期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Research on Quantitative Identification of Three-Dimensional Connectivity of Fractured-Vuggy Reservoirs
1
作者 Xingliang Deng Peng Cao +3 位作者 Yintao Zhang Yuhui Zhou Xiao Luo Liang Wang 《Energy Engineering》 EI 2024年第5期1195-1207,共13页
The fractured-vuggy carbonate oil resources in the western basin of China are extremely rich.The connectivity of carbonate reservoirs is complex,and there is still a lack of clear understanding of the development and ... The fractured-vuggy carbonate oil resources in the western basin of China are extremely rich.The connectivity of carbonate reservoirs is complex,and there is still a lack of clear understanding of the development and topological structure of the pore space in fractured-vuggy reservoirs.Thus,effective prediction of fractured-vuggy reservoirs is difficult.In view of this,this work employs adaptive point cloud technology to reproduce the shape and capture the characteristics of a fractured-vuggy reservoir.To identify the complex connectivity among pores,fractures,and vugs,a simplified one-dimensional connectivity model is established by using the meshless connection element method(CEM).Considering that different types of connection units have different flow characteristics,a sequential coupling calculation method that can efficiently calculate reservoir pressure and saturation is developed.By automatic history matching,the dynamic production data is fitted in real-time,and the characteristic parameters of the connection unit are inverted.Simulation results show that the three-dimensional connectivity model of the fractured-vuggy reservoir built in this work is as close as 90%of the fine grid model,while the dynamic simulation efficiency is much higher with good accuracy. 展开更多
关键词 Fractured-vuggy reservoir three-dimensional connectivity connection unit dynamic prediction automatic history matching
下载PDF
A fast, accurate and dense feature matching algorithm for aerial images 被引量:2
2
作者 LI Ying GONG Guanghong SUN Lin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第6期1128-1139,共12页
Three-dimensional(3D)reconstruction based on aerial images has broad prospects,and feature matching is an important step of it.However,for high-resolution aerial images,there are usually problems such as long time,mis... Three-dimensional(3D)reconstruction based on aerial images has broad prospects,and feature matching is an important step of it.However,for high-resolution aerial images,there are usually problems such as long time,mismatching and sparse feature pairs using traditional algorithms.Therefore,an algorithm is proposed to realize fast,accurate and dense feature matching.The algorithm consists of four steps.Firstly,we achieve a balance between the feature matching time and the number of matching pairs by appropriately reducing the image resolution.Secondly,to realize further screening of the mismatches,a feature screening algorithm based on similarity judgment or local optimization is proposed.Thirdly,to make the algorithm more widely applicable,we combine the results of different algorithms to get dense results.Finally,all matching feature pairs in the low-resolution images are restored to the original images.Comparisons between the original algorithms and our algorithm show that the proposed algorithm can effectively reduce the matching time,screen out the mismatches,and improve the number of matches. 展开更多
关键词 feature matching feature screening feature fusion aerial image three-dimensional(3D)reconstruction
下载PDF
Three-dimensional face point cloud hole-filling algorithm based on binocular stereo matching and a B-spline
3
作者 Yuan HUANG Feipeng DA 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2022年第3期398-408,共11页
When obtaining three-dimensional(3D)face point cloud data based on structured light,factors related to the environment,occlusion,and illumination intensity lead to holes in the collected data,which affect subsequent r... When obtaining three-dimensional(3D)face point cloud data based on structured light,factors related to the environment,occlusion,and illumination intensity lead to holes in the collected data,which affect subsequent recognition.In this study,we propose a hole-filling method based on stereo-matching technology combined with a B-spline.The algorithm uses phase information acquired during raster projection to locate holes in the point cloud,simultaneously extracting boundary point cloud sets.By registering the face point cloud data using the stereo-matching algorithm and the data collected using the raster projection method,some supplementary information points can be obtained at the holes.The shape of the B-spline curve can then be roughly described by a few key points,and the control points are put into the hole area as key points for iterative calculation of surface reconstruction.Simulations using smooth ceramic cups and human face models showed that our model can accurately reproduce details and accurately restore complex shapes on the test surfaces.Simulation results indicated the robustness of the method,which is able to fill holes on complex areas such as the inner side of the nose without a prior model.This approach also effectively supplements the hole information,and the patched point cloud is closer to the original data.This method could be used across a wide range of applications requiring accurate facial recognition. 展开更多
关键词 three-dimensional(3D)point cloud Hole filling Stereo matching B-SPLINE
原文传递
Joint User Association and Caching Placement for Cache-Enabling UAV Networks
4
作者 Tiankui Zhang Chao Chen Dingcheng Yang 《China Communications》 SCIE CSCD 2023年第6期291-309,共19页
Cache-enabling unmanned aerial vehicles(UAVs)are considered for storing popular contents and providing downlink data offloading in cellular networks.In this context,we formulate a joint optimization problem of user as... Cache-enabling unmanned aerial vehicles(UAVs)are considered for storing popular contents and providing downlink data offloading in cellular networks.In this context,we formulate a joint optimization problem of user association,caching placement,and backhaul bandwidth allocation for minimizing content acquisition delay with consideration of UAVs’energy constraint.We decompose the formulated problem into two subproblems:i)user association and caching placement and ii)backhaul bandwidth allocation.We first obtain the optimal bandwidth allocation with given user association and caching placement by the Lagrangian multiplier approach.After that,embedding the backhaul bandwidth allocation algorithm,we solve the user association and caching placement problem by a threedimensional(3D)matching method.Then we decompose it into two two-dimensional(2D)matching problems and develop low-complexity algorithms.The proposed scheme converges and exhibits a low computational complexity.Simulation results demonstrate that the proposed cache-enabling UAV framework outperforms the conventional UAV-assisted cellular networks in terms of content acquisition delay and the proposed scheme achieves significantly lower content acquisition delay compared with other two benchmark schemes. 展开更多
关键词 edge caching unmanned aerial vehicles user association three-dimensional(3D)matching
下载PDF
3D Echocardiogram Reconstruction Employing a Flip Directional Texture Pyramid
5
作者 C.Preethi M.Mohamed Sathik S.Shajun Nisha 《Computer Systems Science & Engineering》 SCIE EI 2023年第6期2971-2988,共18页
Three dimensional(3D)echocardiogram enables cardiologists to visua-lize suspicious cardiac structures in detail.In recent years,this three-dimensional echocardiogram carries important clinical value in virtual surgica... Three dimensional(3D)echocardiogram enables cardiologists to visua-lize suspicious cardiac structures in detail.In recent years,this three-dimensional echocardiogram carries important clinical value in virtual surgical simulation.However,this 3D echocardiogram involves a trade-off difficulty between accu-racy and efficient computation in clinical diagnosis.This paper presents a novel Flip Directional 3D Volume Reconstruction(FD-3DVR)method for the recon-struction of echocardiogram images.The proposed method consists of two main steps:multiplanar volumetric imaging and 3D volume reconstruction.In the crea-tion of multiplanar volumetric imaging,two-dimensional(2D)image pixels are mapped into voxels of the volumetric grid.As the obtained slices are discontin-uous,there are some missing voxels in the volume data.To restore the structural and textural information of 3D ultrasound volume,the proposed method creates a volume pyramid in parallel with theflip directional texture pyramid.Initially,the nearest neighbors of missing voxels in the multiplanar volumetric imaging are identified by 3D ANN(Approximate Nearest Neighbor)patch matching method.Furthermore,aflip directional texture pyramid is proposed and aggregated with distance in patch matching tofind out the most similar neighbors.In the recon-struction step,structural and textural information obtained from differentflip angle directions can reconstruct 3D volume well with the desired accuracy.Com-pared with existing 3D reconstruction methods,the proposed Flip Directional 3D Volume Reconstruction(FD-3DVR)method provides superior performance for the mean peak signal-to-noise ratio(40.538 for the proposed method I and 39.626 for the proposed method II).Experimental results performed on the cardi-ac datasets demonstrate the efficiency of the proposed method for the reconstruc-tion of echocardiogram images. 展开更多
关键词 three-dimensional echocardiogram 3D ANN patch matching volume pyramid flip directional texture pyramid 3D volume reconstruction
下载PDF
Inferring three-dimensional surface displacement field by combining SAR interferometric phase and amplitude information of ascending and descending orbits 被引量:22
6
作者 HU Jun LI ZhiWei +2 位作者 ZHU JianJun REN XiaoChong DING XiaoLi 《Science China Earth Sciences》 SCIE EI CAS 2010年第4期550-560,共11页
Conventional Interferometric Synthetic Aperture Radar(InSAR) technology can only measure one-dimensional surface displacement(along the radar line-of-sight(LOS) direction).Here we presents a method to infer three-dime... Conventional Interferometric Synthetic Aperture Radar(InSAR) technology can only measure one-dimensional surface displacement(along the radar line-of-sight(LOS) direction).Here we presents a method to infer three-dimensional surface displacement field by combining SAR interferometric phase and amplitude information of ascending and descending orbits.The method is realized in three steps:(1) measuring surface displacements along the LOS directions of both ascending and descending orbits based on interferometric phases;(2) measuring surface displacements along the azimuth directions of both the ascending and descending orbits based on the SAR amplitude data;and(3) estimating the three-dimensional(3D) surface displacement field by combining the above four independent one-dimensional displacements using the method of least squares and Helmert variance component estimation.We apply the method to infer the 3D surface displacement field caused by the 2003 Bam,Iran,earthquake.The results reveal that in the northern part of Bam the ground surface experienced both subsidence and southwestward horizontal movement,while in the southern part uplift and southeastward horizontal movement occurred.The displacement field thus determined matches the location of the fault very well with the maximal displacements reaching 22,40,and 30 cm,respectively in the up,northing and easting directions.Finally,we compare the 3D displacement field with that simulated from the Okada model.The results demonstrate that the method presented here can be used to generate reliable and highly accurate 3D surface displacement fields. 展开更多
关键词 InSAR AMPLITUDE matching AZIMUTH offset three-dimensional SURFACE displacement BAM earthquake
原文传递
3D modeling of Unmanned Aerial Vehicles Tilt Photogrammetry
7
作者 Lingyun Li 《Journal of World Architecture》 2020年第4期10-12,共3页
Unmanned Aerial Vehicles(UAV)tilt photogrammetry technology can quickly acquire image data in a short time.This technology has been widely used in all walks of life with the rapid development in recent years especiall... Unmanned Aerial Vehicles(UAV)tilt photogrammetry technology can quickly acquire image data in a short time.This technology has been widely used in all walks of life with the rapid development in recent years especially in the rapid acquisition of high-resolution remote sensing images,because of its advantages of high efficiency,reliability,low cost and high precision.Fully using the UAV tilt photogrammetry technology,the construction image progress can be observed by stages,and the construction site can be reasonably and optimally arranged through three-dimensional modeling to create a civilized,safe and tidy construction environment. 展开更多
关键词 Unmanned aerial vehicle(UAV) Tilt photogrammetry three-dimensional modeling Multiview image dense matching Smart3D
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部