The minimization of spurious wave reflection is a challenge in multiscale coupling due to the difference of spatial resolution between atomistic and continuum regions. In this study, a new damping condition is present...The minimization of spurious wave reflection is a challenge in multiscale coupling due to the difference of spatial resolution between atomistic and continuum regions. In this study, a new damping condition is presented for eliminating spurious wave reflection at the interface between atomistic and continuum regions. This damping method starts by a coarse–fine decomposition of the atomic velocity based on the bridging scale method. The fine scale velocity of the atoms in the damping region is reduced by applying nonlinear damping coefficients. The effectiveness of this damping method is verified by one-and two-dimensional simulations.展开更多
In this study,a numerical model for simulating two-phase flow is developed.The Cartesian grid with Adaptive Mesh Refinement(AMR)is adopted to reduce the computational cost.An explicit projection method is used for the...In this study,a numerical model for simulating two-phase flow is developed.The Cartesian grid with Adaptive Mesh Refinement(AMR)is adopted to reduce the computational cost.An explicit projection method is used for the time integration and the Finite Difference Method(FDM)is applied on a staggered grid for the discretization of spatial derivatives.The Volume of Fluid(VOF)method with Piecewise-Linear Interface Calculation(PLIC)is extended to the AMR grid to capture the gas-water interface accurately.A coarse-fine interface treatment method is developed to preserve the flux conservation at the interfaces.Several two-dimensional(2D)and three-dimensional(3D)benchmark cases are carried out for the validation of the model.2D and 3D shear flow tests are conducted to validate the extension of the VOF method to the AMR grid.A 2D linear sloshing case is considered in which the model is proved to have 2nd-order accuracy in space.The efficiency of applying the AMR grid is discussed with a nonlinear sloshing problem.Finally,2D solitary wave past stage and 2D/3D dam break are simulated to demonstrate that the model is able to simulate violent interface problems.展开更多
This paper presents the development of a coarse-fine dual precision positioning stage to achieve long travel range and high accuracy.The fine stage is arranged in series with a coarse stage.The key in the fine stage d...This paper presents the development of a coarse-fine dual precision positioning stage to achieve long travel range and high accuracy.The fine stage is arranged in series with a coarse stage.The key in the fine stage design is the choice of a toggle mechanism for a tight mechanical loop with high stiffness and compactness.We designed the toggle mechanism for reduction of the displacement to suppress signal noises.The performance of the coarse and fine stages was verified with an optical encoder and capacitive sensor,respectively.The measurement results show that the dual mechanism has a travel range of 1 mm and resolution of 30 nm.展开更多
基金the financially support from the Japan Society for the promotion of Science (JSPS) for his fellowship
文摘The minimization of spurious wave reflection is a challenge in multiscale coupling due to the difference of spatial resolution between atomistic and continuum regions. In this study, a new damping condition is presented for eliminating spurious wave reflection at the interface between atomistic and continuum regions. This damping method starts by a coarse–fine decomposition of the atomic velocity based on the bridging scale method. The fine scale velocity of the atoms in the damping region is reduced by applying nonlinear damping coefficients. The effectiveness of this damping method is verified by one-and two-dimensional simulations.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51779049,51879058,52071098,51979053).
文摘In this study,a numerical model for simulating two-phase flow is developed.The Cartesian grid with Adaptive Mesh Refinement(AMR)is adopted to reduce the computational cost.An explicit projection method is used for the time integration and the Finite Difference Method(FDM)is applied on a staggered grid for the discretization of spatial derivatives.The Volume of Fluid(VOF)method with Piecewise-Linear Interface Calculation(PLIC)is extended to the AMR grid to capture the gas-water interface accurately.A coarse-fine interface treatment method is developed to preserve the flux conservation at the interfaces.Several two-dimensional(2D)and three-dimensional(3D)benchmark cases are carried out for the validation of the model.2D and 3D shear flow tests are conducted to validate the extension of the VOF method to the AMR grid.A 2D linear sloshing case is considered in which the model is proved to have 2nd-order accuracy in space.The efficiency of applying the AMR grid is discussed with a nonlinear sloshing problem.Finally,2D solitary wave past stage and 2D/3D dam break are simulated to demonstrate that the model is able to simulate violent interface problems.
基金supported by the National Science Council (No.NSC-96-2628-E002-199)
文摘This paper presents the development of a coarse-fine dual precision positioning stage to achieve long travel range and high accuracy.The fine stage is arranged in series with a coarse stage.The key in the fine stage design is the choice of a toggle mechanism for a tight mechanical loop with high stiffness and compactness.We designed the toggle mechanism for reduction of the displacement to suppress signal noises.The performance of the coarse and fine stages was verified with an optical encoder and capacitive sensor,respectively.The measurement results show that the dual mechanism has a travel range of 1 mm and resolution of 30 nm.