1 - 2 km at a rate of 0.016-0.032 mm/a since 60 Ma B.P.; (4) the West Sichuan foreland basin has uplifted by 1.7-3 km at a rate of 0.028-0.05 mm/a since 60 Ma B.P.; (5) the uplift rate of the area on the west side of the Beichuan-Yingxiu-Xiaoguanzi fault for the last 10 Ma is 40 times as much as that on its east side; (6) the uplifting of the the Songpan - Garze fold belt and the subsidence of the West Sichuan foreland basin 60 Ma ago exhibit a mirro-image correlation, i.e. the rapid uplifting of the the Songpan-Garze fold belt was corresponding to the rapid subsidence of the basin;the Songpan-Garze fold belt has uplifted at a much greater rate than the West Sichuan foeland basin in the last 60 Ma;and (7) the palaeogeothermal gradient was 25℃ /km in the West Sichuan foreland basin.展开更多
Tunnelling related hazards are very common in the Himalayan terrain and a number of such instances have been reported. Several twin tunnels are being planned for transportation purposes which will require good underst...Tunnelling related hazards are very common in the Himalayan terrain and a number of such instances have been reported. Several twin tunnels are being planned for transportation purposes which will require good understanding for prediction of tunnel deformation and surface settlement during the engineering life of the structure. The deformational behaviour, design of sequential excavation and support of any jointed rock mass are challenging during underground construction. We have raised several commonly assumed issues while performing stability analysis of underground opening at shallow depth. For this purpose, Kainchi-mod Nerchowck twin tunnels(Himachal Pradesh, India) are taken for in-depth analysis of the stability of two asymmetric tunnels to address the influence of topography, twin tunnel dimension and geometry. The host rock encountered during excavation is composed mainly of moderately to highly jointed grey sandstone, maroon sandstone and siltstones. In contrast to equidimensional tunnels where the maximum subsidence is observed vertically above the centreline of the tunnel, the result from the present study shows shifting of the maximum subsidence away from the tunnel centreline. The maximum subsidence of 0.99 mm is observed at 4.54 m left to the escape tunnel centreline whereas the maximum subsidence of 3.14 mm is observed at 8.89 m right to the main tunnel centreline. This shifting clearly indicates the influence of undulating topography and inequidimensional noncircular tunnel.展开更多
The objective of this paper is to study the behavior of a low thick and low depth coal seam and the overburden rock mass. The mining method is room and pillar in retreat and partial pillar recovery. The excavation met...The objective of this paper is to study the behavior of a low thick and low depth coal seam and the overburden rock mass. The mining method is room and pillar in retreat and partial pillar recovery. The excavation method is conventional drill and blast because of the small production. The partial pillar recovery is about 30% of the previous pillar size, 7 m × 7 m. The roof displacement was monitored during retreat operation; the surface movement was also monitored. The effect of the blasting vibration on the final pillar strength had been considered. Due to blasting, the pillar reduced about 20%. The consequence is more pillar deformation and roof vertical displacement. The pillar retreat and ground movement were simulated in a three-dimensional numerical model. This model was created to predict the surface subsidence and compare to the subsidence measured. This study showed that the remaining pillar and low seam reduce the subsidence that was predicted with conventional methods.展开更多
基金Supported by the National Natural Science Foundation of China(40472104)
文摘Using a minitype and stress-type test device for similar material simulation of coal-mining subsidence, the relation between tectonic stress and coal-mining subsidence was successfully simulated, furthermore, the test period of similar material simulation was obviously shortened and the test process was more dexterous and convenient. To do simi-lar material simulation with the minitype and stress-type test device was feasible and high-efficient. Bringing two models with the same geological and mining conditions to bear lateral compressive stress and tensile stress respectively and simulating the process of underground mining, the test results indicate that: under the compressive stress, the col-lapse of the coal roof occurs belatedly and the damaged range in cover of coal seam is smaller, therefore the movement and deformation of the cover and its damage to the ground geological environment are not evident; whereas under tensile stress, the situation is contrary to which mentioned above. A conclusion was obtained from the test that the ground environment hazards in coal mining areas were controlled by the regional geo-logical tectonic stress field.
基金sponsored by the National Key Research and Development Program of China(Grant No.2020YFC1808102).
文摘Aquifer thermal energy storage(ATES)system has received attention for heating or cooling buildings.However,it is well known that land subsidence becomes a major environmental concern for ATES projects.Yet,the effect of temperature on land subsidence has received practically no attention in the past.This paper presents a thermo-hydro-mechanical(THM)coupled numerical study on an ATES system in Shanghai,China.Four water wells were installed for seasonal heating and cooling of an agriculture greenhouse.The target aquifer at a depth of 74e104.5 m consisted of alternating layers of sand and silty sand and was covered with clay.Groundwater level,temperature,and land subsidence data from 2015 to 2017 were collected using field monitoring instruments.Constrained by data,we constructed a field scale three-dimensional(3D)model using TOUGH(Transport of Unsaturated Groundwater and Heat)and FLAC3D(Fast Lagrangian Analysis of Continua)equipped with a thermo-elastoplastic constitutive model.The effectiveness of the numerical model was validated by field data.The model was used to reproduce groundwater flow,heat transfer,and mechanical responses in porous media over three years and capture the thermo-and pressure-induced land subsidence.The results show that the maximum thermoinduced land subsidence accounts for about 60%of the total subsidence.The thermo-induced subsidence is slightly greater in winter than that in summer,and more pronounced near the cold well area than the hot well area.This study provides some valuable guidelines for controlling land subsidence caused by ATES systems installed in soft soils.
基金supported by the Natural Science Foundation of Shanxi Province,China(202203021211153)National Natural Science Foundation of China(51704205).
文摘The residual subsidence caused by underground mining in mountain area has a long subsidence duration time and great potential harm,which seriously threatens the safety of people's production and life in the mining area.Therefore,it is necessary to use appropriate monitoring methods and mathematical models to effectively monitor and predict the residual subsidence caused by underground mining.Compared with traditional level survey and InSAR(Interferometric Synthetic Aperture Radar)technology,GNSS(Global Navigation Satellite System)online monitoring technology has the advantages of long-term monitoring,high precision and more flexible monitoring methods.The empirical equation method of residual subsidence in mining subsidence is effectively combined with the rock creep equation,which can not only describe the residual subsidence process from the mechanism,but also predict the residual subsidence.Therefore,based on GNSS online monitoring technology,combined with the mining subsidence model of mountain area and adding the correlation coefficient of the compaction degree of caving broken rock and the Kelvin model of rock mechanics,this paper constructs the residual subsidence time series model of arbitrary point on the ground in mountain area.Through the example,the predicted results of the model in the inversion parameter phase and the dynamic prediction phase are compared with the measured data sequence.The results show that the model can carry out effective numerical calculation according to the GNSS monitoring data of any point on the ground,and the model prediction effect is good,which provides a new method for the prediction of residual subsidence in mountain mining.
基金Supported by the National Science and Technology Major Project(2017ZX05001)CNPC Science and Technology Project(2021DJ22).
文摘Based on a large number of newly added deep well data in recent years,the subsidence of the Ordos Basin in the Mid-Late Triassic is systematically studied,and it is proposed that the Ordos Basin experienced two important subsidence events during this depositional period.Through contrastive analysis of the two stages of tectonic subsidence,including stratigraphic characteristics,lithology combination,location of catchment area and sedimentary evolution,it is proposed that both of them are responses to the Indosinian Qinling tectonic activity on the edge of the craton basin.The early subsidence occurred in the Chang 10 Member was featured by high amplitude,large debris supply and fast deposition rate,with coarse debris filling and rapid subsidence accompanied by rapid accumulation,resulting in strata thickness increasing from northeast to southwest in wedge-shape.The subsidence center was located in Huanxian–Zhenyuan–Qingyang–Zhengning areas of southwestern basin with the strata thickness of 800–1300 m.The subsidence center deviating from the depocenter developed multiple catchment areas,until then,unified lake basin has not been formed yet.Under the combined action of subsidence and Carnian heavy rainfall event during the deposition period of Chang 7 Member,a large deep-water depression was formed with slow deposition rate,and the subsidence center coincided with the depocenter basically in the Mahuangshan–Huachi–Huangling areas.The deep-water sediments were 120–320 m thick in the subsidence center,characterized by fine grain.There are differences in the mechanism between the two stages of subsidence.The early one was the response to the northward subduction of the MianLüe Ocean and intense depression under compression in Qinling during Mid-Triassic.The later subsidence is controlled by the weak extensional tectonic environment of the post-collision stage during Late Triassic.
基金supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA28060201)the National Natural Science Foundation of China(Grant No.42067046)the Science and Technology Planning Project of Guiyang City(Grant No.ZKHT[2023]13-10).
文摘Mining-induced surface deformation disrupts ecological balance and impedes economic progress.This study employs SBAS-InSAR with 107-view of ascending and descending SAR data from Sentinel-1,spanning February 2017 to September 2020,to monitor surface deformation in the Fa’er Coal Mine,Guizhou Province.Analysis on the surface deformation time series reveals the relationship between underground mining and surface shifts.Considering geological conditions,mining activities,duration,and ranges,the study determines surface movement parameters for the coal mine.It asserts that mining depth significantly influences surface movement parameters in mountainous mining areas.Increasing mining depth elevates the strike movement angle on the deeper side of the burial depth by 22.84°,while decreasing by 7.74°on the shallower side.Uphill movement angles decrease by 4.06°,while downhill movement angles increase by 15.71°.This emphasizes the technology's suitability for local mining design,which lays the groundwork for resource development,disaster prevention,and ecological protection in analogous contexts.
文摘Despite the high efficiency of remote sensing methods for rapid and large-scale detection of subsidence phenomena,this technique has limitations such as atmospheric impact and temporal and spatial decorrelation that affect the accuracy of the results.This paper proposes a method based on an artificial neural network to improve the results of monitoring land subsidence due to groundwater overexploitation by radar interferometry in the Aliabad plain(Central Iran).In this regard,vertical ground deformations were monitored over 18 months using the Sentinel-1A SAR images.To model the land subsidence by a multilayer perceptron(MLP)artificial neural network,four parameters,including groundwater level,alluvial thickness,elastic modulus,and transmissivity have been applied.The model's generalizability was assessed using data derived for 144 days.According to the results,the neural network estimates the land subsidence at each ground point with an accuracy of 6.8 mm.A comparison between the predicted and actual values indicated a significant agreement.The MLP model can be used to improve the results of subsidence detection in the study area or other areas with similar characteristics.
基金supported by the National Natural Science Foundation of China(No.52074042)National Key R&D Program of China(No.2018YFC1504802).
文摘When the mining goaf is close to the cliff,rock slope subsidence induced by underground mining is significantly affected by its boundary conditions.In this study,an analytical method is proposed by considering the key strata as a semi-infinite Euler-Bernoulli beam rested on a Winkler foundation with a local subsidence area.The analytical solutions of deflection are derived by analyzing the boundary and continuity conditions of the cliff.Then,the analytical solutions are verified by the results from experimental tests,FEM and InSAR,respectively.After that,the influence of changing parameters on deflections is studied with sensitivity analysis.The results show that the distance between goaf and cliff significantly affects the deflection of semi-infinite beam.The response of semi-infinite beam is obviously determined by the length of goaf and the bending stiffness of beam.The comparisons between semi-infinite beam and infinite beam illustrate the ascendancy of the improved model in such problems.
基金supported by Geological Research Project of the Construction Management Bureau of the Middle Route of the South to North Water Diversion Project(ZXJ/HN/YW/GC-2020037)。
文摘Groundwater serves as an important water source for residents in and around mining areas.To achieve scientific planning and efficient utilization of water resources in mining areas,it is essential to figure out the chemical formation process and the ground water sulfur cycle that transpire after the coal mining activities.Based on studies of hydrochemistry and D,^(18)O-H_(2)O,^(34)S-SO_(4)isotopes,this study applied principal component analysis,ion ratio and other methods in its attempts to reveal the hydrogeochemical action and sulfur cycle in the subsidence area of Pingyu mining area.The study discovered that,in the studied area,precipitation provides the major supply of groundwater and the main water chemistry effects are dominated by oxidation dissolution of sulfide minerals as well as the dissolution of carbonate and silicate rocks.The sulfate in groundwater primarily originates from oxidation and dissolution of sulfide minerals in coal-bearing strata and human activities.The mixed sulfate formed by the oxidation of sulfide minerals and by human activities continuously recharges the groundwater,promoting the dissolution of carbonate rock and silicate rock in the process.
基金Project(2012BAB13B03)supported by the National Scientific and Technical Supporting Programs Funded of ChinaProject(41104011)supported by the National Natural Science Foundation of China+1 种基金Project(2013QNB07)supported by the Natural Science Funds for Young Scholar of China University of Mining and TechnologyProject(2012LWB32)supported by the Fundamental Research Funds for the Central Universities,China
文摘Based on the characteristics of strata movement of solid backfilling mining technology, the surface subsidence prediction method based on the equivalent mining height theory was proposed, and the parameters selection guideline of this method was also described. While comparing the parameters of caving mining with equivalent height, the subsidence efficient can be calculated according to the mining height and bulk factor of sagging zone and fracture zone, the tangent of main influence angle of solid backfilling mining is reduced by 0.2-0.5(while it cannot be less than 1.0). For sake of safety, offset of the inflection point is set to zero, and other parameters, such as horizontal movement coefficient and main propagation angle are equal to the corresponding parameters of caving mining with equivalent height. In the last part, a case study of solid backfilling mining subsidence prediction was described. The results show the applicability of this method and the difference of the maximum subsidence point between the prediction and the observation is less than 5%.
基金Project (BK20130174) supported by the Basic Research Project of Jiangsu Province (Natural Science Foundation) Project (1101109C) supported by Jiangsu Planned Projects for Postdoctoral Research Funds,China+1 种基金Project (201325) supported by the Key Laboratory of Geo-informatics of State Bureau of Surveying and Mapping,ChinaProject (SZBF2011-6-B35) supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Due to the difficulties in obtaining large deformation mining subsidence using differential Interferometric Synthetic Aperture Radar (D-InSAR) alone, a new algorithm was proposed to extract large deformation mining subsidence using D-InSAR technique and probability integral method. The details of the algorithm are as follows:the control points set, containing correct phase unwrapping points on the subsidence basin edge generated by D-InSAR and several observation points (near the maximum subsidence and inflection points), was established at first; genetic algorithm (GA) was then used to optimize the parameters of probability integral method; at last, the surface subsidence was deduced according to the optimum parameters. The results of the experiment in Huaibei mining area, China, show that the presented method can generate the correct mining subsidence basin with a few surface observations, and the relative error of maximum subsidence point is about 8.3%, which is much better than that of conventional D-InSAR (relative error is 68.0%).
基金Projects(51174206,41204011)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPDSA1102),China
文摘In order to monitor large-area mining subsidence accurately, a high-precision global navigation satellite system (GNSS) monitoring network was established based on the nearby international GNSS service (IGS) stations taken as reference points. Given the non-linear motions of IGS stations, the robust Kalman filtering (RKF) model was presented to determine the datum of multi-period monitoring network considering the velocity and weekly solution of IGS stations. The theory proposed was applied to monitoring mining subsidence in northern Anhui coal mine in China. According to the case study, the RKF model to establish monitoring datum is better than the prediction method and the weekly solution from IGS analysis centers (ACs), and the corresponding precision of deformation can reach up to millimeter level with 4 h observation. The research provides an efficient and accurate approach for monitoring large-area mining subsidence.
基金Project(51174191)supported by the National Natural Science Foundation of ChinaProject(2013CB227904)supported by the National Basic Research Program of ChinaProject(2012QNB09)supported by Fundamental Research Funds for the Central Universities,China
文摘The high resolution Terra SAR-X dataset was employed with DIn SAR and persistent scatterer interferometry(PSI) technique for subsidence monitoring in a mountainous area. For DInS AR technique, the generally used SRTM and relief-DEM, which was derived from aerial topographic map, were used to evaluate the influence of external DEM. The results show that SRTM could not fully compensate the complex topography of the research area. The corner reflectors installed during the acquisition of SAR dataset were used to estimate the accuracy of geocoding. The terrain corrected geocoding results based on relief-DEM were much better than using SRTM, with the root mean square error(RMSE) being 6.35 m in X direction and 11.65 m in Y direction(both in UTM projection), around one pixel of the multilooked intensity image to be geocoded. For PSI technique, the results from time-series analysis of multi-baseline differential interferograms were integrated to restrict only persistent scatterer candidates near the boundary of subsiding area for regression analysis. The results demonstrate that PSI can refine the boundary of subsidence, which could then be used to derive some angular parameters to help people to learn the law of subsidence caused by repeated excavation in this area.
基金supported by the State Key Development Program for Basic Research of China(Grant No2010CB428803)the Knowledge Innovation Projects of the Chinese Academy of Science(Grant No KZCX2-YW-Q03-02)
文摘Land subsidence is a severe hazard threatening Tanggu, a flat lowland area, and evidences of land subsidence can be seen throughout the city. A new reasonable GPS network was set up in this area from 2008 to 2010. The monitoring data show that land subsidence was serious and two main subsidence cones were obviously formed in the region. One emerged at Hujiayuan, with the maximum rate reaching 60 ram/a, and the influence region enlarged prominently from 2005 to 2010. The other one occurred at Kaifaqu, which became obvious only after 2005, and it showed a decreasing tendency with time. To analyze the causes of ground settlement, a correlation between groundwater withdrawal and land subsidence was firstly made. The results confirmed that over-exploitation of groundwater was the major cause for the severe settlement in Hujiayuan. Meanwhile, the subsidence of Kaifaqu was also related to groundwater withdrawal before 2005. However, the relationship became unconspicuous after 2005. To find the cause of this abnormity, a three-dimensional finite element numerical model, coupled with groundwater flow and subsidence, was built. The simulation results indicate that the subsidence induced by high-rise buildings is serious, but the affected range is limited and it also shows a decreasing trend with time, corresponding to the subsidence characteristics at Kaifaqu. Therefore, more attention should be paid to this hazard induced by engineering construction besides groundwater withdrawal, as more high-rise buildings are under construction in Tanggu.
基金financial support provided by the National Natural Science Foundation of China(51604258)is greatly appreciated
文摘Surface subsidence is a typical ground movement due to longwall mining, which causes a series of environmental problems and hazards. In China, intensive coal extractions are commonly operated under dense-populated coalfields, which exacerbates the negative subsequences resulted from surface settlement. Therefore, effective approaches to control the ground subsidence are in urgent need for the Chinese coal mining industry. This paper presents a newly developed subsidence control technology: isolated overburden grout injection, including the theory, technique and applications. Relevant procedures such as injection system design, grouting material selection, borehole layout, grout take estimation and injection process design are proposed. The applicability of this technology has been demonstrated through physical modelling, field measurements, and case studies. Since 2009, the technology has been successfully applied to 14 longwall areas in 9 Chinese coal mines. The ultimate surface subsidence factors vary from 0.10 to 0.15. This method has a great potential to be popularized and performed where longwall mining are implemented under villages and ground infrastructures.
基金Funding for this research was provided by the National Institute for Occupational Health and Safety(NIOSH)
文摘Differential interferometric synthetic aperture radar(DIn SAR), a satellite-based remote sensing technique, has potential application for measuring mine subsidence on a regional scale with high spatial and temporal resolutions. However, the characteristics of synthetic aperture radar(SAR) data and the effectiveness of DIn SAR for subsidence monitoring depend on the radar band(wavelength). This study evaluates the effectiveness of DIn SAR for monitoring subsidence due to longwall mining in central Utah using L-band(24 cm wavelength) SAR data from the advanced land observing satellite(ALOS)and X-band(3 cm wavelength) SAR data from the Terra SAR-X mission. In the Wasatch Plateau region of central Utah, which is characterized by steep terrain and variable ground cover conditions, areas affected by longwall mine subsidence are identifiable using both L-band and X-band DIn SAR.Generally, using L-band data, subsidence magnitudes are measurable. Compared to X-band, L-band data are less affected by signal saturation due to large deformation gradients and by temporal decorrelation due to changes in the surface conditions over time. The L-band data tend to be stable over relatively long periods(months). Short wavelength X-band data are strongly affected by signal saturation and temporal decorrelation, but regions of subsidence are typically identifiable over short periods(days). Additionally,though subsidence magnitudes are difficult to precisely measure in the central Utah region using X-band data, they can often be reasonably estimated.
文摘he lithosphere stretching, subsidence and basement thermal history of the Songliao, Yinggehai and Qiongdongnan basins in East China have been investigated by using backstripping technique and stretching models. The subsidence curve of the Songliao basin characterizes a rift basin history evolving from synrift rapid subsidence to postrift thermal subsidence. The calculated stretching factor of the basin is about 1.8 to 2.0 and the horizontal extension is about 55-60 km. The reconstructed subsidence curves of the Qiongdongnan and Yinggehai basins show that the basins underwent several rapid subsidence episodes, which has been interpreted as the result of a multiple stretching of the lithosphere. The total mean stretching factors of the Qiongdongnan and Yinggehai basins, calculated by using a multiple instantaneous stretching model, are about 1.7-1.9 and 2.5-3.0 respectively. The stretching factors of these basins, estimated from subsidence, are consistent with those determined from crustal thinning. The reconstructed thermal histories of these basins are in agreement with the geological observation.
基金supported by the National Basic Research Program of China(Grant No.2003CB214600)China Postdoctoral Science Foundation(Grant No.20080431246)the Program for Changjiang scholars and Innovative Research Team in University(Grant No.IRT0559).
文摘Based on the integrated study of structure attributions and characteristics of the original basin in combination with lithology and lithofacies, sedimentary provenance analysis and thickness distribution of the Mesozoic Ordos Basin, it is demonstrated that the depocenters migrated counterclockwise from southeast to the north and then to the southwest from the Middle-Late Triassic to the Early Cretaceous. There were no unified and larger-scale accumulation centers except several small isolated accumulation centers before the Early Cretaceous. The reasons why belts of relatively thick strata were well developed in the western basin in several stages are that this area is near the west boundary of the original Ordos Basin, there was abundant sediment supply and the hydrodynamic effect was strong. Therefore, they stand for local accumulation centers. Until the Early Cretaceous, depocenters, accumulation centers and subsidence centers were superposed as an entity in the southwest part of the Ordos Basin. Up to the end of the Middle Jurassic, there still appeared a paleogeographic and paleostructural higher-in-west and lower-in-east framework in the residual basin to the west of the Yellow River. The depocenters of the Ordos Basin from the Middle-Late Triassic to the Middle Jurassic were superposed consistently. The relatively high thermal maturation of Mesozoic and Paleozoic strata in the depocenters and their neighborhood suggest active deep effects in these areas. Generally, superposition of depocenters in several periods and their consistency with high thermal evolution areas reveal the control of subsidence processes. Therefore, depocenters may represent the positions of the subsidence centers. The subsidence centers (or depocenters) are located in the south of the large-scale cratonic Ordos Basin. This is associated with flexural subsidence of the foreland, resulting from the strong convergence and orogenic activity contemporaneous with the Qinling orogeny.
基金the National Natural Science Foundation of china (poject No. 49070140)
文摘Based on fission track dating of apatite, and measurement of vitrinite reflectance of rock samples from the Longmenshan (Longmen Mountain)area and the West Sichuan foreland basin and computer modelling it is concluded that (l)the Songpan-Garze fold belt has uplifted at least by 3-4 km with an uplift rate of no less than 0.3-0.4 mm/a since 10 Ma B.P.; (2) the Longmenshan thrust nappe belt has uplifted at least by 5-6 km with an uplift rate of more than 0.5- 0.6 mm /a since 10 Ma B.P.; (3) the Longmenshan detachment belt has uplifted by 1 - 2 km at a rate of 0.016-0.032 mm/a since 60 Ma B.P.; (4) the West Sichuan foreland basin has uplifted by 1.7-3 km at a rate of 0.028-0.05 mm/a since 60 Ma B.P.; (5) the uplift rate of the area on the west side of the Beichuan-Yingxiu-Xiaoguanzi fault for the last 10 Ma is 40 times as much as that on its east side; (6) the uplifting of the the Songpan - Garze fold belt and the subsidence of the West Sichuan foreland basin 60 Ma ago exhibit a mirro-image correlation, i.e. the rapid uplifting of the the Songpan-Garze fold belt was corresponding to the rapid subsidence of the basin;the Songpan-Garze fold belt has uplifted at a much greater rate than the West Sichuan foeland basin in the last 60 Ma;and (7) the palaeogeothermal gradient was 25℃ /km in the West Sichuan foreland basin.
基金financial support from Indian Institute of Technology Bombay, India
文摘Tunnelling related hazards are very common in the Himalayan terrain and a number of such instances have been reported. Several twin tunnels are being planned for transportation purposes which will require good understanding for prediction of tunnel deformation and surface settlement during the engineering life of the structure. The deformational behaviour, design of sequential excavation and support of any jointed rock mass are challenging during underground construction. We have raised several commonly assumed issues while performing stability analysis of underground opening at shallow depth. For this purpose, Kainchi-mod Nerchowck twin tunnels(Himachal Pradesh, India) are taken for in-depth analysis of the stability of two asymmetric tunnels to address the influence of topography, twin tunnel dimension and geometry. The host rock encountered during excavation is composed mainly of moderately to highly jointed grey sandstone, maroon sandstone and siltstones. In contrast to equidimensional tunnels where the maximum subsidence is observed vertically above the centreline of the tunnel, the result from the present study shows shifting of the maximum subsidence away from the tunnel centreline. The maximum subsidence of 0.99 mm is observed at 4.54 m left to the escape tunnel centreline whereas the maximum subsidence of 3.14 mm is observed at 8.89 m right to the main tunnel centreline. This shifting clearly indicates the influence of undulating topography and inequidimensional noncircular tunnel.
文摘The objective of this paper is to study the behavior of a low thick and low depth coal seam and the overburden rock mass. The mining method is room and pillar in retreat and partial pillar recovery. The excavation method is conventional drill and blast because of the small production. The partial pillar recovery is about 30% of the previous pillar size, 7 m × 7 m. The roof displacement was monitored during retreat operation; the surface movement was also monitored. The effect of the blasting vibration on the final pillar strength had been considered. Due to blasting, the pillar reduced about 20%. The consequence is more pillar deformation and roof vertical displacement. The pillar retreat and ground movement were simulated in a three-dimensional numerical model. This model was created to predict the surface subsidence and compare to the subsidence measured. This study showed that the remaining pillar and low seam reduce the subsidence that was predicted with conventional methods.