This study uses Steel Slag Coarse Aggregate (SSCA) as a mixture replacement, preamble material to improve soft soils, which is economic, and has good effect environment. Recently, the development and utilization of by...This study uses Steel Slag Coarse Aggregate (SSCA) as a mixture replacement, preamble material to improve soft soils, which is economic, and has good effect environment. Recently, the development and utilization of by-product, waste and recycle materials must be studied and investigated as a source of improved material for soft soils as, an economic and good effect environmental. The study analyzes effects of both replaced mixtures, (SSCA) or (TSCA) on improved soil bearing capacity and expected settlement after verifying the model. Numerical modeling of the one of real store loaded strip using, PLAXIS, 2D, strain deformation behavior to achieve field visible and measured deformations of untreated soft soil. Numerical studies were devolved to investigate geomechanics parameters improved to compare between using (SSCA) or (TSCA) as, replacement mixture. Results demonstrate that using (SSCA) improved compressibility and strength of shallow soft soil layer significantly than using (TCSA) mixture, while (SSCA) improved strip footing ultimate bearing capacity, (UBC), by 84.4% compared with increase of 20.5% when using (TCSA) mixture at the same thickness. In addition, the study highlights the effective (SSCA) replacement thickness ranges between (0.65 ~ 0.80) footing width.展开更多
Suitable methods for enhancing the volume stability of steel slag utilized as fine aggregate were determined. The effects of steam treatment at 100 ℃ and autoclave treatment under 2.0 MPa on the soundness of steel sl...Suitable methods for enhancing the volume stability of steel slag utilized as fine aggregate were determined. The effects of steam treatment at 100 ℃ and autoclave treatment under 2.0 MPa on the soundness of steel slag sand were investigated by means of powder ratio, linear expansion, compressive and flexural strength. DTA, EDX, XRD and ethylene glycol methods were employed to analyze both the treated slags and susceptible expansion grains. Experimental results indicate that powder ratio, content of free lime and rate of linear expansion can express the improvement in volume stability of different treated methods. Steam treatment process cannot ultimately prevent specimens from cracking and decrease of strength, but mortar made from autoclave treated slag keeps integration subjected to hot water of 80℃ until 28 d and its strength do not show significant decrement. The hydration of over-burn free lime and periclase phase are the main cause for the disintegration or crack of untreated and steam treated steel slag's specimens. Autoclave treatment process is more effective than steam treatment process on enhancement of volume stability of steel slag.展开更多
为指导钢渣沥青玛蹄脂碎石混合料(stone mastic asphalt,SMA)级配设计,采用混料试验设计方法与粗集料振实试验,研究了不同组合方案的钢渣粗集料、玄武岩粗集料及玄武岩与钢渣混合粗集料骨架间隙率(voids in coarse aggregate,VCA)变化规...为指导钢渣沥青玛蹄脂碎石混合料(stone mastic asphalt,SMA)级配设计,采用混料试验设计方法与粗集料振实试验,研究了不同组合方案的钢渣粗集料、玄武岩粗集料及玄武岩与钢渣混合粗集料骨架间隙率(voids in coarse aggregate,VCA)变化规律,建立了3类粗集料VCA与各档粗集料比例之间的回归模型。结果表明:钢渣粗集料VCA与各档粗集料比例之间呈多元非线性关系,玄武岩粗集料及钢渣与玄武岩混合粗集料的VCA亦为类似规律;相同级配下钢渣粗集料VCA的数值不同于玄武岩粗集料及钢渣与玄武岩混合粗集料。利用建立的回归模型可预测不同级配曲线的VCA大小次序进而预知矿料间隙率(voids in mineral aggregate,VMA)大小顺序,为SMA配合比优化设计中级配的确定提供依据。展开更多
文摘This study uses Steel Slag Coarse Aggregate (SSCA) as a mixture replacement, preamble material to improve soft soils, which is economic, and has good effect environment. Recently, the development and utilization of by-product, waste and recycle materials must be studied and investigated as a source of improved material for soft soils as, an economic and good effect environmental. The study analyzes effects of both replaced mixtures, (SSCA) or (TSCA) on improved soil bearing capacity and expected settlement after verifying the model. Numerical modeling of the one of real store loaded strip using, PLAXIS, 2D, strain deformation behavior to achieve field visible and measured deformations of untreated soft soil. Numerical studies were devolved to investigate geomechanics parameters improved to compare between using (SSCA) or (TSCA) as, replacement mixture. Results demonstrate that using (SSCA) improved compressibility and strength of shallow soft soil layer significantly than using (TCSA) mixture, while (SSCA) improved strip footing ultimate bearing capacity, (UBC), by 84.4% compared with increase of 20.5% when using (TCSA) mixture at the same thickness. In addition, the study highlights the effective (SSCA) replacement thickness ranges between (0.65 ~ 0.80) footing width.
基金the National Natural Science Foundation of China (No.50678139)
文摘Suitable methods for enhancing the volume stability of steel slag utilized as fine aggregate were determined. The effects of steam treatment at 100 ℃ and autoclave treatment under 2.0 MPa on the soundness of steel slag sand were investigated by means of powder ratio, linear expansion, compressive and flexural strength. DTA, EDX, XRD and ethylene glycol methods were employed to analyze both the treated slags and susceptible expansion grains. Experimental results indicate that powder ratio, content of free lime and rate of linear expansion can express the improvement in volume stability of different treated methods. Steam treatment process cannot ultimately prevent specimens from cracking and decrease of strength, but mortar made from autoclave treated slag keeps integration subjected to hot water of 80℃ until 28 d and its strength do not show significant decrement. The hydration of over-burn free lime and periclase phase are the main cause for the disintegration or crack of untreated and steam treated steel slag's specimens. Autoclave treatment process is more effective than steam treatment process on enhancement of volume stability of steel slag.
文摘为指导钢渣沥青玛蹄脂碎石混合料(stone mastic asphalt,SMA)级配设计,采用混料试验设计方法与粗集料振实试验,研究了不同组合方案的钢渣粗集料、玄武岩粗集料及玄武岩与钢渣混合粗集料骨架间隙率(voids in coarse aggregate,VCA)变化规律,建立了3类粗集料VCA与各档粗集料比例之间的回归模型。结果表明:钢渣粗集料VCA与各档粗集料比例之间呈多元非线性关系,玄武岩粗集料及钢渣与玄武岩混合粗集料的VCA亦为类似规律;相同级配下钢渣粗集料VCA的数值不同于玄武岩粗集料及钢渣与玄武岩混合粗集料。利用建立的回归模型可预测不同级配曲线的VCA大小次序进而预知矿料间隙率(voids in mineral aggregate,VMA)大小顺序,为SMA配合比优化设计中级配的确定提供依据。