The mechanical characteristics of coal reservoirs are important parameters in the hydraulic fracturing of coal.In this study,coal samples of different ranks were collected from 12 coal mines located in Xinjiang and Sh...The mechanical characteristics of coal reservoirs are important parameters in the hydraulic fracturing of coal.In this study,coal samples of different ranks were collected from 12 coal mines located in Xinjiang and Shanxi,China.The coal ranks were identified with by the increased Maximum vitrine reflectance(Ro,max)value.The triaxial compression experiments were performed to determine the confining pressure effect on the mechanical properties of coal samples of different ranks.The numerical approaches,including the power function,arctangent,and exponential function models,were used to find the correlation between coal elastic modulus and the confining pressure.The fitting equations of compressive strength and elastic modulus of coal ranks were constructed under different confining pressures.The results showed that the coal compressive strength of different ranks has a positive linear correlation with the confining pressure.The coal elastic modulus and confining pressure showed an exponential function.Poisson’s ratio of coal and confining pressure show negative logarithmic function.The stress sensitivity of the coal elastic modulus decreases with the increase of confining pressure.The coalification jump identifies that the compressive strength,elastic modulus,and stress sensitivity coefficient of coal have a polynomial relationship with the increase of coal ranks.The inflection points in coalification at Ro,max=0.70%,1.30%,and 2.40%,are the first,second,and third coalification jumps.These findings provide significant support to coal fracturing during CBM production.展开更多
The low to medium-rank Tertiary coals from Meghalaya,India,are explored for the first time for their comprehensive micro-structural characterization using the FTIR and Raman spectroscopy.Further,results from these coa...The low to medium-rank Tertiary coals from Meghalaya,India,are explored for the first time for their comprehensive micro-structural characterization using the FTIR and Raman spectroscopy.Further,results from these coals are compared with the Permian medium and high-rank coals to understand the microstructural restyling during coalification and its controls on hydrocarbon generation.The coal samples are grouped based on the mean random vitrinite reflectance values to record the transformations in spectral attributes with increasing coal rank.The aliphatic carbon and the apparent aromaticity respond sharply to the first coalification jump(R:0.50%)during low to medium-rank transition and anchizonal metamorphism of the high-rank coals.Moreover,the Raman band intensity ratio changes during the first coalification jump but remains invari-able in the medium-rank coals and turns subtle again during the onset of pregraphitization in high-rank coals,revealing a polynomial trend with the coal metamorphism.The Rock-Eval hydrogen index and genetic potential also decline sharply at the first coalification jump.Besides,an attempt to comprehend the coal microstructural controls on the hydrocarbon poten-tial reveals that the Tertiary coals comprise highly reactive aliphatic functionalities in the type I-S kerogen,along with the low paleotemperature(74.59-112.28℃)may signify their potential to generate early-mature hydrocarbons.However,the presence of type II-II admixed kerogen,a lesser abundance of reactive moieties,and overall moderate paleotemperature(91.93-142.52℃)of the Permian medium-rank coals may imply their mixed hydrocarbon potential.Meanwhile,anchizonal metamorphism,polycondensed aromatic microstructure,and high values of paleotemperature(~334.25 to~366.79℃)of the high-rank coals indicate a negligible potential of producing any hydrocarbons.展开更多
基金This study was supported by the National Natural Science Foundation of China(Grant Nos.42072191 and 42072190)Hebei Natural Science Foundation Project(No.E2020209074)+1 种基金Shanxi Province Science and Technology Plan unveiling and bidding project(No.20201101003)Prospective Basic Technology Key Project of CNPC during the“Fourteenth Five-Year Plan”(No.2021DJ2302).
文摘The mechanical characteristics of coal reservoirs are important parameters in the hydraulic fracturing of coal.In this study,coal samples of different ranks were collected from 12 coal mines located in Xinjiang and Shanxi,China.The coal ranks were identified with by the increased Maximum vitrine reflectance(Ro,max)value.The triaxial compression experiments were performed to determine the confining pressure effect on the mechanical properties of coal samples of different ranks.The numerical approaches,including the power function,arctangent,and exponential function models,were used to find the correlation between coal elastic modulus and the confining pressure.The fitting equations of compressive strength and elastic modulus of coal ranks were constructed under different confining pressures.The results showed that the coal compressive strength of different ranks has a positive linear correlation with the confining pressure.The coal elastic modulus and confining pressure showed an exponential function.Poisson’s ratio of coal and confining pressure show negative logarithmic function.The stress sensitivity of the coal elastic modulus decreases with the increase of confining pressure.The coalification jump identifies that the compressive strength,elastic modulus,and stress sensitivity coefficient of coal have a polynomial relationship with the increase of coal ranks.The inflection points in coalification at Ro,max=0.70%,1.30%,and 2.40%,are the first,second,and third coalification jumps.These findings provide significant support to coal fracturing during CBM production.
文摘The low to medium-rank Tertiary coals from Meghalaya,India,are explored for the first time for their comprehensive micro-structural characterization using the FTIR and Raman spectroscopy.Further,results from these coals are compared with the Permian medium and high-rank coals to understand the microstructural restyling during coalification and its controls on hydrocarbon generation.The coal samples are grouped based on the mean random vitrinite reflectance values to record the transformations in spectral attributes with increasing coal rank.The aliphatic carbon and the apparent aromaticity respond sharply to the first coalification jump(R:0.50%)during low to medium-rank transition and anchizonal metamorphism of the high-rank coals.Moreover,the Raman band intensity ratio changes during the first coalification jump but remains invari-able in the medium-rank coals and turns subtle again during the onset of pregraphitization in high-rank coals,revealing a polynomial trend with the coal metamorphism.The Rock-Eval hydrogen index and genetic potential also decline sharply at the first coalification jump.Besides,an attempt to comprehend the coal microstructural controls on the hydrocarbon poten-tial reveals that the Tertiary coals comprise highly reactive aliphatic functionalities in the type I-S kerogen,along with the low paleotemperature(74.59-112.28℃)may signify their potential to generate early-mature hydrocarbons.However,the presence of type II-II admixed kerogen,a lesser abundance of reactive moieties,and overall moderate paleotemperature(91.93-142.52℃)of the Permian medium-rank coals may imply their mixed hydrocarbon potential.Meanwhile,anchizonal metamorphism,polycondensed aromatic microstructure,and high values of paleotemperature(~334.25 to~366.79℃)of the high-rank coals indicate a negligible potential of producing any hydrocarbons.